文章信息
- 朱云美, 张玲, 高用顺, 林顺权
- ZHU Yunmei, ZHANG Ling, GAO Yongshun, LIN Shunquan
- 温度对植物开花时间调控的研究进展
- Recent research progress on plant flowering time regulation by temperature
- 亚热带农业研究, 2016, 12(02): 130-135
- JOURNAL OF AERONAUTICAL MATERIALS, 2016, 12(02): 130-135.
- DOI: 10.13321/j.cnki.subtrop.agric.res.2016.02.011
-
文章历史
- 收稿日期: 2016-03-14
开花是高等植物繁殖过程中重要的生理现象,是植物由营养生长进入生殖生长的标志,直接影响着植物能否正常地繁衍后代[1]。植物开花受多种内源和外源因素的调节,如光周期、温度、年龄、赤霉素等,而这些因素可以通过调控成花因子(FLOWERING LOCUS T,FT)来影响开花[2]。FT蛋白是成花素的主要组分,在叶脉中合成,经筛管运送到茎顶端分生组织,促进花分生组织形成,诱导开花[3]。
温度是影响植物开花的一个重要环境因素[4],其主要影响途径包括春化途径(vernalization pathway)和热感应途径(thermosensory pathway)或温度变化途径(ambient temperature pathway)[2]。一些植物需要经过冬天一段时间的低温才能在春季或夏季开花,这种低温诱导植物开花的过程称为春化作用(vernalization)[5-6]。植物感应环境温度(非胁迫温度)变化来调控开花时间,即为热感应途径或温度变化途径[4, 7]。温度影响开花进程的研究大多集中于春化作用,对环境温度调控开花(热感应途径)的机制研究近年才有了些进展,这两条途径可能是相互独立的。
1 春化途径科学家们对双子叶植物拟南芥和一些重要的单子叶禾本科植物春化作用的分子机制进行了深入研究,并发现了一系列参与春化作用的基因[8]。起初,对需要春化作用和不需要春化作用的拟南芥突变体进行研究分析,先后鉴定了2个参与春化作用的基因,即FRIGIDA(FRI)和FLOWERING LOCUS C(FLC)[9]。FLC是春化作用的关键基因,编码一个MADS-box转录因子,Michaels et al[10]随后发现FLC过表达植株呈现晚花表型。而FLC抑制拟南芥开花的具体途径在于其分别与FT的第1个内含子以及SUPPRESSOR OF OVEREXPRESSION OF CO 1(SOC1)和FLOWERING LOCUS D(FD)的启动子结合,从而抑制开花基因FT、SOC1和FD的表达[11-14]。FLC蛋白能够与其他转录因子互相作用,增强对下游基因的转录抑制[12]。春化作用主要通过对FLC的染色质修饰起作用,从而显著抑制FLC的表达,如组蛋白的脱乙酰化或甲基化等修饰,其中组蛋白H3上的赖氨酸(K9或K27)或精氨酸(R)的甲基化可使FLC的染色质处于抑制状态从而抑制FLC的表达[15]。此外,对FLC染色质抑制状态的修饰经细胞有丝分裂后稳定维持,从而产生对春化作用的记忆,直到细胞减数分裂产生下一代[16]。Lim et al[17]发现FLOWERING LOCUS WITH KH DOMAINS(FLK)编码一个RNA结合蛋白,并通过抑制FLC转录调控开花。另外一个春化作用基因FRI是一个植物特异基因,编码一个核蛋白,可使FLC在秋天维持高水平表达从而抑制开花[16],FRI的自然变异使得一些拟南芥的突变体不需要春化作用也能够正常开花[18-19]。
