岩石学报  2012, Vol. 28 Issue (1): 183-198   PDF    
云南个旧高峰山花岗岩成因:锆石U-Pb年代学及地球化学约束
李肖龙1, 毛景文1,2, 程彦博1, 张娟1     
1. 中国地质大学地球科学与资源学院,北京 100083;
2. 中国地质科学院矿产资源研究所,北京 100037
摘要: 高峰山花岗岩体位于个旧矿区东区高松矿田南部,为一隐伏岩体,岩性主要为中粒黑云母二长花岗岩。本文对该岩体进行年代学、地球化学研究以约束其形成时代和岩石成因。锆石LA-ICP-MS U-Pb定年获得的形成年龄为85.76±0.58Ma,即白垩纪晚期。地球化学数据显示,高峰山花岗岩具有高硅富碱的特点,属于准铝质到过铝质的高钾钙碱性花岗岩;并富集Rb、U、Ta、Pb、Nd,而亏损Ba、Nb、Sr、P、Zr、Eu、Ti;稀土元素总量为(∑REE)为146.7×10-6~236.1×10-6,铕负异常非常明显(δEu为0.03~0.11),具有类似M型的四分组效应。初步研究表明,高峰山花岗岩具有A2型花岗岩的特征,是地壳部分熔融形成的母岩浆经高程度的分离结晶作用形成的,是晚中生代华南西部岩石圈拉张伸展的地球动力学背景下,滇东南-桂西一带大规模岩浆活动-成岩事件的产物。
关键词: 高峰山花岗岩     锆石U-Pb年龄     地球化学     岩石成因     云南个旧    
Petrogenesis of the Gaofengshan granite in Gejiu area, Yunnan Province: Zircon U-Pb dating and geochemical constraints
LI XiaoLong1, MAO JingWen1,2, CHENG YanBo1, ZHANG Juan1     
1. School of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Gaofengshan granite is located in the eastern part of the Gejiu ore district, Yunnan Province. The lithology of the granitoid is mainly medium grained biotite monzonitic granite. In this paper, zircon U-Pb dating and geochemistry of the Gaofengshan granite is studied to constrain its geochronology and petrogenesis. Zircon LA-ICP-MS dating yields an emplacement age of 85.76±0.58Ma, which suggests that this granite formed in the Late Cretaceous. Geochemically, this granite is silica riched in composition, with high content of alkali (Na2O+K2O). It’s a metaluminous to peraluminous granite and belongs to the high-K calc-alkaline series, and characterized by enrichment of Rb, U, Ta, Pb, Nd and depletion of Ba, Nb, Sr, P, Zr, Eu, Ti. The abundance of ∑REE varies in the range of 146.7×10-6 to 236.1×10-6, and it has intensely negative Eu abnormality (δEu=0.03~0.11). What’s more, it reflects a tetrad-like effect with a shape of “M”. These features are coincident with A2 granite. Geochemical characteristics show that the parental magma of the Gaofengshan granite was derived from the partial melting of crust, and experienced a strong crystal fractionation process. New data of this study indicate that the Gaofengshan granite was one component of the large scale Late Cretaceous magmatism in western Cathaysia block, which viewed as under a regional lithospheric extension tectonic setting.
Key words: Granitoid rocks     Geochemistry     Metallogenic specialization     Shedong W-Mo deposit     Cangwu County, Guangxi    
1 引言

云南个旧是驰名中外的锡-铜多金属矿集区。在矿区范围内分布着花岗质岩石、辉长岩、碱性岩和煌斑岩岩石组合。其中花岗岩因分布范围广、与成矿关系密切而备受关注,先后有冯贤仁(1982)陈吉琛等(1983)汪志芬(1983)冶金工业部西南冶金地质勘探公司(1984)伍勤生等(1984)李家和(1985)彭程电(1985)陆杰(1987)杨世瑜(1990)官容生(1991)李志群(1992)王新光和朱金初(1992)戴福盛(1996)庄永秋等(1996)徐云端和李玉新(1997)莫国培(2006)程彦博等(2008a,2009)、Cheng and Mao(2010)等进行了不同程度的研究。这些研究为正确认识个旧花岗岩提供了大量的基础资料,但是通过这些文献我们不难发现,对有些问题,比如花岗岩成因及地球动力学背景等目前还存在争议。作为高松矿田内一个重要的与锡(铜)成矿密切相关的花岗岩体,由于长期没有工程揭露,高峰山花岗岩目前还缺乏系统研究。本文选择高峰山花岗岩为研究对象,利用当前高精度分析测试手段,深入研究这一重要岩体的岩石学、年代学和地球化学特征,并尝试探讨岩石成因。这不仅可以为进一步探讨成岩与成矿的关系提供依据,对于研究矿床成因和指导找矿还具有理论和现实意义。

2 区域地质背景及岩体概况

个旧矿集区位于右江褶皱带西缘,北接扬子地块,以师宗-弥勒断裂为界;西南邻特提斯构造域的三江褶皱带,以红河断裂为界(图 1)(毛景文等,2008)。矿区出露地层主要为三叠系和少量的二叠系地层。自下而上分别是二叠纪火山岩(峨眉山溢流玄武岩的一部分);上二叠统龙潭组细粒碎屑岩及煤系地层;下三叠统飞仙关组砂页岩、永宁镇组砂泥岩;中三叠统个旧组碳酸盐岩(下部夹有基性火山岩)、法郎组细粒碎屑岩及一些碳酸盐岩(下部和上部分别夹有基性火山岩);上三叠统鸟格组和火把冲组细粒碎屑岩;新生代沉积物广泛分布于山涧沟谷及断陷盆地中(冶金工业部西南冶金地质勘探公司,1984)。矿区分布最广泛的地层为中三叠统个旧组和法郎组,也是主要的赋矿层位。

