岩石学报  2012, Vol. 28 Issue (1): 39-51   PDF    
湖南金船塘锡铋矿床辉钼矿Re-Os同位素测年及其地质意义
刘晓菲1, 袁顺达1,2, 吴胜华1,2     
1. 地质过程与矿产资源国家重点实验室,中国地质大学地球科学与资源学院,北京 100083;
2. 中国地质科学院矿产资源研究所,国土资源部成矿作用与矿产资源评价重点实验室,北京 100037
摘要: 湖南东坡矿田位于南岭成矿带的西段,构造位置上处于扬子板块与华夏板块的对接地带,矿田内以千里山岩体为中心,发育一系列与燕山期花岗质岩浆作用有关的超大型、大型和中型钨锡钼铋多金属矿床。金船塘锡铋矿床是东坡矿田内一个以锡铋为主的大型矽卡岩型多金属矿床。本文对该矿床的矽卡岩型矿石中的辉钼矿进行了Re-Os同位素测年。结果显示,辉钼矿Re-Os同位素模式年龄范围为157.2±2.8Ma至162.4±2.4Ma,加权平均值为159.8±2.9Ma,对应的Re-Os等时线年龄为158.8±6.6Ma;这些年龄数据与柿竹园矿床辉钼矿的Re-Os等时线年龄(151.0±3.5Ma)在误差范围内基本一致,亦与区内千里山岩体锆石U-Pb年龄(152±2Ma)接近,指示金船塘Sn-Bi矿床与区内花岗岩具有密切的时间和成因关系。结合区域上已有的研究成果,包括金船塘矿床在内的东坡矿田的成岩成矿作用主要集中在149~161Ma,与南岭地区大规模的钨锡多金属成矿作用时限(150~160Ma)一致;另外,区域上的研究表明,幔源物质广泛参与了湘南钨锡矿集区晚中生代的成岩成矿作用,指示该区中-晚侏罗世爆发式的成岩成矿作用可能是区域地壳拉张-岩石圈伸展减薄背景下,强烈的壳幔相互作用的结果。
关键词: Re-Os同位素     辉钼矿     锡铋矿床     金船塘     湖南    
Re-Os dating of the molybdenite from the Jinchuantang tin-bismuth deposit in Hunan Province and its geological significance
LIU XiaoFei1, YUAN ShunDa1,2, WU ShengHua1,2     
1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Dongpo ore field is in the western part of the Nanling polymetallic metallogenic belt, which is located in the intersection between Yangtze block and Cathaysian block. There are a series of large-and medium-sized W-Sn-Mo-Bi polymetallic deposits distributed around the Qianlishan granite in the Dongpo ore field. The Jinchuantang deposit is a large-sized skarn-type tin-bismuth deposit in the Dongpo ore field. Direct Re-Os dating on molybdenites collected from the skarn ore in the Jinchuantang deposit have been carried out, in order to further restrict the age of mineralization. The results show that Re-Os model ages range from 157.2±2.8Ma to 162.4±2.4Ma, with an average of 159.8±2.9Ma, and give an isochron age of 158.8±6.6Ma. Combined with the Re-Os isochron age (151.0±3.5Ma) of Shizhuyuan deposit and zircon SHRIMP U-Pb ages (152±2Ma) of the Qianlishan granite, it is suggested that the mineralization of the Jinchuantang Sn-Bi deposit is temporally and genetically related to the granite in this area. Based on previous studies, petrologenesis and metallogenesis of the Dongpo ore field, including the Jinchuantang deposit, mainly occurred 149~161Ma, which is similar to the large-scale tungsten-tin polymetallic mineralization (150~160Ma) in the Nanling region. Coupled with previous studies in this region, it is suggested that mantle components were extensively involved in the petrologenic and metallogenic processes of the Mesozioc W-Sn polymetallic ore district, southern Hunan Province, indicating that the Middle-Late Jurassic explosive mineralization of this region is probably as results of crust-mantle interactions under a geodynamic setting of the lithospheric thinning and extension.
Key words: Re-Os isotope     Molybdenite     Tin-bismuth deposit     Jinchuantang     Hunan Province    
1 引言

湖南东坡矿田是南岭地区中生代钨锡多金属成矿作用的典型代表,矿田围绕千里山岩体周边分布有柿竹园、野鸡尾、金船塘、红旗岭等一系列超大型、大型及中型钨锡多金属矿床,其中仅柿竹园矿床就拥有钨金属储量80万吨、锡40多万吨、铋20万吨、钼10万吨以及巨大的氟和铍储量(毛景文等,1998),被誉为“世界有色金属博物馆”,因而该区的成岩成矿作用长期受到矿床学家的关注。长期以来,许多学者对千里山花岗岩体和柿竹园超大型钨锡钼铋矿床的地质地球化学特征(王昌烈等,1987王书凤和张绮玲,1988张理刚,1989邓铁殷,1988Mao and Li,1995; Mao et al.,1996; 毛景文,1997毛景文等,1995a1998沈渭洲等,1995)、成岩成矿时代(毛景文等,1995b刘义茂等,1997)、成矿流体演化(龚庆杰等,2004Lu et al.,2003Wu et al.,2011)等方面进行过大量的研究,取得了一系列重要的研究成果,但以往的研究主要集中在柿竹园矿床及相关的花岗岩体,而对矿田内其他矿床的研究相对较少。

金船塘矿床是该矿田内一个以锡铋为主的大型多金属矿床,锡储量达12万吨,铋储量约10万吨(湖南省湘南地质勘察院,2005);与柿竹园矿床相比,金船塘矿床的铋品位较高;另外,与柿竹园矽卡岩型矿床中的锡主要赋存在石榴子石晶格内(陈骏和吴厚泽,1988)不同,金船塘矿床内锡的赋存状态主要为锡石(陈荣华等,1997肖红全等,2003),回收率较高,因而金船塘矿床具有重要的经济价值。然而,由于该矿一直未大规模开采,矿床的研究程度还很低,陈荣华等(1997) 对矿床地质特征及成矿规律进行了初步研究;刘惠芳和陆琦(2008) 进一步分析了该矿床的矽卡岩矿物组合特征;在成矿年代学方面,肖红全等(2003) 获得辉铋矿-黄铁矿矿石和长石的Pb-Pb等时线年龄为164±12Ma,马丽艳等(2010) 获得石英Rb-Sr等时线年龄为133.4±5.9Ma,矽卡岩蚀变矿物的Sm-Nd等时线年龄为141±11Ma。由于受到分析方法的限制,这些同位素年龄数据变化范围较大,未能很好的限定该矿的成矿年龄。近年来,辉钼矿Re-Os同位素测年体系被认为是直接测定金属矿床成矿年龄的有效手段,已广泛应用于国内外各类矿床成矿年代学的研究(Stein et al.,1997Mao et al.,200320062008; Peng et al.,2006)。本文通过对金船塘锡铋矿床辉钼矿单矿物的Re-Os同位素测年,试图精确厘定其成矿年龄,为矿床成因研究提供年代学的证据。

