文章信息
- 曾慧玲, 蒲巧贤, 莫祖意, 范凯, 林文雄, 李兆伟
- ZENG Huiling, PU Qiaoxian, MO Zuyi, FAN Kai, LIN Wenxiong, LI Zhaowei
- OsSPL转录因子调控水稻生长发育的研究进展
- Advances on transcription factor OsSPL in regulating rice growth and development
- 亚热带农业研究, 2022, 18(1): 16-22
- Subtropical Agriculture Research, 2022, 18(1): 16-22.
- DOI: 10.13321/j.cnki.subtrop.agric.res.2022.01.004
-
文章历史
- 收稿日期: 2021-10-27
鳞状细胞启动子结合蛋白样(squamosa promoter-binding protein-like, SPL)是植物特有的转录因子,最早发现于金鱼草花序中[1],其氨基酸序列中存在鳞状细胞启动子结合蛋白(squamosa promoter-binding protein, SBP) 结构域,能识别MADS-box的squamosa启动子并与之结合[2]。目前,已陆续从拟南芥[3]、小麦[4]、大麦[5]、棉花[6]、柑橘[7]、毛竹[8]和草莓[9]等植物中发现SPL转录因子。Chen et al[10]研究发现,SPL转录因子在调控植物腋芽分化、叶片发育、植株分蘖、花粉育性、开花期以及逆境响应与激素信号转导等方面发挥着重要作用。Ma et al[11]研究表明,MdSPL13过表达增强了苹果的抗盐性;Li et al[12]认为,TaSPL13和TaSPL15基因可能参与小麦的穗发育和种子发育。
水稻是基因组数据量最小的农作物,与玉米、小麦、大麦等禾谷类作物存在广泛的共线性,已成为禾谷类作物基因组与基因功能研究的重要模式植物[13]。因此,本文综述了SPL转录因子的结构特点及其对水稻生长发育与逆境响应过程中的分子生态作用机制,以期为水稻品种培育提供参考。
1 SPL转录因子的结构特点转录因子又称反式作用元件,是真核生物中的一类DNA结合蛋白,可与靶基因启动子区域的顺式作用元件专一性结合,激活或抑制靶基因表达[14]。SPL转录因子序列中含有SBP结构域,约由76个氨基酸残基构成,负责识别并结合靶基因的squamosa启动子序列,调控下游靶基因表达。SBP结构域包含重复序列区域[14]、锌指结构域[15]和核定位信号序列(nuclear localization signal, NLS)[16]。重复序列区域可与靶基因的GTAC核心序列结合[14];锌指结构域包含8个半胱氨酸或组氨酸,分别由4个氨基酸残基结合1个锌离子,其中C端组分为Cys-Cys-His-Cys,N端组分为Cys-Cys-Cys-His或Cys-Cys-Cys-Cys[17],由锌离子维持构象的稳定性,为SBP结构域提供结合能力[15]。
不同物种的SPL转录因子家族成员数目存在差异,如拟南芥[18]、寡甘菊[19]、柑橘[7]和草莓[9]分别有17、14、15和14个SPL转录因子成员。Cai et al[6]通过全基因组关联分析,在树棉、雷蒙德氏棉、海岛棉、陆地棉等4种棉属植物中共鉴定到177个SPL转录因子。此外,苹果[20]、毛竹[8]、小麦[4]、大麦[5]、人参[21]及矮牵牛[22]中也相继发现SPL转录因子。Xie et al[17]在水稻中发现19个OsSPL转录因子,调控基因分别位于10条染色体上,其在序列结构和长度上存在较大差异,但最终编码的氨基酸序列都含有典型的SBP结构域。
2 水稻SPL转录因子的表达调控水稻中有11个OsSPL转录因子的基因编码区具有与非编码单链RNA(OsmicroRNA)片段互补的序列,含OsmiRNA识别位点[17]。OsSPL基因转录形成的mRNA能够被OsmiRNA识别、剪切并降解,进而抑制OsSPL的翻译表达,调控植物的生长发育[23-24]。OsSPL3转录因子基因编码区的5′端含OsmiR156识别位点,Shao et al[25]将OsSPL3基因的OsmiR156识别序列进行点突变后,解除了OsmiR156对OsSPL3转录mRNA片段的互补识别,从而提高OsSPL3的表达产物。OsSPL14转录的mRNA也会被OsmiR156定向切割降解,进而影响其翻译过程[26]。Yan et al[27]研究发现,miR529a序列与OsmiR156有极高的相似性,miR529a通过调控OsSPL2、OsSPL7、OsSPL14、OsSPL16、OsSPL17以及OsSPL18等6个靶基因的表达丰度,进而调节稻穗结构和粒形。
3 SPL转录因子在水稻中的生物学功能 3.1 调节根系发育根系是固定植株的重要器官,也是植物吸收土壤水分与养分的主要组织,对植株地上部生长与组织建成起决定性作用。SPL10转录因子可与AGL79(agamous-like MADS box protein 79)基因启动子结合,调节AGL79基因表达,从而影响拟南芥侧根发育[28]。OsSPL3转录因子影响水稻根系的生长发育,Shao et al[25]调查冠根缺失突变体表型发现,OsSPL3基因的OsmiR156识别位点序列突变后无法抑制OsSPL3的翻译,转录因子OsSPL3正调控下游靶基因OsMADS50的表达,调节生长素转运和信号转导途径,影响冠根细胞的正常分化与分裂增殖,抑制冠根发育。
3.2 影响株型结构合理的株型结构是水稻获取高产的重要保障。OsSPL在调控水稻植株分蘖、穗分枝、株高等农艺性状中发挥重要作用[27],是调控水稻株型结构的关键转录因子[29-31]。
3.2.1 分蘖Luo et al[29]研究OsmiR156切割位点突变的OsSPL14基因功能发现,突变植株叶原基形成的间隔期延长,分蘖数减少,使得孕穗开花期提前。水稻营养生长阶段,OsSPL14转录因子可调节叶原基分化,影响分蘖发生;而生殖生长阶段,通过提高OsSPL14转录因子的表达水平,可促进稻穗一次枝梗伸长[30]。OsSPL14转录因子序列点突变后解除了OsmiR156对其mRNA的剪切调控,稻株无效分蘖数减少,从而改善水稻株型结构,增强抗倒伏能力,显著提高单株籽粒[31]。