图 1 个旧矿区地质简图(据毛景文等,2008) 1 -第四系沉积物;2-上三叠统火把冲组板岩、砂岩、砂砾岩;3-中三叠统法郎组砂岩、页岩夹凝灰岩;4-中三叠统法郎组变玄武质熔岩;5-中三叠统个旧组碳酸盐岩;6-下三叠统红色砂岩夹绿色砂岩、泥灰岩;7-二叠纪峨眉山玄武岩;8-哀牢山变质带;9-辉长岩;10-霞石正长岩;11-含闪长岩包体的碱长花岗岩(原二长岩);12-碱长花岗岩;13-似斑状黑云母花岗岩;14-等粒黑云母花岗岩;15-中三叠统个旧组变玄武岩;16-断层;17-矿区 Fig. 1 Sketch map of geology in Gejiu area(after Mao et al., 2008) 1 -Quaternary sediments; 2-Upper Triassic slate,sandstone and glutinite of the Huobachong Formation; 3-Middle Triassic sandstone,shale of the Falang Formation; 4- Middle Triassic basaltic lava of the Falang Formation; 5-Middle Triassic carbonate rock of the Gejiu Formation; 6-Lower Triassic purple sandstone intercalated with green sandstone and marlite of the Gejiu Formation; 7-Permian Emei Mountain basalt; 8-Ailao Mt. metamorphic zone; 9-gabbro; 10-nepheline syenite; 11-alkali feldspar granite with mafic enclaves; 12-alkali feldspar granite;13-porphyritic biotite granite; 14-equigranular biotite granite; 15-Middle Triassic basalt of the Gejiu Formation; 16-fault; 17-mine

在个旧矿区,南北向的个旧断裂作为小江岩石圈断裂的南延部分,将个旧矿区分为东、西两区。东区的控矿构造为五子山复式背斜,5条近东西向的压扭性大断裂横跨在其轴部;西区的主要构造为贾沙复式向斜、近北东向的杨家田断裂、轿顶山断裂及龙岔河断裂等。

个旧矿区在中生代有频繁而强烈的岩浆活动,形成规模宏大的岩浆岩。西区岩体大面积出露,主要有贾沙辉长岩、龙岔河花岗岩和神仙水花岗岩以及白云山碱性岩等;东区岩体主要有白沙冲、马松、高峰山、老卡、新山等花岗岩体,多隐伏于地下,仅在白沙冲、北炮台及新山等处出露。除花岗岩外,在个旧东区还有煌斑岩脉出现。锆石LA-ICP-MS和SHRIMP U-Pb定年表明,个旧白沙冲、马松、老卡、新山、龙岔河、神仙水等花岗岩体形成时代为76~85Ma(Cheng and Mao, 2010),碱性岩和煌斑岩的形成时代分别为76.6±3.6Ma和77.2±2.4Ma(程彦博等,2008b)。此外,矿区内还有三叠系玄武岩出露。

高峰山花岗岩分布在个旧矿区高松矿田南部,为一隐伏岩体,侵入于个旧组灰岩中,呈岩株产出,据钻孔揭露,已控制4.3km2范围。岩体边部有细晶岩脉,接触带有较强烈的矽卡岩化,并常有锡、铜等矿体产出。详细的野外及镜下观察表明,岩体的岩性为灰白色中粒黑云母二长花岗岩(图 2),具花岗结构,块状构造,主要矿物组成为石英(30%左右)、钾长石(35%左右)、斜长石(28%左右)和黑云母(7%左右),副矿物为锆石、磷灰石、黄铁矿等。其中斜长石呈自形-半自形板状、柱状,聚片双晶发育,可见绢云母化;钾长石呈半自形-他形板状、不规则状,以微斜长石为主,格子双晶发育,亦有条纹长石;石英呈半自形-他形粒状;黑云母呈片状或条状,多色性明显,解理发育,可见绿泥石化,有时转变为白云母及铁质矿物。岩体可见云英岩化、白云母化、绢云母化等。

图 2 高峰山花岗岩镜下照片 Kf-钾长石;Pl-斜长石;Bt-黑云母;Ms-白云母;Srt-绢云母;Q-石英 Fig. 2 Microscopic images of Gaofengshan granite Kf-K-feldspar; Pl-plagioclase; Bt-biotite; Ms-muscovite; Srt-sericite; Q-quartz
3 样品采集及分析方法

本文黑云母二长花岗岩样品均采自高松矿田的井下坑道中,具体位置为1360中段218线。该坑道深入到高峰山花岗岩内部,因此样品具有很好的代表性。

选择野外采集的有代表性的新鲜样品,无污染粉碎至200目,在核工业北京地质研究院分析测试研究中心进行主量和微量元素分析。其中主量元素使用XRF法测试(二价和三价铁由化学法测定),所用仪器为飞利浦PW2404X射线荧光光谱仪,精度优于5%;微量元素采用酸溶法,制备好的样品溶液在ICP-MS上测试,所用仪器为HR-ICP-MS(Element I),德国Finnigan-MAT公司制造,工作温度、相对湿度分别为20℃和30%,微量元素含量大于10×10-6时的精度优于5%,小于10×10-6时的精度优于10%,详细的分析流程见相关文献(Qu et al., 2004)。

用于锆石U-Pb年代学测试的样品,经人工破碎后按照常规方法分选锆石,在双目镜下挑选透明、晶形完好的锆石颗粒,粘于环氧树脂表面,固化后打磨抛光至露出一个光洁平面,不镀金(宋彪等,2002)。然后进行透、反射照相和阴极发光(CL)成像,结合这些图像选择最佳锆石进行定年测试。样品测试之前用酒精轻微擦拭表面,以除去可能的污染。LA-ICP-MS锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室完成,锆石定年分析所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态,锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127为外标进行校正。测试过程中在每测定5~7个样品前后重复测定两个锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。详细实验测试过程可参见侯可军等(2009)。数据处理采用ICPMSDataCal程序(Liu et al., 2010),锆石年龄谐和图用Isoplot 3.0程序(Ludwig,2003)获得。

4 分析结果 4.1 锆石U-Pb年龄

锆石U-Pb年龄分析测试结果见表 1

表 1 高峰山花岗岩锆石LA-ICP-MS U-Pb分析数据 Table 1 Zircon LA-ICP-MS U-Pb data of Gaofengshan granite

锆石晶形多为自形、半自形柱状,少数为他形粒状、板状。从阴极发光(CL)图像(图 3)上可以看出多数锆石具有清晰的内部结构和典型岩浆成因的震荡环带(吴元保和郑永飞,2004)。表 1显示,锆石中232Th、238U含量变化较大,分别为165.2×10-6~1033×10-6和371.6×10-6~4954×10-6,且二者呈现较好的正相关关系(图 4),Th/U比值介于0.09和0.46之间,这些均具有岩浆锆石的特征(Belousova et al., 2002)。