① 湖南省湘南地质勘察院. 2005. 湖南省郴州市金船塘矿区锡铋矿普查

2 区域地质及矿床地质特征

湘南钨锡多金属矿集区位于南岭成矿带的西段,在构造位置上,处于扬子板块与华夏板块的对接地带(图 1),沿资兴-郴州-临武深大断裂及其两侧展布(童潜明等,2000)。矿集区内分布有东坡、芙蓉、新田岭、香花岭、黄沙坪、瑶岗仙及白云仙等一系列大型-超大型矿田(图 1),构成了华南中生代大规模成矿的重要组成部分。湖南东坡矿田是矿集区内一个超大型W-Sn-Mo-Bi多金属矿田,区内出露的岩浆岩主要为千里山岩体,出露面积约10km2,沿千里山岩体与古生代地层的接触带发育一系列超大型、大型和中型钨锡钼铋多金属矿床,是研究华南中生代钨锡多金属成岩成矿作用的代表性矿田。

图 1 湘南地区地质矿产略图(据Peng et al.,2006改编) Fig. 1 Sketch map of nonferrous metal deposits in southern Hunan Province(modified after Peng et al.,2006)

金船塘锡铋矿床位于千里山花岗岩体西南侧(图 2),是该区一个以锡铋为主的大型矽卡岩型矿床。矿区出露地层依次为中上泥盆统棋梓桥组、佘田桥组、锡矿山组。其中,棋梓桥组分布于矿区北西部,为灰白色含白云质灰岩,局部见薄层泥质灰岩;佘田桥组由下往上可分为四个岩性段,矿区仅出露3和4两个岩性段,第3段为深灰色厚层泥质条带灰岩,第4段为深灰色灰岩以及深灰色泥质条带灰岩;锡矿山组在矿区内分布最广,岩性为灰色含泥质白云质条带灰岩,含燧石结核灰岩,白云质团块灰岩互层(陈荣华等,1997),赋矿层位主要为佘田桥组和锡矿山组。矿床位于东坡-月枚复式向斜北部仰起端之西翼,发育有次级褶皱-金船塘向斜,向斜两翼由佘田桥组、棋梓桥组地层组成。区内断裂主要有北东至北北东向和北西向两组(陈荣华等,1997),其中北东至北北东向的断裂构造是主要控岩控矿构造。区内岩浆活动频繁,出露有千里山花岗岩体和许多花岗斑岩脉、石英斑岩脉,局部钻孔中见辉绿岩脉(陈荣华等,1997),其中千里山复式花岗岩体为该矿床的主要成矿母岩。已探明矿体11个,其中主矿体3个,主要产于千里山岩体的外接触带,呈似层状(图 3)(肖红全等,2003陈荣华等,1997)。该区主要矿石类型为矽卡岩型矿石,包括锡铋矿石、锡铋磁黄铁矿矿石和锡铋磁铁矿矿石。矿石常见自形晶结构、半自形粒状结构、他形粒状结构、填隙结构、鳞片状结构。矿石构造主要有块状构造、浸染状构造、条带状构造和网脉状构造。矿石中主要金属矿物有锡石、磁黄铁矿、黄铁矿、磁铁矿、黄铜矿、白钨矿、辉铋矿、方铅矿、闪锌矿,主要非金属矿物为透辉石、石榴子石、符山石、角闪石、石英、萤石、方解石、长石等(图 4)。热液蚀变作用主要为矽卡岩化、硅化、碳酸盐化和萤石化,其中,矽卡岩化作用与该区的成矿作用关系密切。

图 2 湖南千里山花岗岩体及周围矿床地质略图(据毛景文等,2011a) Fig. 2 Sketch geological map of the Qianlishan granite stock and associated ore deposits,Hunan Province(after Mao et al.,2011a)

图 3 湖南金船塘矿区50勘探线地质剖面图(据陈荣华等,1997) Fig. 3 Geological section along No.50 exploration line of the Jinchuantang deposit,Hunan Province(after Chen et al.,1997)

图 4 金船塘锡铋矿床典型矽卡岩矿物以及金属矿物 (a)-方铅矿(Gn)与锡石(Cst)共生(反射光);(b)-辉铋矿(Bis)(反射光);(c)-黄铁矿(Py)、磁黄铁矿(Po)与锡石共生(反射光);(d)-矽卡岩内的辉石(Px)交代石榴子石(Grt)(单偏光);(e)-矽卡岩内的蚀变的自形环带状石榴子石(单偏光);(f)-矽卡岩内石榴子石与透辉石(Di)共生(正交偏光);(g)-矽卡岩内的透辉石、硅灰石(Wo)和符山石(Ves)共生(正交偏光);(h)-矽卡岩内的角闪石(Am)与辉石共生(单偏光);(i)-矽卡岩内发育符山石和硅灰石(单偏光) Fig. 4 Typical skarn minerals and metallic minerals of the Jinchuantang tin-bismuth deposit (a)-galena associated with cassiterite(under reflective light);(b)-bismuth(under reflective light);(c)-pyrite,pyrrhotite associated with cassiterite(under reflective light);(d)-pyroxene replacing garnet in skarn(under transmitted plane-polarized light);(e)-altered idiomorphism circle-type garnet in skarn(under transmitted plane-polarized light);(f)-garnet associated with diopside in skarn(under transmitted orthogonal-polarized light);(g)-diopside,wollastonite associated with vesuvianite in skarn(under transmitted orthogonal-polarized light);(h)-amphibole(Am)associated with pyroxene in skarn(under transmitted plane-polarized light);(i)-vesuvianite associated with wollastonite in skarn(under transmitted plane-polarized light)
3 样品采集与分析方法