3.2.2 株高Dai et al[32]研究发现,OsSPL7转录因子通过miR156f-OsSPL7-OsGH3.8分子通路调控株高而影响水稻株型结构。OsSPL7转录因子是miR156f的作用靶标,能上调OsGH3.8启动子表达,调控IAA水平,从而增加稻株分蘖,并降低株高。OsSPL7受OsmiR535调控,抑制下游穗部相关基因OsPIN1B、OsDEP1、OsLOG和OsSLR1的表达,从而调节水稻株高、穗结构和粒形[33]。此外,OsSPL16转录因子编码序列错义突变也会影响植株的株高、花序以及小穗等正常发育[34]。
3.2.3 叶片叶原基形成的间隔期是指从茎尖叶原基形成到下一个叶原基形成的间隔时期,反映叶原基分化或叶片形成速率[35]。水稻叶片的生长发育与叶原基的分化有关,增强OsSPL14转录因子表达有利于延长水稻叶原基形成的间隔期,减缓叶片形成速率,从而减少叶片数量[36]。Lee et al[37]研究报道,OsSPL8转录因子在水稻叶片的叶舌、叶耳以及叶鞘基部区域表达水平较高,而OsSPL8转录因子表达缺失会引起叶耳与叶舌异常发育,导致叶片畸形。过表达OsSPL14基因会导致水稻旗叶的叶长缩短、叶宽变窄、叶片增厚,且叶绿素a、叶绿素b和类胡萝卜素含量升高,植株的生育期缩短。Xie et al[38]研究发现,OsmiR156依据叶龄调控OsSPL基因表达,OsmiR156的靶基因OsSPL3、OsSPL12、OsSPL13、OsSPL14和OsSPL17在幼叶中的表达水平明显高于老叶,表明随着叶龄增长,OsmiR156对OsSPL转录因子的抑制作用增强,OsSPL基因的mRNA翻译受阻,从而限制叶片组织的生长发育。
3.2.4 表皮毛表皮毛是植株表皮组织的一种特化结构,由表皮细胞分化发育而来,广泛分布在叶片、茎秆、花萼等器官表面[39]。水稻表皮毛不仅可以缓解强光对表皮细胞的灼伤,还与叶片气孔蒸腾作用、呼吸作用以及产量形成密切相关[40]。Lan et al[41]研究发现,OsSPL10转录因子可调控水稻表皮毛发育,敲除OsSPL10基因会导致叶片与颖片产生无表皮毛表型,而过表达OsSPL10基因的水稻叶片与颖片的表皮毛密度和毛状体均显著高于野生型。
3.3 调控产量性状 3.3.1 开花期孕穗与扬花是水稻从营养生长转向生殖生长的重要阶段,合理的开花期可提高水稻产量及品质[42]。在水稻花器官发育过程中,OsSPL转录因子与DNA特异性结合,调控相关靶基因表达,受上游MicroRNA调控,构建系统的基因调控网络[43]。水稻的开花期受到OsSPL9-OsmiR528-OsRF12协调网络表达调控,OsmiR528调控水稻开花代谢的转录水平受上游OsSPL9转录因子的正向表达调控,OsRF12转录因子受OsmiR528水平调控,通过抑制开花位点来延迟水稻开花[44]。
3.3.2 粒长与粒宽粒形结构(包括粒长、粒宽和粒厚)是稻米的重要产量性状之一,主要由水稻自身的遗传因素决定[45],也受生殖生长阶段的环境影响[46]。亚洲栽培稻主要分为籼稻和粳稻2个亚种[47],二者的粒形存在较大差异,粳稻籽粒短而圆,籼稻则长而细[48-49]。在稻米籽粒形成过程中,α微管蛋白编码基因OsSRS5(small and round seed 5)通过调控稻壳细胞的伸长而缩短稻米的籽粒长度,而OsSPL13转录因子负调控OsSRS5的表达水平,因此增强OsSPL13转录因子的表达水平能引起籽粒细胞的纵向分裂扩张,从而增加稻米粒长[50]。
Pan et al[51]发现,OsSPL16、gs5和gif1通过调控osmk3来影响小穗壳细胞增殖,进而控制水稻籽粒大小。OsSPL16转录因子与稻米的粒形结构相关,通过调控细胞分裂增殖来增加稻米的粒宽,并通过抑制细胞的伸长阻止稻米纵向延长,最终导致稻米变短、变粗[52]。在稻米籽粒形成过程中,OsGW7(grain width7)基因促进细胞的纵向分裂,从而促使稻米变得细长,而OsSPL16转录因子抑制OsGW7基因的转录和翻译,进而负向调控稻米的粒宽[53]。OsSPL12转录因子对籼稻粒宽起抑制作用,可直接结合OsGW5基因启动子,抑制OsGW5基因的表达,从而抑制稻米粒宽[54-55]。OsmiR156可以切割OsSPL4转录的mRNA,而OsmiR156-OsSPL4模块也可以调节水稻的粒径[56]。
3.3.3 穗粒数及粒重Wang et al[57]研究发现,转录因子OsSPL14与OsSPL17对稻穗分枝与复总状圆锥花序的形成具有调节作用,可促进穗分枝向小穗分生组织转化。OsSPL14转录因子在花序苞片和花序外层组织中呈较高表达,尤其在幼穗发育初期,雄蕊原基、内稃、外稃以及退化颖片等组织中均有OsSPL14转录因子表达[58]。OsSPL14转录因子调控幼穗分化发育过程受氮水平影响,适当补施氮肥可增加分化小穗数量,防止小穗退化早衰,提高产量[59]。OsSPL4转录因子对水稻穗分枝也有显著影响[60],还可促进细胞分裂,调节小穗的发育,从而增加穗粒数,提高产量[56]。Wang et al[61]研究表明,OsSPL6缺陷型植株的内质网应激传感器IRE1被过度激活,导致水稻的穗分化细胞死亡。OsSPL9通过激活水稻末端花同源基因RCN1在幼穗中的表达,调节穗部分枝和每穗粒数[62]。Yuan et al[63]发现,OsSPL18转录因子通过影响细胞横向增殖来调控小穗壳发育。OsmiR156干扰OsSPL18基因的表达翻译,从而调节下游的OsDEP1基因表达,影响稻穗的着粒密度与穗粒发育,从而调节水稻的穗粒数和粒重[64]。