图 3 高峰山花岗岩锆石阴极发光(CL)图像 Fig. 3 Cathodoluminescenece(CL)images of analyzed zircons from Gaofengshan granite

图 4 高峰山花岗岩中锆石Th-U图解 Fig. 4 Zircon Th-U diagram of Gaofengshan granite

本次测试测定了18颗锆石20个点,其中13个点的206Pb/238U年龄介于84Ma和88Ma之间,并且几乎都位于谐和线上(图 5),表明这些锆石形成后其U-Pb同位素体系保持封闭状态。其余7个点年龄明显偏大(101.8Ma)或偏小(40.05~77.38Ma),故不参与年龄加权平均值计算。剔除7个离群年龄后获得的206Pb/238U加权平均年龄为85.76±0.58Ma(N=13,MSWD=1.9),代表了花岗岩的结晶年龄。

图 5 高峰山花岗岩锆石U-Pb年龄谐和图 Fig. 5 Zircon U-Pb concordia diagram of Gaofengshan granite
4.2 元素地球化学

全岩地球化学分析测试结果见表 2

表 2 高峰山花岗岩全岩地球化学数据(主量元素:wt%;稀土和微量元素:×10-6) Table 2 Geochemical data of Gaofengshan granite(Major elements: wt%; Trace elements: ×10-6)

高峰山花岗岩具有高SiO2(74.97%~76.42%)、Al2O3(11.83%~12.71%)、K2O(4.50%~5.38%)、K2O/Na2O比值(1.25~2.38)和低P2O5(0.015%~0.053%)的特征。全碱(Na2O+K2O)含量为7.64%~8.59%。在分类上属于花岗岩范围(图 6)。在K2O-SiO2图解上(图 7)落在高钾钙碱性系列区域。铝饱和指数(A/CNK)为0.98~1.07,CIPW标准矿物计算显示,部分样品出现刚玉分子,但含量较低(0.15%~0.90%),并且在出现刚玉分子的样品中均不出现透辉石,与准铝质到弱过铝质花岗岩特征类似,在A/NK-A/CNK图解上(图 8)亦落在准铝质和过铝质分界线附近。高峰山花岗岩的分异指数(DI)较高,为91.26~94.82,表明原始岩浆的结晶分异强烈。

图 6 高峰山花岗岩TAS图解(据Cox et al., 1979; Middlemost,1994) 图 7,8,11~14图例同此图 Fig. 6 TAS diagram of Gaofengshan granite(after Cox et al., 1979; Middlemost,1994) Symbols in Fig. 7,8,11~14 are the same as those in Fig. 6

图 7 高峰山花岗岩K2O-SiO2岩石系列判别图(据Morrison,1980; Rickwood,1989; Rollison,1993) Fig. 7 K2O-SiO2 diagram of Gaofengshan granite(after Morrison,1980; Rickwood,1989; Rollison,1993)

图 8 高峰山花岗岩岩石铝饱和指数判别图解(据Maniar and Piccoli, 1989) Fig. 8 A/NK-A/CNK diagram of Gaofengshan granite(after Maniar and Piccoli, 1989)

高峰山花岗岩稀土总量(∑REE)为146.7×10-6~236.1×10-6,轻、重稀土含量比(LREE/HREE)为3.64~7.70,(La/Yb)N为2.55~6.70,表明轻稀土元素富集,具有非常强烈的负铕异常(δEu为0.03~0.11),在稀土元素球粒陨石标准化图解(图 9)上呈明显的“V”型,并具有类似M型的四分组效应,表现出A型花岗岩稀土元素地球化学特征(Eby,1992)。如此强烈的负铕异常反映了形成它的花岗质熔体经历了高度的分离结晶作用,即属于高演化岩浆体系,而高演化岩浆体系中岩浆与富挥发分(Cl,F和CO2)流体相互作用可能是形成稀土四分组的控制因素(赵振华等, 1992,2010),也就是说,四分组效应的出现可能反映了流体-熔体的相互作用。

图 9 高峰山花岗岩稀土元素球粒陨石标准化分布型式图(标准值据Boynton,1984) Fig. 9 Chondrite-normalized REE distribution patterns of Gaofengshan granite(normalization values after Boynton,1984)

微量元素方面,高场强元素Nb(29.8×10-6~46.2×10-6)、Ta(7.07×10-6~13×10-6)、Hf(5×10-6~8.43×10-6)含量较低,而Zr(99.3×10-6~146×10-6)含量较高;大离子亲石元素Rb(522×10-6~658×10-6)含量较高,但Sr(28.7×10-6~92.5×10-6)和Ba(14.8×10-6~72.7×10-6)含量较低。高峰山花岗岩的Th和U含量分别达到了39×10-6~59.3×10-6、19.2×10-6~32.3×10-6,按照Darnley(1985)在“高热(HHP)花岗岩、热液循环和矿床成因”会议上总结的定义,该花岗岩属于高热花岗岩。在微量元素原始地幔标准化图解(图 10)上,高峰山花岗岩呈现富集Rb、U、Ta、Pb、Nd而亏损Ba、Nb、La、Ce、Sr、P、Zr、Eu、Ti等的特征。

图 10 高峰山花岗岩微量元素原始地幔标准化图解(标准值据Sun and McDonough, 1989) Fig. 10 Primitive mantle-normalized trace element patterns of Gaofengshan granite(normalization values after Sun and McDonough, 1989)
5 讨论 5.1 形成时代

如前所述,个旧地区存在规模宏大的花岗岩,除高峰山花岗岩体外,还有西区的龙岔河花岗岩体、神仙水花岗岩体及东区的白沙冲花岗岩体、马松花岗岩体、老卡花岗岩体、新山花岗岩体等。锆石LA-ICP-MS和SHRIMP U-Pb定年表明,这些花岗岩体形成时代为76~85Ma(Cheng and Mao, 2010)。程彦博等(2008b)还获得了区内碱性岩和煌斑岩的形成时代,分别为76.6±3.6Ma和77.2±2.4Ma。这些研究表明,个旧地区在燕山晚期存在一次岩浆侵位事件。从区域范围来看,这次侵位事件不仅发生在个旧地区,在滇东南-桂西一带的其他地区亦有表现:在都龙,形成老君山花岗岩(92.9±1.9Ma)(刘玉平等,2007);在文山,形成薄竹山花岗岩(86~88Ma)(程彦博等,2010a);在广西大厂,形成龙箱盖花岗岩(91±1Ma~93±1Ma)(蔡明海等,2006);在广西宾阳,形成昆仑关花岗岩(93±1Ma)(谭俊等,2008)。