本次用于Re-Os同位素分析的4件含辉钼矿样品均采自于金船塘锡铋矿床矽卡岩型主矿体,矿石结构主要为半自形-他形粒状结构、浸染状构造,偶见块状构造。样品中主要金属矿物有辉钼矿、锡石、黄铁矿、黄铜矿以及方铅矿,非金属矿物主要为石榴子石、透辉石和绿帘石等。辉钼矿为铅灰色的片状、鳞片状集合体,呈浸染状分布于矽卡岩型矿石内(图 5)。样品经粉碎至60~80目,在双目镜下分选至纯度达99%以上,并用玛瑙钵研磨至200目,用于Re-Os同位素分析。

图 5 金船塘锡铋矿床矽卡岩型钼矿石 (a)-浸染状辉钼矿;(b)-浸染状辉钼矿(反光镜) Fig. 5 Photographs of skarn type molybdenite ores from the Jinchuantang tin-bismuth deposit (a)-disseminated structure molybdenite;(b)-disseminated structure molybdenite(under reflective light)

Re-Os同位素分析测试工作在国家地质测试中心Re-Os同位素实验室完成,采用Carius管封闭溶样分解样品,Re-Os同位素分析原理及详细分析流程依据Shirey and Walker(1995) Du et al.(2004) 。采用美国TJA公司生产的TJA X-series电感耦合等离子体质谱仪(美国Thermo公司)测定同位素比值。对于Re,选择质量数185、187,用190监测Os;对于Os,选择质量数为186、187、188、189、190、192,用185监测Re。TJA X-series ICP-MS测得的Re、Os和187Os的空白值分别为(0.0092±0.0013)×10-9~(0.0409±0.0018)×10-9、(0.0002±0.0000)×10-9 ~(0.0000±0.0000)×10-9和(0.0001±0.0000)×10-9 ~(0.0003±0.0001)×10-9。远小于所测样品和标样中Re、Os含量,因此不会影响实验结果。辉钼矿Re-Os定年实验误差为2σ,普Os是根据原子量表(Wieser,2006)和同位素丰度表(Bohlkea et al.,2005),通过192Re/190Os测量比计算得出(Bohlkea et al.,2005Wieser,2006)。Re、Os含量的不确定度包括样品和稀释剂的称量误差、稀释剂的标定误差、质谱测量的分馏校正误差、待分析样品同位素比值测量误差。模式年龄的不确定度还包括衰变常数的不确定度(1.02%),置信度为95%。实验采用国家标准物质GBWO4436(JDC)为标样,监控化学流程和分析数据的可靠性,两次分析标样(JDC)Re和187Os及模式年龄与标准值在误差范围内完全一致,表明所获辉钼矿的Re-Os数据准确可靠。

4 分析结果

金船塘锡铋矿床4件矽卡岩型矿石中辉钼矿的Re-Os测试结果列于表 1,其中,对样品JCT-16进行了两组分析,本次分析的辉钼矿中普Os的含量很低,接近于0,Re含量变化范围为(4.886±0.058)×10-6~(30.36±0.28)×10-6,Re与187Os含量变化协调,辉钼矿187Re-187Os模式年龄为157.2 ±2.8Ma至162.4±2.4Ma,加权平均值为159.8±2.9Ma,MSWD=3.2(图 6)。采用ISOPLOT软件(Ludwig,2001)对辉钼矿数据进行等时线拟合,获得Re-Os等时线年龄为158.8±6.6Ma,MSWD=5.0(图 6)。

表 1 金船塘锡铋矿床辉钼矿Re-Os同位素测试结果 Table 1 Re-Os isotopic data of molybdenites from the Jinchuantang tin-bismuth deposit

图 6 金船塘锡铋矿床辉钼矿Re-Os等时线年龄及模式年龄加权平均图 Fig. 6 Re-Os isochron and weighted average of model age of molybdenites from the Jinchuantang tin-bismuth deposit in southern Hunan Province
5 讨论 5.1 成矿时代

本次分析的金船塘锡铋矿床中辉钼矿的普Os含量很低,接近于0,Re含量变化范围为(4.886±0.058)×10-6~(30.36±0.28)×10-6,Re-Os模式年龄为157.2±2.8Ma至162.4±2.4Ma之间,其加权平均年龄(159.8±2.9Ma)与Re-Os等时线年龄(158.8±6.6Ma)在误差范围内一致,表明辉钼矿的Re-Os等时线年龄可以代表辉钼矿的形成年龄。由于本次用于Re-Os同位素测年的样品均为该矿床的主要矿石类型(矽卡岩型矿石),因而辉钼矿的Re-Os等时线年龄(158.8±6.6Ma)可以直接代表该矿床的形成年龄。

针对相邻的柿竹园特大型钨多金属矿床的成矿年龄,李红艳等(1996) 测得柿竹园钨锡多金属矿床的辉钼矿Re-Os等时线年龄为151.0±3.5Ma;刘义茂等(1997) 得到与主岩体相关的矽卡岩矿物(石榴子石、透辉石)的Sm-Nd等时线年龄为160.8±2.4Ma;Li et al.(2004) 对该矿的石榴子石、萤石、黑钨矿进行Sm-Nd同位素测年,获得其等时线年龄为149±2Ma。最近,我们获得区内红旗岭钨锡矿床白云母Ar-Ar年龄为153.25±0.98Ma(袁顺达等,待发表数据)。这些成矿年龄数据与本次测定的金船塘矿床辉钼矿Re-Os等时线年龄(158.8±6.6Ma)在误差范围内接近,指示该区主要钨锡矿床均形成于149~161Ma之间。