3.4 OsSPL转录因子参与水稻逆境胁迫响应SPL转录因子与植物的抗逆胁迫有关。miR156/SPL模块通过上调苹果树的MdWRKY100转录因子的表达而调控其耐盐性[11]。OsSPL转录因子在水稻响应逆境胁迫过程中发挥特定生物功能[65]。Lan et al[41]研究发现,OsSPL10转录因子负调节水稻耐盐性,OsSPL10基因突变水稻表现出较高的耐盐性,其在盐胁迫下的存活率远高于野生型和OsSPL10基因过表达植株。低温胁迫下,OsmiR156通过靶向剪切使OsSPL3基因表达降低,OsSPL3转录因子正调节OsWRKY71的表达,致使OsWRKY71转录因子丰度降低,激活了相关应激反应基因的表达,对低温胁迫做出应激反应,进而提高水稻的抗低温能力[66]。OsSPL9转录因子能够调控水稻幼苗和成熟籽粒中的微量铜稳态[67],还可正向调控OsmiR528的转录,降低水稻的抗病毒防御能力[68]。OsmiR535作用于OsSPL4的mRNA,以抑制水稻对稻瘟病菌的免疫,过表达OsSPL4的转基因水稻品系抗稻瘟病能力增强[69]。
4 研究展望水稻作物在我国粮食安全与农业可持续发展中占有举足轻重的地位,优良农艺性状基因资源发掘与功能解析对水稻分子改良与选育具有重要意义[70]。在分蘖期,OsSPL转录因子参与调控水稻根系和叶片的分化发育以及分蘖芽的发生,有助于组织器官的形态建成和株型构造;在孕穗期及扬花期,OsSPL转录因子通过促进花器官的分化调控水稻的开花期,并参与穗分化阶段的枝梗产生与延伸、籽粒的着粒分布等产量性状构建,从而影响稻穗的穗粒数;在灌浆期,OsSPL转录因子通过调控稻壳细胞的纵向与横向分裂影响稻米的粒形,从而提高产量和品质性状。此外,OsSPL转录因子还在水稻抗逆境胁迫、病毒防御等响应代谢中发挥重要调节作用。
综上所述,水稻SPL转录因子对水稻根系发育、腋芽形成、花器官分化等组织器官构建,以及生育期调整、产量性状调控、逆境胁迫响应等方面起重要的生理调控作用。当前对OsSPL转录因子分子作用机理的深入解析与生物学功能的充分了解,为水稻理想株型选育、生育期调控、稻米产量和抗逆境能力改良等方面提供了较好的分子遗传改良理论支持,对今后利用分子生物学技术整合水稻优良农艺性状的分子设计育种以及加速人工驯化等均具有广阔的指导前景。
[1] | KLEIN J, SAEDLER H, HUIJSER P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Molecular and General Genetics MGG, 1996, 250(1): 7–16. |
[2] | ZENG R F, ZHOU J J, LIU S R, et al. Genome-wide identification and characterization of SQUAMOSA-promoter-binding protein (SBP) genes involved in the flowering development of Citrus clementina[J]. Biomolecules, 2019, 9(2): 66. DOI: 10.3390/biom9020066 |
[3] | XU M L, HU T Q, ZHAO J F, et al. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(8): e1006263. DOI: 10.1371/journal.pgen.1006263 |
[4] | ZHANG B, XU W N, LIU X, et al. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-Box genes governing yield-related traits in Hexaploid wheat[J]. Plant Physiology, 2017, 174(2): 1177–1191. DOI: 10.1104/pp.17.00113 |
[5] | TRIPATHI R K, BREGITZER P, SINGH J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley[J]. Scientific Reports, 2018, 8(1): 7085. DOI: 10.1038/s41598-018-25349-0 |
[6] | CAI C P, GUO W Z, ZHANG B H. Genome-wide identification and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cotton[J]. Scientific Reports, 2018, 8(1): 762. DOI: 10.1038/s41598-017-18673-4 |
[7] | SHALOM L, SHLIZERMAN L, ZUR N, et al. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression[J]. Frontier in Plant Science, 2015, 6: 389. |
[8] | PAN F, WANG Y, LIU H L, et al. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis)[J]. BMC Genomics, 2017, 18(1): 486. DOI: 10.1186/s12864-017-3882-4 |
[9] | XIONG J S, ZHENG D, ZHU H Y, et al. Genome-wide identification and expression analysis of the SPL gene family in woodland strawberry Fragaria vesca[J]. Genome, 2018, 61(9): 675–683. DOI: 10.1139/gen-2018-0014 |