用于本次U-Pb测年的锆石多为自形、半自形柱状,少数为他形粒状、板状,并且多数锆石具有清晰的内部结构和典型岩浆成因的震荡环带(图 3)。从获得的数据来看,平均误差小于1Ma,MSWD小于2,说明数据的可信度较高。

综合考虑锆石样品、数据质量以及区域内岩浆岩年龄,本文获得的85.76±0.58Ma这一年龄可以代表高峰山花岗岩体的形成时代。这也同时表明,高峰山花岗岩的形成是滇东南-桂西一带白垩纪晚期大规模岩浆活动-成岩事件的一部分。

5.2 岩石类型及成因

目前最常用的花岗岩分类方案是由Chappell and White(1974)根据岩石地球化学特征提出的ISAM方案。

自然界中真正由地幔岩浆衍生的M型花岗岩极少,并且高峰山花岗岩属于高钾钙碱性系列,地球化学特征总体表现出高硅富碱的特点,这与M型花岗岩明显不同(陈建林等,2004)。岩体具有准铝质-弱过铝质特性,A/CNK值为0.98~1.07,虽然CIPW标准矿物计算结果显示部分样品含有刚玉,但含量较低(0.15%~0.90%),这些明显不同于强烈富铝的S型花岗岩,并且P2O5(0.015%~0.053%)含量很低,综合考虑这些因素,岩体属于S型花岗岩的可能性不大。

我们认为高峰山花岗岩属于A型花岗岩,原因如下:岩体岩石类型为黑云母二长花岗岩,碱性长石和石英为主要造岩矿物,暗色矿物含有黑云母;主量元素方面以高硅钾、贫镁钙,准铝质-弱过铝质为特征;微量元素方面Zr(99.3×10-6~146×10-6)、Rb(522×10-6~658×10-6)含量较高,Sr(28.7×10-6~92.5×10-6)、Ba(14.8×10-6~72.7×10-6)含量较低,Ga(21×10-6~24.7×10-6)含量和10000Ga/Al值(3.26~3.80)很高,富集Rb、U、Ta、Pb、Nd而亏损Ba、Nb、La、Ce、Sr、P、Eu、Ti等;稀土元素方面轻稀土元素富集,铕负异常强烈,在稀土元素球粒陨石标准化图解(图 9)上呈明显的“V”型,并显示四分组特征。以上这些特征均与A型花岗岩类似(Whalen et al., 1987; 苏玉平和唐红峰,2005吴锁平等,2007贾小辉等,2009Eby,1992)。在Whalen et al.(1987)设计的花岗岩类判别图上(图 11),高峰山花岗岩亦都投到了A型区域,而这些判别图可以有效地将A型花岗岩从I、S型中区分出来。进一步地划分,则属于Eby(1990,1992)根据地球化学特征划分的A1、A2型花岗岩中的A2型(图 12)。

图 11 高峰山花岗岩K2O/MgO(a)、(K2O+Na2O)/CaO(b)、K2O+Na2O(c)、Y(d)、Nb(e)、Ce(f)、Zr(g)和Zn(h)对10000Ga/Al图解(据Whalen et al., 1987) Fig. 11 K2O/MgO(a),(K2O+Na2O)/CaO(b),K2O+Na2O(c),Y(d),Nb(e),Ce(f),Zr(g)and Zn(h)vs. 10000Ga/Al diagrams of Gaofengshan granite(after Whalen et al., 1987)

图 12 高峰山花岗岩Rb/Nb-Y/Nb(a)和Sc/Nb-Y/Nb(b)图解(据Eby,1992) Fig. 12 Rb/Nb-Y/Nb(a)and Sc/Nb-Y/Nb(b)diagrams of Gaofengshan granite(after Eby,1992)

关于A型花岗岩的成因,主要认识有:(1)富F麻粒岩相下地壳部分熔融(Collins et al., 1982; Whalen et al., 1987; Skjerlie and Johnston, 1993);(2)长英质和镁铁质源岩部分熔融,并且低压环境和特殊源岩并不是必需的(Landenberger and Collins, 1996; King et al., 1997);(3)幔源的碱性基性岩-中性岩分异演化(Bonin,2007)。

由于还没有详细的Sr-Nd或Hf同位素资料,我们无法对高峰山花岗岩的源岩和成因模式进行准确的限制。但是该岩体亏损Nb而富集Ta,并且Nb/Ta比值(2.82~5.43)较低(表 2),低于地壳的Nb/Ta比值(11~12)(Taylor and McLennan, 1985),表明Nb、Ta这一互代元素已经开始分馏,是一种典型的壳源成因类型(裴先治等,2009)。Ba相对于Rb和Th明显亏损,而花岗岩中的负Ba异常表明该花岗岩是地壳岩石部分熔融的产物(Wan,1999)。Nd/Th比值为0.60~1.08,略低于壳源岩石(约为3)而明显有别于幔源岩石(大于15)(Bea et al., 2001)。因此由幔源基性岩浆结晶分异形成的可能性较小,而很可能具有壳源特征。另外该岩体中并没有见到基性岩包体,也没有见到其他岩浆混合的迹象,因此壳幔混合可能并不存在或者很微弱。Eby(1990,1992)进行A型花岗岩亚类划分时认为,A1型物质来源以地幔为主,可能有少量地壳物质的混染;A2型物质来源以壳源为主,并可能混有少量地幔成分。在A型花岗岩亚类判别图中(图 12),高峰山花岗岩基本落入A2型区域,结合矿区内其他花岗岩体的全岩(143Nd/144Nd)i为0.512053~0.512176,εNd(t)(-6.93~-9.27)和εHf(t)(-0.4~1.2)均主要表现为负值(Cheng and Mao, 2010),对应于中-新元古代地壳模式年龄,可以认为高峰山A型花岗岩是地壳部分熔融的产物。