5.2 成岩成矿关系探讨

高精度同位素年代学数据的获得,是探讨成岩成矿关系的重要前提。长期以来,矿床学界一致认为南岭地区钨锡钼铋多金属矿床与该区中生代花岗岩关系密切,但就其成岩成矿时差问题,由于不同的成岩成矿年龄数据相差较大,因而目前还存在两种不同的观点:① 花岗质岩浆活动与大规模钨锡多金属成矿作用存在明显的时差(华仁民等,2005蒋少涌等,2006),有些学者甚至认为成矿作用与主体花岗岩的岩浆活动无关(李华芹等,2006);② 成岩和成矿作用同时或近于同时,其间几乎没有时间差(李红艳等,1996毛景文等,2004ab2008; Peng et al.,2006彭建堂等,20072008Yuan et al.,200720082011)。就湖南东坡多金属矿田而言,前人已经积累了大量成岩成矿的同位素年龄数据,但由于这些年龄数据变化范围较大(187~136Ma,刘义茂等,1997毛景文等,1995bLu et al.,2003),加之该区的岩浆活动期次多,因而其成岩成矿关系较为复杂。而最近Li et al.(2004) 利用高精度锆石SHRIMP U-Pb法测定该区占主体地位的两期花岗岩的年龄结果显示,两期花岗岩的形成年龄极为相近,均在152Ma左右;就成矿年龄而言,同一矿床不同测年方法获得的年龄数据差别亦很大,马丽艳等(2010) 获得金船塘矿床的矽卡岩矿物的Sm-Nd等时线年龄为141±11Ma,石英流体包裹体的Rb-Sr等时线年龄为133.4±5.9Ma,并通过与以往的硫化物Pb-Pb等时线年龄(164Ma,肖红全等,2003)对比认为,该区存在164Ma左右和133~141Ma两期成矿作用;然而我们本次获得同样的矽卡岩矿石的辉钼矿Re-Os等时线年龄为158.8±6.6Ma。类似地,马丽艳等(2010) 获得红旗岭矿床石英流体包裹体Rb-Sr等时线年龄为143.1±8.7Ma,而最近我们获得该矿床的白云母Ar-Ar坪年龄为153.25±0.98Ma(袁顺达等,待发表数据)。因而,采用不同的成岩成矿年龄数据来探讨成岩成矿关系,通常会得出完全不同的结论。高精度锆石SHRIMP U-Pb测年、含钾矿物Ar-Ar测年以及辉钼矿Re-Os测年已经被公认为较为可靠的成岩成矿测年方法,为了系统查明该区成岩成矿关系,我们将该区高精度锆石SHRIMP U-Pb年龄数据、含钾矿物Ar-Ar年龄数据以及辉钼矿Re-Os年龄数据进行对比发现,整个东坡矿田的成矿年龄与该区两期黑云母花岗岩的形成时代都比较接近,主要集中在150~160Ma之间(李红艳等,1996刘义茂等,1997Li et al.,2004; 袁顺达等,待发表数据以及本文),显示该区主要的钨锡多金属矿床与千里山花岗岩具有密切的时间联系,均集中形成于149~161Ma之间。至于以往识别的该区133~141Ma的成岩成矿作用可能是由于测年的同位素体系遭到破坏所致,而并不一定是成岩成矿作用的真实记录。

5.3 区域成岩成矿作用对比

海量高精度成岩成矿年龄数据的积累,是识别重大成岩成矿事件的基础,Mao et al.(2011b)将中国东部中生代成矿作用划分为三大成矿事件。作为东部地区的组成部分,华南地区中生代爆发式的成岩成矿作用也具有多阶段性。基于大量成岩成矿同位素年龄数据,华仁民等(2005) 将华南成矿划为三期:180~170Ma,150~139Ma,125~98Ma,认为南岭钨锡成矿时间主要为150~139Ma;而毛景文等(2004a20072008)提出华南成矿有170~150Ma,140~125Ma和110~80Ma三个阶段,认为170~150Ma是南岭地区的一个成矿高峰期,并认为该区113~90Ma的成矿也很重要;彭建堂等(2008) 则认为150~160Ma为湘南、甚至整个南岭地区W、Sn矿床主要的成矿期。考虑到以往对华南钨锡成矿期次的划分包括的范围较广,不同地区之间的成岩成矿的时空关系、成矿作用方式及成矿背景等方面可能存在很大差别。我们在彭建堂等(2008) 研究的基础上,结合最新的研究资料,统计了湘南地区高精度的成岩成矿数据(表 2图 7)。统计结果显示,尽管湘南地区钨锡多金属成矿作用从三叠纪至晚白垩世均有,如荷花坪锡矿Re-Os等时线年龄为224.9±1.9Ma(蔡明海等,2006),界牌岭锡矿与成矿有关的黑云母Ar-Ar年龄为91.1±1.1Ma(毛景文等,2007),但绝大部分年龄数据主要集中于150~160Ma(图 7);并且,一些印支期的成岩成矿作用之上明显叠加了燕山期的成岩成矿作用,如王仙岭地区的荷花坪矿床,辉钼矿的Re-Os年龄指示了印支期的矿化(蔡明海等,2006),而章荣清等(2010) 获得矿区与锡矿化密切的花岗斑岩的锆石U-Pb年龄(154.7±0.5Ma)则反映了燕山期叠加的成岩成矿作用;另外,在新近发现的锡田地区,已有的花岗岩锆石SHRIMP U-Pb年龄(230.4±2.3Ma,付建明等,2009)显示为印支期,而相关的辉钼矿Re-Os年龄却为150.0±2.7Ma(刘国庆等,2008),亦显示燕山期叠加的成矿作用。这些均指示了湘南地区中晚侏罗世(150~160Ma)期间发生了强烈的爆发式成岩成矿作用。针对该区与成矿有关的花岗岩的研究,传统观点认为,该区与钨锡多金属成矿有关的花岗岩为S型,而最近Li and Li(2007) 则认为该区与成矿有关的花岗岩属于高分异的Ⅰ型花岗岩。然而,这两种观点均强调花岗岩的单一来源(变沉积岩或未经风化过程的火成岩),而未讨论该区花岗岩可能具有多元混合的成因。近年来的研究表明,该区中晚侏罗世与钨锡成矿有关的花岗岩为一条NE向的低tDM和高εNd(t)花岗岩带,局部发育幔源包体。在地球化学上,显示A2型花岗岩的地球化学特征;对该区芙蓉(Li and Li,2007)、新田岭(蔡明海等,2008)及柿竹园(Wu et al.,20072011)等主要钨锡矿床的稀有气体同位素的研究表明,幔源物质广泛参与了该区的成岩成矿作用。Mao et al.(19992003)和Stein et al.(2001) 的研究认为,从幔源到壳幔混源再到壳源,辉钼矿的Re含量呈数量级下降,即从n×100×10-6n×10×10-6 变化到 n×10-6。而我们本次研究的金船塘锡铋矿床的辉钼矿Re含量分布于4.88×10-6 ~ 30.36×10-6之间,主要集中在n×10×10-6的范围内(表 1),指示其成矿物质为壳幔混合来源,这与赵振华等(2000) 对千里山花岗岩的岩石化学、微量元素及Nd-Pb-Sr-O同位素的研究结果相吻合。综上研究表明,幔源物质广泛参与了湘南钨锡矿集区晚中生代的成岩成矿作用,指示该区中-晚侏罗世爆发式的成岩成矿作用可能是区域地壳拉张-岩石圈伸展减薄背景下,强烈的壳幔相互作用的结果。