[10] | CHEN X B, ZHANG Z L, LIU D M, et al. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development[J]. Journal of Integrative Plant Biology, 2010, 52(11): 946–951. DOI: 10.1111/j.1744-7909.2010.00987.x |
[11] | MA Y, XUE H, ZHANG F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant Biotechnology, 2021, 19(2): 311–323. DOI: 10.1111/pbi.13464 |
[12] | LI L, SHI F, WANG Y Q, et al. TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.)[J]. Plant Science, 2020, 298: 110516. |
[13] | 肖景华, 吴昌银, 张启发. 水稻功能基因组研究进展与发展展望[J]. 中国农业科技导报, 2013, 15(2): 1–7. |
[14] | DANINO Y M, EVEN D, IDESES D, et al. The core promoter: At the heart of gene expression[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2015, 1849(8): 1116–1131. DOI: 10.1016/j.bbagrm.2015.04.003 |
[15] | YAMASAKI K, KIGAWA T, INOUE M, et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. Journal of Molecular Biology, 2004, 337(1): 49–63. DOI: 10.1016/j.jmb.2004.01.015 |
[16] | ZHANG H, ZHANG L, HAN J Y, et al. The nuclear localization signal is required for the function of squamosa promoter binding protein-like gene 9 to promote vegetative phase change in Arabidopsis[J]. Plant Molecular Biology, 2019, 100(6): 571–578. DOI: 10.1007/s11103-019-00863-5 |
[17] | XIE K B, WU C Q, XIONG L Z. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice[J]. Plant Physiology, 2006, 142(1): 280–293. DOI: 10.1104/pp.106.084475 |
[18] | BIRKENBIHL R P, JACH G, SAEDLER H, et al. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains[J]. Journal of Molecular Biology, 2005, 352(3): 585–596. DOI: 10.1016/j.jmb.2005.07.013 |
[19] | HUSSAIN S, NANDA S. Genome-wide identification of the SPL gene family in Dichanthelium oligosanthes[J]. Bioinformation, 2019, 15(3): 165–171. DOI: 10.6026/97320630015165 |
[20] | LI J, HOU H M, LI X Q, et al. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus×domestica Borkh.)[J]. Plant Physiology and Biochemistry, 2013, 70: 100–114. DOI: 10.1016/j.plaphy.2013.05.021 |
[21] | LI S K, LI L, JIANG Y, et al. SQUAMOSA promoter binding protein-like (SPL) gene family: TRANSCRIPTOME-wide identification, phylogenetic relationship, expression patterns and network interaction analysis in Panax ginseng C. A. Meyer[J]. Plants, 2020, 9(3): 354. DOI: 10.3390/plants9030354 |
[22] | PRESTON J C, JORGENSEN S A, OROZCO R, et al. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia[J]. Planta, 2016, 243(2): 429–440. DOI: 10.1007/s00425-015-2413-2 |
[23] | WANG H, WANG H Y. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits[J]. Molecular Plant, 2015, 8(5): 677–688. DOI: 10.1016/j.molp.2015.01.008 |