近几年进一步研究发现,长链非编码RNA (lncRNAs) COOLAIR和COLDAIR两者都位于FLC基因上,响应春化并抑制FLC表达[20-22]。COOLAIR是FLC的反义转录本,而COLDAIR则转录自FLC的第1个内含子。在春化过程中,2个lncRNAs表达水平迅速上调。PcG蛋白被招募到FLC上,会使FLC沉默[23],而COLDAIR将PRC2招募到FLC上,引起FLC沉默。利用RNA干扰技术抑制COLDAIR表达,发现植株开花延迟,但当温度回升后,FLC表达又开始上调,这表明COLDAIR不仅在春化过程中抑制了FLC的表达,在春化过程后还起到维持FLC沉默的作用;另外,COOLAIR则是沉默FLC的正义转录序列,使其无法正常表达[21]。
小麦等禾本科植物春化作用也已被较深入地研究。Trevaskis et al[24]在小麦和大麦中鉴定了3个相关的基因:VERNATIZATION1(VRN1)、VRN3和VRN3。其中,VRN1编码一个MADS-box转录因子,能被春化诱导加速向生殖生长的过渡;VRN3是一个开花抑制基因,能响应春化和日长抑制FT表达,春化可抑制其表达;VRN3是拟南芥FT同源基因。春化可使VRN1的染色质处于活性状态(H3K4甲基化)[25]。经过春化,VRN3的表达水平下降,而VRN1的表达升高[26]。但这三者之间调控开花的相互作用还不太确定,目前提出了两种调控模型[27]。尽管单子叶禾本科植物水稻中FT同源基因Hd3a(小麦中的VRN3)已经被克隆并具有保守的促进开花的功能[28],但VRN1和VRN3同源基因未发现。FLC以及FRI的同源基因在水稻中未被发现[29],说明水稻开花调控途径很可能没有保守的春化途径,这也与水稻研究中未见相关春化调控开花的报道相一致。
2 热感应途径环境温度(非胁迫温度)对植物的生长发育,包括开花,都有很大影响,然而人们对环境温度调控开花的分子机制还知之甚少。高温(27 ℃)处理能够促进拟南芥开花[30],而低温(16 ℃)下生长的拟南芥则表现为晚花[31]。近年来全球气候变化(尤其是温度异常)导致大量植物开花时间发生变化[32],进一步引起对环境温度影响植物开花的关注,并在该领域取得一些良好的进展。
2.1 FT家族及其上游调控基因的作用Blázquez et al[31]发现长日照、低温(16 ℃)生长下的拟南芥比23 ℃(对照)表现出开花延迟,并且这一差异主要由FT表达差异引起,进一步发现FT表达的多少受到FCA和FVE的调节。FCA是一个开花促进基因,编码一个RNA结合蛋白,参与转录后调控[33-34]。FVE是一个哺乳动物成视网膜细胞瘤结合蛋白的同源蛋白,是一个组蛋白脱乙酰酶复合物组分,参与转录抑制[35-36]。FT的调控很有可能发生在染色质修饰及RNA水平上,而这个过程可能与FLC无关,这也暗示植物响应环境温度的开花途径区别于春化途径。此外,对拟南芥FT/TFL1家族(包括FT,TSF,MFT,TFL1,ATC和BFT)的研究发现,tsf-1可降低植物感应环境温度变化的敏感性[37]。MADS-box基因SHORT VEGETATIVE PHASE(SVP)在响应温度(16 ℃/23 ℃)变化中也起重要作用,能调节FCA和FVE的功能,抑制FT的表达从而抑制开花[38]。而最近研究发现,MYB转录因子EARLY FLOWERING MYB PROTEIN(EFM)可以直接抑制FT的表达,在温度上升情况下,SVP的表达被抑制,从而抑制了EFM的转录,最终促进植物开花[39]。
Lee et al[40]发现E3泛素连接酶HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE(HOS1)也能通过响应环境温度和冷胁迫来调控植物开花。HOS1主要通过负调控成花因子FT和TSF(TWIN SISTER OF FT,FT同源基因)来响应低温调控。同时,酵母双杂和免疫共沉淀试验说明HOS1可与FVE、FLK蛋白相互作用,而FVE可通过对FLC染色质的去乙酰化抑制FLC表达[35-36],而FLK可以抑制FLC的表达[17],因此HOS1也可能通过FVE和FLK间接调控FLC来影响开花。