高峰山花岗岩高硅富碱,Rb/Sr比值高,明显亏损Ba、Nb、Sr、P、Eu、Ti等,这些特征指示了母岩浆经历了显著的分离结晶作用,较高的分异指数(DI)也支持了这一结论。其中Ba、Sr、Eu的亏损主要受斜长石和钾长石的分离结晶制约,Nb、Ti的亏损指示了富钛矿物(钛铁矿、金红石等)的分离结晶,P的亏损是磷灰石的分离结晶所致。从分离结晶模拟矢量图(图 13)上来看,高峰山花岗岩明显受斜长石、钾长石以及磷灰石、褐帘石等副矿物分离结晶的影响。

图 13 高峰山花岗岩Rb-Sr(a)和Ba-Sr(b)(据Hanson,1978)、Ba-δEu(c)和Sr-δEu(d)(据Liu et al., 2010)、Sm-La(e,据吴福元等,1998)及(La/Yb)N-La(f,据Wu et al., 2003)图解 Fig. 13 Rb-Sr(a)and Ba-Sr(b)(after Hanson,1978),Ba-δEu(c)and Sr-δEu(d)(after Liu et al., 2010),Sm-La(e,after Wu et al., 1998)and(La/Yb)N-La(f,after Wu et al., 2003)diagrams of Gaofengshan granite

综上所述,高峰山A型花岗岩很可能是地壳部分熔融形成的母岩浆经高程度分离结晶作用形成的。

5.3 构造背景

对于A型花岗岩的大地构造背景,Loiselle and Wones(1979)的原始定义强调其非造山特性。但是Whalen et al.(1987)认为其可以形成于全球构造的不同环境,但是无一例外均与拉张构造背景有关。如前所述,高峰山花岗岩属于A型花岗岩中的A2亚类,Eby(1990,1992)指出,A2型花岗岩是后造山的,代表一种伸展环境。这一结论得到了以地球化学为基础的其他构造环境判别图解的支持(图 14)。

图 14 高峰山花岗岩Al2O3-SiO2(a,据Maniar and Piccoli, 1989)、FeOT/(FeOT+MgO)(b,据Maniar and Piccoli, 1989)、Rb-Y+Nb(c,据Pearce et al., 1984)和R2-R1(d,据Batchelor and Bowen, 1985)图解 Fig. 14 Al2O3-SiO2 (a,after Maniar and Piccoli, 1989),FeOT/(FeOT+MgO)(b,after Maniar and Piccoli, 1989),Rb-Y+Nb(c,after Pearce et al., 1984)and R2-R1(d,after Batchelor and Bowen, 1985)diagrams of Gaofengshan granite

已有的研究资料表明,滇东南-桂西一带白垩纪晚期的岩浆岩都是在岩石圈伸展的地球动力学背景下产生的(蔡明海等, 2004,2006刘玉平等,2007谭俊等,2008程彦博等, 2008a,b,2009,2010a谢洪晶等,2009)。全岩地球化学显示,高峰山花岗岩属于A2型花岗岩,形成于拉张环境。结合其他地质依据,例如存在80~90Ma侵位的超基性-碱性-酸性岩墙(陈懋弘等,2009),于86~78Ma形成都龙-Song Chay变质核杂岩(颜丹平等,2005)等,暗示区域范围内晚白垩世时期岩石圈处于拉张伸展状态,而滇东南-桂西一带的花岗质岩石很可能正是这一背景下岩浆活动的产物。

华南在晚中生代经历过多阶段伸展活动,毛景文等(2004)划分为170~150Ma、140~125Ma和110~80Ma三个阶段。A型花岗岩的产出是岩石圈阶段性张性活动的重要指示。晚白垩世浙闽沿海一带受太平洋构造体制的影响而形成一系列A型花岗岩(邱检生等, 1999,2000)。高峰山花岗岩与浙闽沿海一带A型花岗岩具有近一致的侵位时间及相似的地球化学性质,考虑到此时古特提斯洋早已闭合(范蔚茗等,2009),而印度-亚洲大陆碰撞还未开始(莫宣学等,2003),因此受太平洋构造体制影响而形成的伸展构造背景可能波及到了华南西部。程彦博等(2010b)研究认为,尽管滇东南-桂西一带大地构造位置更加靠近三江特提斯构造域,但是其晚白垩世的岩浆-成矿事件与广大的华南地区表现出更多的相似性,受到太平洋构造体制的影响,可能与地幔柱、岩石圈拆沉、幔源岩浆底侵等有关。结合区内地质背景,笔者认为,在这种伸展背景下,地壳发生部分熔融,而高峰山花岗岩的成因可能与此有关,但是否有其他成因,还需进一步研究。

6 结论

通过对高峰山花岗岩进行系统的岩石学、地球化学及年代学研究,得出以下主要结论:

(1) 高峰山中粒黑云母二长花岗岩的LA-ICP-MS锆石U-Pb年龄为85.76±0.58Ma,与个旧地区其他花岗岩、碱性岩、煌斑岩一样,均为白垩纪晚期。

(2) 高峰山花岗岩具有A2型花岗岩的特征,很可能是地壳部分熔融形成的母岩浆经高程度分离结晶作用形成的,是晚中生代华南西部岩石圈拉张伸展的地球动力学背景下,滇东南-桂西一带大规模岩浆活动-成岩事件的一部分。