表 2 湘南钨锡多金属矿集区典型矿床的成岩成矿年龄 Table 2 Petrogenetic and metallogenic ages of the tungsten-tin polymetallic deposits in southern Hunan Province

图 7 湘南钨锡多金属矿集区典型矿床的成岩成矿年龄直方图 Fig. 7 Histogram of petrogenetic and metallogenic ages of the tungsten-tin polymetallic deposits in southern Hunan Province
6 结论

(1) 金船塘锡铋矿床的辉钼矿Re-Os等时线年龄为158.8±6.6Ma,指示该矿床形成于晚侏罗世;

(2) 金船塘矿床的辉钼矿Re-Os等时线年龄与东坡矿田主要矿床的成矿年龄在误差范围内一致,也与千里山岩体的成岩年龄吻合,均集中在149~161Ma之间,表明东坡矿田成岩成矿作用主要集中在晚侏罗世,且其成岩成矿不存在明显时差;

(3) 湘南矿集区钨锡矿床成矿时代从三叠纪至晚白垩世均有分布,但绝大多数与花岗岩有关的成岩成矿作用主要集中于晚侏罗世(150~160Ma),幔源物质广泛参与了其成岩成矿作用,指示该区中-晚侏罗世爆发式的成岩成矿作用可能是区域地壳拉张-岩石圈伸展减薄背景下,强烈的壳幔相互作用的结果。