[24] | YANG X F, WANG J, DAI Z Y, et al. miR156f integrates panicle architecture through genetic modulation of branch number and pedicel length pathways[J]. Rice, 2019, 12(1): 40. DOI: 10.1186/s12284-019-0299-5 |
[25] | SHAO Y L, ZHOU H Z, WU Y R, et al. OsSPL3, an SBP-domain protein, regulates crown root development in rice[J]. The Plant Cell, 2019, 31(6): 1257–1275. DOI: 10.1105/tpc.19.00038 |
[26] | ZHAO M, LIU B M, WU K, et al. Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice[J]. PLoS One, 2015, 10(5): e0126154. DOI: 10.1371/journal.pone.0126154 |
[27] | YAN Y, WEI M X, LI Y, et al. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.)[J]. Plant Science, 2021, 302: 110728. DOI: 10.1016/j.plantsci.2020.110728 |
[28] | GAO R M, WANG Y, GRUBER M Y, et al. miR156/SPL10 modulates lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS-LIKE 79[J]. Frontier in Plant Science, 2018, 8: 2226. DOI: 10.3389/fpls.2017.02226 |
[29] | LUO L, LI W Q, MIURA K, et al. Control of tiller growth of rice by OsSPL14 and strigolactones, which work in two independent pathways[J]. Plant and Cell Physiology, 2012, 53(10): 1793–1801. DOI: 10.1093/pcp/pcs122 |
[30] | MIURA K, IKEDA M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6): 545–549. DOI: 10.1038/ng.592 |
[31] | JIAO Y Q, WANG Y H, XUE D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541–544. DOI: 10.1038/ng.591 |
[32] | DAI Z Y, WANG J, YANG X F, et al. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice[J]. Journal of Experimental Botany, 2018, 69(21): 5117–5130. DOI: 10.1093/jxb/ery273 |
[33] | SUN M Z, SHEN Y, LI H Y, et al. The multiple roles of OsmiR535 in modulating plant height, panicle branching and grain shape[J]. Plant Science, 2019, 283: 60–69. DOI: 10.1016/j.plantsci.2019.02.002 |
[34] | HOU Y L, HONG C Y, CHEN K Y. Functional characterization of the stunt lemma palea 1 mutant allele in rice[J]. Plant Growth Regulation, 2014, 73(3): 257–265. DOI: 10.1007/s10725-013-9886-4 |
[35] | MIMURA M, NAGATO Y, ITOH J I. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway[J]. Planta, 2012, 235(5): 1081–1089. DOI: 10.1007/s00425-012-1639-5 |
[36] | LIAN L, XU H B, ZHANG H, et al. Overexpression of OsSPL14 results in transcriptome and physiology changes in indica rice'MH86'[J]. Plant Growth Regulation, 2020, 90(2): 265–278. DOI: 10.1007/s10725-019-00569-0 |
[37] | LEE J, PARK J J, KIM S L, et al. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint[J]. Plant Molecular Biology, 2007, 65(4): 487–499. DOI: 10.1007/s11103-007-9196-1 |
[38] | XIE K B, SHEN J Q, HOU X, et al. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice[J]. Plant Physiology, 2012, 158(3): 1382–1394. DOI: 10.1104/pp.111.190488 |