致谢 在野外工作期间,得到了云锡集团的童祥高级工程师、莫国培高级工程师、武俊德高级工程师以及矿田各级领导的大力帮助;在数据测试期间,侯可军、丁佩等给予了很多帮助指导;在工作中与段超博士进行了深入讨论,获益匪浅;在此一并表示深深的感谢!
参考文献
[] Batchelor RA and Bowen P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43–55. DOI:10.1016/0009-2541(85)90034-8
[] Bea F, Arzamastsev A, Montero P and Arzamastseva L. 2001. Anomalous alkaline rocks of Soustov, Kola: Evidence of mantle-derived metasomatic fluids affecting crustal materials. Contributions to Mineralogy and Petrology, 140: 554–566. DOI:10.1007/s004100000211
[] Belousova EA, Griffin WL, O’Reilly SY and Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143: 602–622. DOI:10.1007/s00410-002-0364-7
[] Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1–29. DOI:10.1016/j.lithos.2006.12.007
[] Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam-Oxford-New York-Tokyo: Elsevier: 63–114.
[] Cai MH, Liang T, Wu DC and Huang HM. 2004. Geochemical characteristics of granites and their tectonic setting of Dachang ore field in Guangxi. Geological Science and Technology Information, 23(2): 57–62.
[] Cai MH, He LQ, Liu GQ, Wu DC and Huang HM. 2006. SHRIMP zircon U-Pb dating of the intrusive rocks in the Dachang tin-polymetallic ore field, Guangxi and their geological significance. Geological Review, 52(3): 409–414.
[] Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173–174.
[] Chen JC, Shi L and Xie YH. 1983. Preliminary study on the comparison of S and I type granite in Yunnan Province. Geology of Yunnan, 2(1): 28–37.
[] Chen JL, Guo YS and Fu SM. 2004. The research headway to granitiod-classification review and synthesis of ISMA granitiod. Acta Geologica Gansu, 13(1): 67–73.
[] Chen MH, Zhang W, Yang ZX, Lu G, Hou KJ and Liu JH. 2009. Zircon SHRIMP U-Pb age and Hf isotopic composition of Baiceng ultrabasic dykes in Zhenfeng County, southwestern Guizhou Province. Mineral Deposits, 28(3): 240–250.
[] Cheng YB, Mao JW, Xie GQ, Chen MH, Zhao CS, Yang ZX, Zhao HJ and Li XQ. 2008a. Petrogenesis of the Laochang-Kafang granite in the Gejiu area, Yunnan Province: Constraints from geochemistry and zircon U-Pb dating. Acta Geologica Sinica, 82(11): 1478–1493.
[] Cheng YB, Mao JW, Chen MH, Yang ZX, Feng JR and Zhao HJ. 2008b. LA-ICP-MS zircon dating of the alkaline rocks and lamprophyres in Gejiu area and its implications. Geology in China, 35(6): 1138–1149.
[] Cheng YB, Mao JW, Xie GQ, Chen MH and Yang ZX. 2009. Zircon U-Pb dating of granites in Gejiu superlarge tin polymetallic orefield and its significance. Mineral Deposits, 28(3): 297–312.
[] Cheng YB and Mao JW. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China: Constrains on their petrogenesis and tectonic setting. Lithos, 120: 258–276. DOI:10.1016/j.lithos.2010.08.013
[] Cheng YB, Mao JW, Chen XL and Li W. 2010a. LA-ICP-MS zircon dating of the Bozhushan granite in southeastern Yunnan Province and its significance. Journal of Jilin University (Earth Science Edition), 40(4): 869–878.
[] Cheng YB, Tong X, Wu JD and Mo GP. 2010b. Geochronology framework of the W-Sn mineralization granites in western South China and their geological significance. Acta Petrologica Sinica, 26(3): 809–818.
[] Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189–200. DOI:10.1007/BF00374895
[] Cox CG, Bell JD and Pankhurst RJ. 1979. The Interpretation of Igneous Rocks. London: George, Allen and Unwin.
[] Dai FS. 1996. Characteristics and evolution of rock series, lithogenesis, metallogenesis of crust-derived anatectic magma in Gejiu ore field. Yunnan Geology, 15(4): 330–344.
[] Darnley AG, Bjorklund A, Bolviken B, Gustavsson N, Koval PV, Plant JA, Steenfelt A, Tauchid M and Xie XJ. 1985. A Global Geochemical Database for Environmental and Resource Management. Paris: United Nations Educational, Scientific and Cultural Organization: 37–53.
[] Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115–134. DOI:10.1016/0024-4937(90)90043-Z
[] Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641–644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[] Fan WM, Peng TP and Wang YJ. 2009. Triassic magmatism in the southern Lancangjiang zone, southwestern China and its constraints on the tectonic evolution of Paleo-Tethys. Earth Science Frontiers, 16(6): 291–302.
[] Feng XR. 1982. The accessory mineral of the granites in Gejiu ore district and its genesis and relationship with mineralization. Geology of Yunnan, 1(2): 129–133.
[] Guan RS. 1991. An approach of mineralization of granite mass in the structure tectonic magmatic belt in the southeast of Yunnan. Mineralogy and Petrology, 11(1): 92–101.
[] Hanson GN. 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planetary and Science Letters, 38: 26–43. DOI:10.1016/0012-821X(78)90124-3
[] Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481–492.
[] Jia XH, Wang Q and Tang GJ. 2009. A-type granites: Research progress and implications. Geotectonica et Metallogenia, 33(3): 465–480.
[] King PL, White AJR, Chappell BW and Allen CM. 1997. A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. DOI:10.1093/petroj/38.3.371
[] Landenberger B and Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37(1): 145–170. DOI:10.1093/petrology/37.1.145
[] Li JH. 1985. Study of the origin and characteristics of the granite in Gejiu Sn deposits. Geology of Yunnan, 4(4): 327–352.