致谢 本文完成过程中得到了毛景文教授、郭春丽副研究员、乐国良助理研究员的指导;野外地质工作期间,得到了柿竹园有色金属有限责任公司和湘南地质勘察院的大力支持和帮助;国家地质测试中心Re-Os同位素实验室杜安道研究员、屈文俊研究员在论文实验过程中给予了热情的指导和帮助;资料收集过程中得到了中国地质大学(北京)郭硕、李铁刚的帮助;审稿专家给论文提出了许多建设性的意见;在此一并致谢!
参考文献
[] Bo DY, Chen JC, Ma TQ, Wang XH. 2005. Geochemistry characteristics and tectonic surroundings of the Qitianling A-type granite, southeast of Hunan. Acta Petrologica et Mineralogica, 24(4): 255–272.
[] Bohlkea JK, Laeter JR, Bievre PD, Peiserb HS, Rosman KJR, Taylor PDP. 2005. Isotopic compositions of the elements, 2001, J. Phys. Chem. Ref. Data, 34(1): 57–67. DOI:10.1063/1.1836764
[] Cai MH, Chen KX, Qu WJ, Liu GQ, Fu JM, Yin JP. 2006. Geological characteristics and Re-Os dating of molybdenites in Hehuaping tin-polymetallic deposit, southern Hunan Province. Mineral Deposits, 25(3): 263–268.
[] Cai MH, Han FB, He LQ, Liu GQ, Chen KX, Fu JM. 2008. He, Ar isotope characteristics and Rb-Sr dating of the Xintianling skarn scheelite deposit in southern Hunan, China. Acta Geoscientica Sinica, 29(2): 167–173.
[] Chen J, Wu HZ. 1988. Imitation experimentation on the Shizhuyuan tungsten, tin, molybdenum and bismuth skarn deposit in southeastern Hunan Province. Mineral Deposits, 7(1): 32–41.
[] Chen RH, Liu CX, Xu SG. 1997. Jinchuantang Sn-Bi deposit in Chenzhou City and its metallogeny. Hunan Geology, 16(2): 101–105.
[] Deng TY. 1988. Relationship between granites and endogenic tin deposit in Dongpo ore field. Minerals and Geology, 2(Suppl.): 82–88.
[] Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Markey R, Stein H, Morgan J, Malinovskiy D. 2004. Preparation and certification of Re-Os dating reference materials: Molybdenite HLP and JDC. Geostandard and Geoanalytical Research, 28(1): 41–52. DOI:10.1111/ggr.2004.28.issue-1
[] Fu JM, Ma CQ, Xie CF, Zhang YM, Peng SB. 2004. Zircon SHRIMP dating of the eastern margin of the Qitianling granite, Hunan, South China, and its significance. Geology in China, 31(1): 96–100.
[] Fu JM, Wu SC, Xu DM, Ma LY, Cheng SB, Chen XQ. 2009. Reconstraint from zircon SHRIMP U-Pb dating on the age of magma intrusion and mineralization in Xitian tungsten-tin polymetallic orefield, eastern Hunan Province. Geology and Mineral Resources of South China, 3: 1–7.
[] Gong QJ, Yu CW, Zhang RH. 2004. Physical chemistry study on the ore-forming process of Shizhuyuan tungsten-polymetallic deposit. Earth Science Frontiers, 11(4): 617–625.
[] Hua RM, Chen PR, Zhang WL, Lu JJ. 2005. Three major metallogenic events in Mesozoic in south China. Mineral Deposits, 24(2): 99–107.
[] Jiang SY, Zhao KD, Jiang YH, Dai BZ. 2006. A new type of tin mineralization related to granite in South China: Evidence from mineral chemistry, element and isotope geochemistry. Acta Petrologica Sinica, 22(10): 2509–2516.
[] Lei ZH, Chen FW, Chen ZH, Xu YM, Gong SQ, Li HQ, Mei YP, Qu WJ, Wang DH. 2010. Petrogenetic and metallogenic age determination of the Huangshaping lead-zinc polymetallic deposit and its geological significance. Acta Geoscientica Sinica, 31(4): 532–541.
[] Li HQ, Lu YF, Wang DH, Chen YC, Yang HM, Guo J, Xie CF, Mei YP, Ma YL. 2006. Dating of the rock-forming and ore-forming ages and their geological significances in the Furong ore-field, Qitianling, Hunan. Geological Review, 52(1): 113–121.
[] Li HY, Mao JW, Sun YL, Zou XQ, He HL, Du AD. 1996. Re-Os isotopic chronology of molybdenites in the Shizhuyuan polymetallic tungsten deposit, southern Hunan. Geological Review, 42(3): 261–267.
[] Li XH, Liu DY, Sun M, Li WX, Liang XR, Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geol. Mag., 141(2): 225–231. DOI:10.1017/S0016756803008823
[] Li JD, Bo DY, Wu GY, Che QJ, Liu YR, Ma TQ. 2005. Ziron SHRIMP dating of the Qitianling granite, Chenzhou,southern Hunan, and its geological significance. Geological Bulletin of China, 24(5): 411–414.
[] Li ST, Wang JB, Zhu XY, Wang YL, Han Y, Guo NN. 2011. Chronological characteristics of the Yaogangxian composite pluton in Hunan Province. Geology and Prospecting, 47(2): 143–150.
[] Li ZX, Li XH. 2007. Formation of the 1300-km wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182. DOI:10.1130/G23193A.1
[] Liu GQ, Wu SC, Du AD, Fu JM, Yang XJ, Tang ZH, Wei JQ. 2008. Metallogenic ages of the Xitian tungsten-tin deposit, eastern Hunan Province. Geotectonica et Metallogenia, 32(1): 63–71.
[] Liu HF, Lu Q. 2008. Distribution of skarn minerals and Sn in the epidote in Jinchuantang mining area, Hunan. Earth Science-Journal of China University of Geosciences, 33(2): 210–218. DOI:10.3799/dqkx.2008.028
[] Liu YM, Dai TM, Lu HZ, Xu YZ, Wang CL and Kang WQ. 1997. 40Ar-39Ar and Sm-Nd isotope dating of rock-forming, ore-forming of the Qianlishan granites. Science in China (Series D), 27(5): 425–430.
[] Ludwig KR. 2001. User's manual for isoplot/ex, v2. 49, a geochronological toolkit for Microsoft Excel. Geochronological Center Special Publication: 1–58.
[] Lu HZ, Liu YM, Wang CL, Xu YZ, Li HQ. 2003. Mineralization and fluid iInclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology(98): 955–974.
[] Luo Y, Cai JH. 2004. The rock-forming and ore-forming age of the Furong orefield, Hunan Province. Acta Geoscientica Sinica, 25(2): 239–242.
[] Ma LY, Lu YF, Qu WJ, Fu JM. 2007. Re-Os isotopic chronology of molybdenites in Huangshaping lead-zinc deposit, southeast Hunan, and its geological implications. Mineral Deposits, 26(4): 425–432.
[] Ma LY, Lu YF, Fu JM, Chen XQ, Cheng SB. 2010. The Rb-Sr and Sm-Nd geochronology constraints on the formation age of Jinchuantang and Hongqiling tin-polymetallic deposits in Dongpo orefield, Hunan Province. Geology and Mineral Resources of South China, 4: 23–29.