[39] | HU B L, WAN Y, LI X, et al. Phenotypic characterization and genetic analysis of rice with pubescent leaves and glabrous hulls (PLgh)[J]. Crop Science, 2013, 53(5): 1878–1886. DOI: 10.2135/cropsci2012.09.0522 |
[40] | XIE Y J, YU X Z, JIANG S F, et al. OsGL6, a conserved AP2 domain protein, promotes leaf trichome initiation in rice[J]. Biochemical and Biophysical Research Communications, 2020, 522(2): 448–455. DOI: 10.1016/j.bbrc.2019.11.125 |
[41] | LAN T, ZHENG Y L, SU Z L, et al. OsSPL10, a SBP-Box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.)[J]. Genes, Genomes, Genetics, 2019, 9(12): 4107–4114. |
[42] | YOSHIDA H, NAGATO Y. Flower development in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4719–4730. DOI: 10.1093/jxb/err272 |
[43] | 田晶, 赵雪媛, 谢隆聖, 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 159–166. |
[44] | YANG R X, LI P C, MEI H L, et al. Fine-tuning of MiR528 accumulation modulates flowering time in rice[J]. Molecular Plant, 2019, 12(8): 1103–1113. DOI: 10.1016/j.molp.2019.04.009 |
[45] | HUANG R Y, JIANG L R, ZHENG J S, et al. Genetic bases of rice grain shape: so many genes, so little known[J]. Trends in Plant Science, 2013, 18(4): 218–226. DOI: 10.1016/j.tplants.2012.11.001 |
[46] | 涂坦, 付洪. 水稻主要粒型基因及其遗传调控的研究进展[J]. 山地农业生物学报, 2016, 35(5): 58–65. |
[47] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841–857. |
[48] | ZHENG W J, MA Z B, ZHAO M Z, et al. Research and development strategies for hybrid japonica rice[J]. Rice, 2020, 13(1): 36. DOI: 10.1186/s12284-020-00398-0 |
[49] | DATTA K, DATTA S K. Indica rice (Oryza sativa, BR29 and IR64)[J]. Methods Molecular Biology, 2006, 343: 201–212. |
[50] | SI L Z, CHEN J Y, HUANG X H, et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4): 447–456. DOI: 10.1038/ng.3518 |
[51] | PAN Y, CHEN L, ZHAO Y, et al. Natural variation in OsMKK3 contributes to grain size and chalkiness in rice[J]. Front Plant Science, 2021, 12: 784037. DOI: 10.3389/fpls.2021.784037 |
[52] | WANG S K, WU K, YUAN Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950–954. DOI: 10.1038/ng.2327 |
[53] | WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949–954. DOI: 10.1038/ng.3352 |
[54] | ZHANG X F, YANG C Y, LIN H X, et al. Rice SPL12 coevolved with GW5 to determine grain shape[J]. Science Bulletin, 2021, 66(23): 2353–2357. DOI: 10.1016/j.scib.2021.05.005 |
[55] | LIU J F, CHEN J, ZHENG X M, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3(5): 17043. DOI: 10.1038/nplants.2017.43 |