[] Li ZQ. 1992. Study of diagenetic series of multiple intrusive rocks in Gejiu. Geology of Yunnan, 11(1): 15–20.
[] Liu S, Hu RZ, Gao S, Feng CX, Feng GY, Coulson IM, Li C, Wang T and Qi YQ. 2010. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of Permian granodiorite and associated gabbro in the Songliao Block, NE China and implications for growth of juvenile crust. Lithos, 114: 423–436. DOI:10.1016/j.lithos.2009.10.009
[] Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY and Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967–976.
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537–571. DOI:10.1093/petrology/egp082
[] Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 11: 468.
[] Ludwig KR. 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, No.4: 1–66.
[] Lu J. 1987. Geochemical evolution characteristics of trace elements and REE in Gejiu granites. Geochimica(3): 249–259.
[] Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635–643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[] Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in south China. Earth Science Frontiers, 11(1): 45–55.
[] Mao JW, Cheng YB, Guo CL, Yang ZX and Feng JR. 2008. Gejiu tin polymetallic ore-field: Deposit model and discussion for several points concerned. Acta Geologica Sinica, 82(11): 1455–1467.
[] Middlemost EAK. 1994. Naming materials in the magma/igneous rocks system. Earth Science Review, 37: 215–224. DOI:10.1016/0012-8252(94)90029-9
[] Mo GP. 2006. Genetic type of granites in Gejiu super large tin polymetallic deposit. Mineral Resources and Geology, 20(4-5): 413–417.
[] Morrison GW. 1980. Characteristics and tectonic settings of the shoshonite rock association. Lithos, 13(1): 97–108. DOI:10.1016/0024-4937(80)90067-5
[] Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135–148.
[] Pearce JA, Harris NBW and Tindle AG. 1984. Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. DOI:10.1093/petrology/25.4.956
[] Pei XZ, Li ZC, Ding SP, Li RB, Feng JY, Sun Y, Zhang YF and Liu ZQ. 2009. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of Yangtze Block: Zircon SHRIMP U-Pb age and geochemistry and their tectonic significance. Earth Science Frontiers, 16(3): 231–248. DOI:10.1016/S1872-5791(08)60096-2
[] Peng CD. 1985. Discussion on the mineralization condition and the type model of the tin deposits in Gejiu district. Yunnan Geology, 4(1): 154–163.
[] Qiu JS, Wang DZ and Brent IAM. 1999. Geochemistry and petrogenesis of the I- and A-type composite granite masses in the coastal area of Zhejiang and Fujian province. Acta Petrologica Sinica, 15(2): 237–246.
[] Qiu JS, Wang DZ, Satoshi K and Brent IAM. 2000. Geochemistry and petrogenesis of aluminous A-type granites in the coastal area of Fujian Province. Geochimica, 29(4): 313–321.
[] Qu XM, Hou ZQ and Li YG. 2004. Melt components derived fron a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131–148. DOI:10.1016/j.lithos.2004.01.003
[] Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of minor elements. Lithos, 22: 247–263. DOI:10.1016/0024-4937(89)90028-5
[] Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical Limited: 1–352.
[] Skjerlie KP and Johnston AD. 1993. Fliud-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites. Journal of Petrology, 34(4): 785–815. DOI:10.1093/petrology/34.4.785
[] Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl): 26–30.
[] Su YP and Tang HF. 2005. Trace element geochemistry of A-type granites. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3): 245–250.
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematic basalt: Implication for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, Special Publication, 42: 313–345.
[] Tan J, Wei JH, Li SR, Wang ZM, Fu LB and Zhang KQ. 2008. Geochemical characteristics and tectonic significance of Kunlunguan A-type granite, Guangxi. Earth Science-Journal of China University of Geosciences, 33(6): 743–754. DOI:10.3799/dqkx.2008.090
[] Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific: 312.
[] Wan YS. 1999. Ba anomaly and its geochemical significance. Continental Dynamics, 4(1): 84–87.
[] Wang XG and Zhu JC. 1992. Origin, evolution and prospection significance of granites in the Gejiu tin field, Yunnan Province. Geotectonica et Metallogenia, 16(4): 379–387.
[] Wang ZF. 1983. Some problems on the mineralization of tin deposits in Gejiu, Yunnan. Acta Geologica Sinica, 57(2): 154–162.
[] Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407–419. DOI:10.1007/BF00402202
[] Wu QS, Xu JZ and Yang Z. 1984. Sr isotopic characteristics of Gejiu Sn-bearing granites and a study on oresearch indicators. Geochimica(4): 293–302.
[] Wu FY, Lin Q, Ge WC and Sun DY. 1998. The petrogenesis and age of Xinhuatun Pluton in Zhangguangcailing. Acta Petrologica et Mineralogica, 17(3): 226–234.
[] Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (Ⅰ): Geochronology and petrogenesis. Lithos, 66: 241–273. DOI:10.1016/S0024-4937(02)00222-0
[] Wu SP, Wu CL and Chen QL. 2007. Characteristics and tectonic setting of the Tula aluminous A-type granite at the south side of the Altyn Tagh fault, NW China. Geological Bulletin of China, 26(10): 1385–1392.