[] Mao JW, Li HY. 1995. Evolution of the Qianlishan granite stock and its relation to the Shizhuyuan polymetallic tungsten deposit. International Geology Review, 37(1): 63–80. DOI:10.1080/00206819509465393
[] Mao JW, Li HY, Pei RF. 1995a. Geology and geochemistry of the Qianlishan granite stock and its relationship to polymetallic tungsten mineralization. Mineral Deposits, 14(1): 12–25.
[] Mao JW, Li HY, Pei RF. 1995b. Nd-Sr isotopic and petrogenetic studies of the Qianlishan granite stock, Hunan Province. Mineral Deposits, 14(3): 235–242.
[] Mao JW, Guy G, Raimbault L, Shimazaki H. 1996. Manganese skarn in the Shizhuyuan polymetallic deposit, Hunan, China. Resource Geology, 46: 1–11.
[] Mao JW. 1997. The ore-forming particularities of the super-large tungsten polymetallic deposits-give an example of the Shizhuyuan deposit, Hunan Province. Scientia Geologica Sinica, 32(3): 351–363.
[] Mao JW, Li HY, Song XX, et al. 1998. Geology and Geochemistry of the Shizhuyuan W, Sn, Mo, Bi Polymetallic Deposits, Hunan Province. Beijing: Geological Publish House .
[] Mao JW, Zhang ZC, Zhang ZH, Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63: 1815–1818. DOI:10.1016/S0016-7037(99)00165-9
[] Mao JW, Du AD, Seltmann R, Yu JJ. 2003. Re-Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia. Mineralium Deposita, 38: 251–257. DOI:10.1007/s00126-002-0331-2
[] Mao JW, Xie GQ, Li XF, Zhang CQ, Mei YX. 2004a. Mesozoic large-scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45–55.
[] Mao JW, Li XF, Lehmann B, Chen W, Lan XM, Wei SL. 2004b. 40Ar-39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance. Mineral Deposits, 22(2): 164–175.
[] Mao JW, Wang YT, Lehmann, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ, Zhou TF. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29: 307–324. DOI:10.1016/j.oregeorev.2005.11.001
[] Mao JW, Xie GQ, Guo CL, ChenYC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329–2338.
[] Mao JW, Xie GQ, Bierlein F, Ye H.S, Qü WJ, Du AD, Pirajno F, Li HM, Guo BJ, Li YF, Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta, 72: 4607–4626. DOI:10.1016/j.gca.2008.06.027
[] Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB, Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510–526.
[] Mao JW, Chen MH, Yuan SD, Guo CL. 2011a. South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636–658.
[] Mao JW, Pirajno F, Nigel CN. 2011b. Mesozoic metallogeny in East China and corresponding geodynamic settings: An introduction to the special issue. Ore Geology Reviews, 43: 1–7. DOI:10.1016/j.oregeorev.2011.09.003
[] Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD, Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita, 41: 661–669. DOI:10.1007/s00126-006-0084-4
[] Peng JT, Hu RZ, Bi XW, Dai TM, Li ZL, Li XM, Shuang Y, Yuan SD, Liu SR. 2007. 40Ar/39Ar isotopic dating of tin mineralization in Furong deposit of Hunan Province and its geological significance. Mineral Deposits, 26(3): 237–248.
[] Peng JT, Hu RZ, Yuan SD, Bi XW, Shen NP. 2008. The time ranges of granitoid emplacement and related nonferrous metallic mineralization in southern Hunan. Geological Review, 54(5): 617–625.
[] Shen WZ, Wang DZ, Xie YL, Liu CS. 1995. Geochemical characteristics and material sources of the Qianlishan composite granite body, Hunan Province. Acta Petrologica et Mineralogica, 14(3): 193–202.
[] Shirey SB, Walker RJ. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67: 2136–2141. DOI:10.1021/ac00109a036
[] Stein HJ, Markey RJ, Morgan JW, Du AD, Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shannxi Province, China. Economic Geology, 92: 827–835. DOI:10.2113/gsecongeo.92.7-8.827
[] Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherst’en A. 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, 13: 479–486. DOI:10.1046/j.1365-3121.2001.00395.x
[] Tong QM, Li RQ, Zhang JX. 2000. The large rupture belt and the ore-forming series of the around deposits, Chenzhou. Geology and Mineral Resources of South China(3): 34–41.
[] Wang CL, Luo SH, Xu YZ. 1987. Geology of the Shizhuyuan Tungsten Polymetallic Deposits. Beijing: Geological Publish House .
[] Wang DH, Li HQ, Qin Y, Mei YP, Chen ZH, Qu WJ, Wang YB, Cai H, Gong SQ, He XP. 2009. Rock-forming and ore-forming ages of the Yaogangxian tungsten deposit of Hunan Province. Rock and Mineral Analysis, 28(3): 201–208.
[] Wang SF, Zhang QL. 1988. Introduction to Ore Geology of the Shizhuyuan Deposit. Beijing: Science and Technology Publishing House .
[] Wang YL, Pei RF, Li JW, Wang HL, Liu XF. 2009. Geochemical characteristics of granites from the Jiangjunzhai tungsten deposit of southeast Hunan Province and its Re-Os isotopic dating. Rock and Mineral Analysis, 28(3): 274–278.
[] Wieser ME. 2006. Atomic weights of the elements 2005 (IUPAC technical report). Pure Appl. Chem., 78(11): 2051–2066.
[] Wu LY, Hu RZ, Peng JT, Bi XW. 2007. Helium and argon isotope compositions of fluid inclusions in pyrite from Shizhuyuan W-Sn-Mo-Bi deposit, Hunan Province. Journal of China University of Geosciences, 18(Suppl.): 297–299.
[] Wu LY, Hu RZ, Peng JT, Bi XW, Jiang GH, Chen HW, Wang QY, Liu YY. 2011. He and Ar isotopic compositions and genetic implications for the giant Shizhuyuan W-Sn-Bi-Mo deposit, Hunan Province, South China. International Geology Review, 53(5-6): 677–690. DOI:10.1080/00206814.2010.510022
[] Xiao HQ, Zhao KD, Jiang SY, Jiang YH, Ling HF. 2003. Lead isotope geochemistry and ore-forming age of Jinchuantang Sn-Bi deposit in Dongpo ore field, Hunan Province. Mineral Deposits, 22(3): 264–270.
[] Yao JM, Hua RM, Qu WJ, Qi HW, Lin JF, Du AD. 2007. Re-Os isotopic dating of molybdenite from the Huangshaping Pb-Zn-W-Mo deposit and its significance. Science in China (Series D), 37(4): 471–477.