[56] | HU J H, HUANG L Y, CHEN G L, et al. The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice[J]. Rice, 2021, 14: 90. DOI: 10.1186/s12284-021-00531-7 |
[57] | WANG L, SUN S Y, JIN J Y, et al. Coordinated regulation of vegetative and reproductive branching in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): 15504–15509. DOI: 10.1073/pnas.1521949112 |
[58] | RAO I S, NEERAJA C N, SRIKANTH B, et al. Identification of rice landraces with promising yield and the associated genomic regions under low nitrogen[J]. Scientific Reports, 2018, 8(1): 9200. DOI: 10.1038/s41598-018-27484-0 |
[59] | SINGH H, VERMA A, ANSARI M W, et al. Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions[J]. Plant Signaling&Behavior, 2014, 9(7): e29015. |
[60] | HU J H, ZENG T, XIA Q M, et al. Identification of key genes for the ultrahigh yield of rice using dynamic cross-tissue network analysis[J]. Genomics, Proteomics&Bioinformatics, 2020, 18(3): 256–270. |
[61] | WANG Q L, SUN A Z, CHEN S T, et al. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice[J]. Nature Plants, 2018, 4(5): 280–288. DOI: 10.1038/s41477-018-0131-z |
[62] | HU L, CHEN W L, YANG W, et al. OsSPL9 regulates grain number and grain yield in rice[J]. Frontiers in Plant Science, 2021, 12: 682018. DOI: 10.3389/fpls.2021.682018 |
[63] | YUAN H, QIN P, HU L, et al. OsSPL18 controls grain weight and grain number in rice[J]. Journal of Genetics and Genomics, 2019, 46(1): 41–51. DOI: 10.1016/j.jgg.2019.01.003 |
[64] | HUANG X Z, QIAN Q, LIU Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494–497. DOI: 10.1038/ng.352 |
[65] | CUI L G, SHAN J X, SHI M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. The Plant Journal, 2014, 80(6): 1108–1117. DOI: 10.1111/tpj.12712 |
[66] | ZHOU M Q, TANG W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells[J]. Molecular Genetics and Genomics, 2019, 294(2): 379–393. DOI: 10.1007/s00438-018-1516-4 |
[67] | TANG M F, ZHOU C S, MENG L, et al. Overexpression of OsSPL9 enhances accumulation of Cu in rice grain and improves its digestibility and metabolism[J]. Journal of Genetics and Genomics, 2016, 43(11): 673–676. DOI: 10.1016/j.jgg.2016.09.004 |
[68] | YAO S Z, YANG Z R, YANG R X, et al. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice[J]. Molecular Plant, 2019, 12(8): 1114–1122. DOI: 10.1016/j.molp.2019.04.010 |
[69] | ZHANG L L, HUANG Y Y, ZHENG Y P, et al. Osa-miR535 targets SQUAMOSA promoter binding protein-like 4 to regulate blast disease resistance in rice[J]. The Plant Journal, 2022, 110(1): 166–178. DOI: 10.1111/tpj.15663 |
[70] | 郭韬, 余泓, 邱杰, 等. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学: 生命科学, 2019, 49(10): 1185–1212. |