[] Wu YB and Zheng YF. 2004. Study on genesis of zircon and its constrains on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589–1604.
[] Xie HJ, Zhang Q, Zhu CH, Fan LW and Wang DP. 2009. Petrology and REE-trace element geochemistry of Bozhushan granite pluton in southeastern Yunnan Province, China. Acta Mineralogica Sinica, 29(4): 481–490.
[] Xu YD and Li YX. 1997. A tin shoot-granitic type tin ore body discovered in the Gejiu mining area. Mineral Resources and Geology, 11(2): 98–102.
[] Yan DP, Zhou MF, Wang Y, Wang CL and Zhao TP. 2005. Structural styles and chronological evidences from Dulong-Song Chay tectonic dome: Earlier spreading of South China Sea Basin due to Late Mesozoic to Early Cenozoic extension of South China Block. Earth Science-Journal of China University of Geosciences, 30(4): 402–411.
[] Yang SY. 1990. Type and associations of ore deposits along the southeastern Yunnan tin ore belt. Mineral Deposits, 9(1): 35–48.
[] Southwest Geological Exploration Corporation. 1984. Geology of Tin Deposits in Gejiu. Beijing: Metallurgical Industry Publishing House: 8–137.
[] Zhao ZH, Akimasa Masuda and Shabani MB. 1992. Tetrad effects of rare-earth elements in rare-metal granites. Geochimica(3): 221–233.
[] Zhao ZH, Bao ZW and Qiao YL. 2010. A peculiar composite M- and W- type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China. Chinese Science Bulletin, 55(15): 1474–1488.
[] Zhuang YQ, Wang RZ, Yang SP and Yin JM. 1996. Tin-copper Polymetallic Deposit. Beijing: Seismological Press: 1–107.
[] 蔡明海, 梁婷, 吴德成, 黄惠民.2004. 广西大厂矿田花岗岩地球化学特征及其构造环境. 地质科技情报, 23(2): 57–62.
[] 蔡明海, 何龙清, 刘国庆, 吴德成, 黄惠明.2006. 广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义. 地质论评, 52(3): 409–414.
[] 陈吉琛, 施琳, 谢蕴宏.1983. 云南S型和I型两类花岗岩划分对比的初步探讨. 云南地质, 2(1): 28–37.
[] 陈建林, 郭原生, 付善明.2004. 花岗岩研究进展——ISMA花岗岩类分类综述. 甘肃地质学报, 13(1): 67–73.
[] 陈懋弘, 章伟, 杨宗喜, 陆刚, 侯可军, 刘建辉.2009. 黔西南白层超基性岩墙锆石SHRIMP U-Pb锆石年龄和Hf同位素组成研究. 矿床地质, 28(3): 240–250.
[] 程彦博, 毛景文, 谢桂青, 陈懋弘, 赵财胜, 杨宗喜, 赵海杰, 李向前.2008a. 云南个旧老厂-卡房花岗岩体成因:锆石U-Pb年代学和岩石地球化学约束. 地质学报, 82(11): 1478–1493.
[] 程彦博, 毛景文, 陈懋弘, 杨宗喜, 冯佳睿, 赵海杰.2008b. 云南个旧锡矿田碱性岩和煌斑岩LA-ICP-MS锆石U-Pb测年及其地质意义. 中国地质, 35(6): 1138–1149.
[] 程彦博, 毛景文, 谢桂青, 陈懋弘, 杨宗喜.2009. 与云南个旧超大型锡矿床有关的花岗岩锆石U-Pb定年及意义. 矿床地质, 28(3): 297–312.
[] 程彦博, 毛景文, 陈小林, 李伟.2010a. 滇东南薄竹山花岗岩的LA-ICP-MS锆石U-Pb定年及地质意义. 吉林大学学报(地球科学版), 40(4): 869–878.
[] 程彦博, 童祥, 武俊德, 莫国培.2010b. 华南西部地区晚中生代与W-Sn矿有关花岗岩的年代学格架及地质意义. 岩石学报, 26(3): 809–818.
[] 戴福盛.1996. 个旧矿区壳源重熔岩浆岩石系列特征、演化及成岩成矿作用. 云南地质, 15(4): 330–344.
[] 范蔚茗, 彭头平, 王岳军.2009. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录. 地学前缘, 16(6): 291–302.
[] 贾小辉, 王强, 唐功建.2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465–480.
[] 李志群.1992. 个旧复式侵入岩体成岩系列研究. 云南地质, 11(1): 15–20.
[] 官容生.1991. 滇东南构造岩浆带花岗岩体的含矿性探讨. 矿物岩石, 11(1): 92–101.
[] 侯可军, 李延河, 田有荣.2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481–492.
[] 李家和.1985. 个旧花岗岩特征及成因研究. 云南地质, 4(4): 327–352.
[] 冯贤仁.1982. 个旧含锡花岗岩副矿物类型、成因及其与矿化关系问题. 云南地质, 1(2): 129–133.
[] 刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会.2007. 都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967–976.
[] 陆杰.1987. 个旧花岗岩的微量元素和稀土元素地球化学演化特征. 地球化学(3): 249–259.
[] 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄.2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45–55.
[] 毛景文, 程彦博, 郭春丽, 杨宗喜, 冯佳睿.2008. 云南个旧锡矿田:矿床模型及若干问题讨论. 地质学报, 82(11): 1455–1467.
[] 莫国培.2006. 个旧超大型锡多金属矿区花岗岩成因类型. 矿床与地质, 20(4-5): 413–417.
[] 莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮.2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135–148.
[] 裴先治, 李佐臣, 丁仨平, 李瑞保, 冯建赟, 孙雨, 张亚峰, 刘战庆.2009. 扬子地块西北缘轿子顶新元古代过铝质花岗岩:锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义. 地学前缘, 16(3): 231–248.
[] 彭程电.1985. 试论个旧锡矿成矿条件及矿床类型、模式. 云南地质, 4(1): 154–163.
[] 邱检生, 王德滋, BrentIAM.1999. 浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因. 岩石学报, 15(2): 237–246.
[] 邱检生, 王德滋, SatoshiK, BrentIAM.2000. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313–321.
[] 宋彪, 张玉海, 万渝生, 简平.2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26–30.
[] 苏玉平, 唐红峰.2005. A型花岗岩的微量元素地球化学. 矿物岩石地球化学通报, 24(3): 245–250.
[] 谭俊, 魏俊浩, 李水如, 王忠铭, 付乐兵, 张可清.2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学-中国地质大学学报, 33(6): 743–754.
[] 王新光, 朱金初.1992. 个旧花岗岩的成因、演化及找矿意义. 大地构造与成矿学, 16(4): 379–387.
[] 汪志芬.1983. 关于个旧锡矿成矿作用的几个问题. 地质学报, 57(2): 154–162.
[] 伍勤生, 许俊珍, 杨志.1984. 个旧含Sn花岗岩的Sr同位素特征及找矿标志的研究. 地球化学(4): 293–302.
[] 吴福元, 林强, 葛文春, 孙德有.1998. 张广才岭新华屯岩体的形成时代与成因研究. 岩石矿物学杂志, 17(3): 226–234.
[] 吴锁平, 吴才来, 陈其龙.2007. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境. 地质通报, 26(10): 1385–1392.
[] 吴元保, 郑永飞.2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589–1604.
[] 谢洪晶, 张乾, 祝朝辉, 范良伍, 王大鹏.2009. 滇东南薄竹山花岗岩岩石学及其稀土-微量元素地球化学. 矿物学报, 29(4): 481–490.
[] 徐云端, 李玉新.1997. 个旧矿区发现一种富锡矿类型——花岗岩锡矿体. 矿产与地质, 11(2): 98–102.
[] 颜丹平, 周美夫, 王焰, 汪昌亮, 赵太平.2005. 都龙-Song Chay变质穹窿体变形与构造年代——南海盆地北缘早期扩张作用始于华南地块张裂的证据. 地球科学—中国地质大学学报, 30(4): 402–411.
[] 杨世瑜.1990. 滇东南锡矿带矿床类型及其组合特征. 矿床地质, 9(1): 35–48.
[] 冶金工业部西南冶金地质勘探公司.1984. 个旧锡矿地质. 北京:冶金工业出版社: 8–137.
[] 赵振华, 增田彰正, ShabaniMB.1992. 稀有金属花岗岩的稀土元素四分组效应. 地球化学(3): 221–233.
[] 赵振华, 包志伟, 乔玉楼.2010. 一种特殊的“M”与“W”复合型稀土元素四分组效应:以水泉沟碱性正长岩为例. 科学通报, 55(15): 1474–1488.
[] 庄永秋, 王任重, 杨树培, 尹金明.1996. 云南个旧锡铜多金属矿床. 北京:地震出版社: 1–107.