[] Yuan SD, Peng JT, Shen NP, Hu RZ, Dai TM. 2007. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in Southern Hunan, China and its geological implications. Acta Geologica Sinica, 81(2): 278–286. DOI:10.1111/acgs.2007.81.issue-2
[] Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP, Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43: 375–382. DOI:10.1007/s00126-007-0166-y
[] Yuan SD, Peng JT, Hao S, Li HM, Geng JZ, Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43: 235–242. DOI:10.1016/j.oregeorev.2011.08.002
[] Yuan SD, Zhang DL, Shuang Y, Du AD, Qu WJ. 2012. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27–38.
[] Zhao ZH, Bao ZW, Zhang BY, Xiong XL. 2000. Crust-mantle interaction background of the ore formation in the giant Shizhuyuan tin polymetallic deposit. Science in China (Series D), 30(Suppl.): 161–168.
[] Zhang LG. 1989. Stable isotope geochemistry of the Dongpo granites and tungsten polymetallic deposits, Hunan. Journal of Guilin University of Technology, 9: 259–267.
[] Zhang RQ, Lu JJ, Zhu JC, Yao Y, Gao JF, Chen WF, Zhao ZJ. 2010. Zircon U-Pb geochronology and Hf isotopic compositions of Hehuaping granite porphyry, southern Hunan Province, and its geological significance. Geological Journal of China Universities, 16(4): 436–447.
[] Zhu JC, Zhang H, Xie CF, Zhang PH, Yang C. 2005. Zircon SHRIMP U-Pb geochronology, petrology and geochemistry of the Zhujianshui granite, Qitianling pluton, southern Hunan Province. Geological Journal of China Universities, 11(3): 335–342.
[] 柏道远, 陈建超, 马铁球, 王先辉.2005. 湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境. 岩石矿物学杂志, 24(4): 255–272.
[] 蔡明海, 陈开旭, 屈文俊, 刘国庆, 付建明, 印建平.2006. 湘南荷花坪矽多金属矿床地质特征及辉钼矿Re-Os测年. 矿床地质, 25(3): 263–268.
[] 蔡明海, 韩凤彬, 何龙清, 刘国庆, 陈开旭, 付建明.2008. 湘南新田岭白钨矿床He, Ar同位素特征及Rb-Sr测年. 地球学报, 29(2): 167–173.
[] 陈骏, 吴厚泽.1988. 柿竹园矽卡岩型钨锡钼铋矿床成矿实验研究. 矿床地质, 7(1): 32–41.
[] 陈荣华, 刘昌新, 许世广.1997. 郴州市金船塘锡铋矿床地质特征及成矿规律探讨. 湖南地质, 16(2): 101–105.
[] 邓铁殷.1988. 东坡矿田花岗岩与内生锡矿关系. 矿产与地质, 2(增): 82–88.
[] 付建明, 马昌前, 谢才富, 张业明, 彭松柏.2004. 湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及其意义. 中国地质, 31(1): 96–100.
[] 付建明, 伍式崇, 徐德明, 马丽艳, 程顺波, 陈希清.2009. 湘东锡田钨锡多金属矿区成岩成矿时代的再厘定. 华南地质与矿产, 3: 1–7.
[] 龚庆杰, 於崇文, 张荣华.2004. 柿竹园钨多金属矿床形成机制的物理化学分析. 地学前缘, 11(4): 617–625.
[] 华仁民, 陈培荣, 张文兰, 陆建军.2005. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99–107.
[] 蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 倪培.2006. 华南与花岗岩有关的一种新类型的锡成矿作用:矿物化学、元素和同位素地球化学证据. 岩石学报, 22(10): 2509–2516.
[] 雷泽恒, 陈富文, 陈郑辉, 许以明, 龚述清, 李华芹, 梅玉萍, 屈文俊, 王登红.2010. 黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义. 地球学报, 31(4): 532–541.
[] 李华芹, 路远发, 王登红, 陈毓川, 杨红梅, 郭敬, 谢才富, 梅玉萍, 马丽艳.2006. 湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义. 地质论评, 52(1): 113–121.
[] 李红艳, 毛景文, 孙亚莉, 邹晓秋, 何红蓼, 杜安道.1996. 柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究. 地质论评, 42(3): 261–267.
[] 李金冬, 柏道远, 伍光英, 车勤建, 刘耀荣, 马铁球.2005. 湘南郴州地区骑田岭花岗岩锆石SHRIMP定年及其地质意义. 地质通报, 24(5): 411–414.
[] 李顺庭, 王京彬, 祝新友, 王艳丽, 韩英, 郭宁宁.2011. 湖南瑶岗仙复式岩体的年代学特征. 地质与勘探, 47(2): 143–150.
[] 刘国庆, 伍式崇, 杜安道, 付建明, 杨晓君, 汤质华, 魏君奇.2008. 湘东锡田钨锡矿区成岩成矿时代研究. 大地构造与成矿学, 32(1): 63–71.
[] 刘惠芳, 陆琦.2008. 湖南金船塘矿区矽卡岩矿物及Sn元素在绿帘石中的分布特征. 地球科学-中国地质大学学报, 33(2): 210–218.
[] 刘义茂, 戴橦谟, 卢焕章, 胥有志, 王昌烈, 康卫清.1997. 千里山花岗岩成岩成矿的40Ar-39Ar和Sm-Nd同位素年龄. 中国科学(D辑), 27(5): 425–430.
[] 罗郧, 蔡锦辉.2004. 湖南芙蓉矿田成岩成矿时代. 地球学报, 25(2): 239–242.
[] 马丽艳, 路远发, 屈文俊, 付建明.2007. 湖南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及其地质意义. 矿床地质, 26(4): 425–432.
[] 马丽艳, 路远发, 付建明, 陈希清, 程顺波.2010. 湖南东坡矿田金船塘、红旗岭锡多金属矿床Rb-Sr、Sm-Nd同位素年代学研究. 华南地质与矿产, 4: 23–29.
[] 毛景文, 李红艳, 裴荣富.1995a. 千里山花岗岩体地质地球化学及与成矿关系. 矿床地质, 14(1): 12–25.
[] 毛景文, 李红艳, 裴荣富.1995b. 湖南千里山花岗岩体的Nd-Sr同位素及岩石成因研究. 矿床地质, 14(3): 235–242.
[] 毛景文.1997. 超大型钨多金属矿床成矿特殊性——以湖南柿竹园矿床为例. 地质科学, 32(3): 351–363.
[] 毛景文, 李红艳, 宋学信, 等. 1998. 湖南柿竹园钨锡钼铋多金属矿床地质与地球化学. 北京: 地质出版社.
[] 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄.2004a. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45–55.
[] 毛景文, 李晓峰, LehmannB, 陈文, 蓝晓明, 魏绍六.2004b. 湖南芙蓉锡矿地质特征、锡矿石和有关花岗岩的40Ar-39Ar测年及其成岩成矿的地球动力学意义. 矿床地质, 22(2): 164–175.
[] 毛景文, 谢桂清, 郭春丽, 陈毓川.2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329–2338.
[] 毛景文, 谢桂清, 郭春丽, 袁顺达, 程彦博, 陈毓川.2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510–526.
[] 毛景文, 陈懋弘, 袁顺达, 郭春丽.2011a. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636–658.
[] 彭建堂, 胡瑞忠, 毕献武, 戴橦谟, 李兆丽, 李晓敏, 双燕, 袁顺达, 刘世荣.2007. 湖南芙蓉锡矿床40Ar/39Ar同位素年龄及地质意义. 矿床地质, 26(3): 237–248.
[] 彭建堂, 胡瑞忠, 袁顺达, 毕献武, 沈能平.2008. 湘南中生代花岗质岩石成岩成矿的时限. 地质论评, 54(5): 617–625.
[] 沈渭洲, 王德滋, 谢永林, 刘昌实.1995. 湖南千里山复式花岗岩体的地球化学特征和物质来源. 岩石矿物学杂志, 14(3): 193–202.
[] 童潜明, 李荣清, 张建新.2000. 郴州深大断裂带及其两侧的矿床成矿系列. 华南地质与矿产(3): 34–41.
[] 王昌烈, 罗仕徽, 胥有志, 等. 1987. 柿竹园钨多金属矿床地质. 北京: 地质出版社.
[] 王登红, 李华芹, 秦燕, 梅玉萍, 陈郑辉, 屈文俊, 王彦斌, 蔡红, 龚述清, 何晓平.2009. 湖南瑶岗仙钨矿成岩成矿作用年代学研究. 岩矿测试, 28(3): 201–208.
[] 王书凤, 张绮玲. 1988. 柿竹园矿床地质引论. 北京: 北京科学技术出版社.
[] 王永磊, 裴荣富, 李进文, 王浩琳, 刘喜峰.2009. 湘东南将军寨钨矿花岗岩地球化学特征及铼-锇同位素定年. 岩矿测试, 28(3): 274–278.
[] 肖红全, 赵葵东, 蒋少涌, 姜耀辉, 凌洪飞.2003. 湖南东坡矿田金船塘锡铋矿床铅同位素地球化学及成矿年龄. 矿床地质, 22(3): 264–270.
[] 姚军明, 华仁民, 屈文俊, 戚华文, 林锦富, 杜安道.2007. 湘南黄沙坪铅锌钨钼多金属矿的Re-Os同位素定年及其意义. 中国科学(D辑), 37(4): 471–477.
[] 袁顺达, 张东亮, 双燕, 杜安道, 屈文俊.2012. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 27–38.
[] 赵振华, 包志伟, 张伯友, 熊小林.2000. 柿竹园超大型钨多金属矿床形成的壳幔相互作用背景. 中国科学(D辑), 30(增刊): 161–168.
[] 张理刚.1989. 湖南东坡地区花岗岩和钨多金属矿床稳定同位素地球化学. 桂林冶金地质学院学报, 9: 259–267.
[] 章荣清, 陆建军, 朱金初, 姚远, 高剑峰, 陈卫锋, 招湛杰.2010. 湘南荷花坪花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、Hf同位素制约及地质意义. 高校地质学报, 16(4): 436–447.
[] 朱金初, 张辉, 谢才富, 张佩华, 杨策.2005. 湘南骑田岭竹枧水花岗岩的锆石SHRIMP U-Pb年代学和岩石学. 高校地质学报, 11(3): 335–342.