高温(27 ℃)可加速诱导拟南芥开花,并且与FT的表达上调直接相关[30]。Kumar et al[41]进一步研究发现,bHLH转录因子PHYTOCHROME INTERACTING FACTOR 4(PIF4)随着温度上升表达量逐步提高,并且光照下27 ℃能够稳定PIF4不被蛋白酶体降解,这暗示PIF4在参与环境温度响应中有重要作用。Thines et al[42]研究发现,PIF4和其同系物PIF5主要在夜间发挥促进开花的功能,但是PIF4和PIF5的功能冗余。随后通过ChIP试验证明,PIF4能够直接与FT启动子结合激活FT表达。之前Kumar et al[43]研究发现,包含H2A变型H2A.Z的核小体在介导温度信号中起作用,且在真核生物中是保守的。H2A.Z核小体能够特异地占据在转录起始位点附近阻止基因转录,并且受温度影响。Kumar et al[43]也证明H2A.Z核小体能阻止PIF4与FT启动子的结合,温度升高时,H2A.Z核小体与FT启动子的结合减少,使得PIF4能够与FT启动子结合,从而激活FT表达,促进开花[41]。
对高温促进开花的研究表明,MADS-box基因FLM起主要作用,可调节植物对温度的敏感性[30]。FLM是FT抑制因子,FLM在植物体内存在不同的剪接模式,并且这种剪接模式是依赖温度的,在16 ℃下FLM-β是主要的剪接类型,而27 ℃下FLM-δ则更主要,FLM-β和FLM-δ通过竞争与SVP相互作用来响应环境温度调控植物开花,当温度从16 ℃转变到27 ℃,两者比例在24 h内会发生改变,形成更多的FLM-δ-SVP复合物,阻碍FLM-β和SVP抑制开花的功能[44]。另外,较高温度可使SVP蛋白降解,SVP蛋白水平下降,SVP-FLM-β复合物的丰度降低,从而使下游目标基因,如FT、TSF和SOC1表达上升,促进开花[45-46]。通过FLM可变剪接与SVP调控开花的机制可能与PIF4平行作用加强植物感应温度对开花的调控。
2.2 miRNA的作用除了上述因子,miRNA也参与环境温度调控开花的过程。目前,已经鉴定了许多参与这个过程的miRNAs,如miR156、miR172、miR163、miR169、miR398和miR399等[47]。其中,miR156及其靶基因SQUAMOSA PROMOTER BINDING-LIKE(SPL)调控元件可调控植物生长发育,在光周期及年龄途径调控开花中起重要作用[2, 5]。近来发现miR156-SPL也能感应温度变化直接调节叶中FT的表达影响开花,拟南芥中miR156过表达在16 ℃延迟开花更为明显,且与FT的表达下调正相关;抗miR156裂解的SPL3(miR156的一个靶基因,miR156可调节其mRNA的裂解)过表达表现出早花,且FT表达上调[48]。进一步研究发现,SPL3和FT的下游基因SEP3也能响应温度调控开花[48]。
除了miR156,miR172也能响应环境温度的变化。过表达miRNA172的拟南芥对温度(16 ℃/27 ℃)不敏感,此时FT表达上调,提早开花[49];低温下野生型拟南芥miR172水平下降。研究发现,在低温条件下pri-miR172到成熟miR172的转录后加工过程起重要调控作用,并且受到多种蛋白的作用。RNA结合蛋白FCA能促进此加工过程,FCA mRNA和蛋白水平随温度上升而提高[50];而SVP蛋白则能够参与对miR172转录的负调控[51],这些蛋白与miRNA一起组成响应温度调控开花的网络。
此外,miRNA163、miRNA169、miRNA398及miRNA399在较低温度(16 ℃)下也有类似的调控作用[46],然而这些miRNAs在较高温度(27 ℃)下是否也有类似功能目前尚不清楚。
3 小结开花是植物营养生长进入生殖生长的标志,适时开花是植物繁殖成功的关键。开花进程本身受多种环境因素的制约,其中温度是一个重要的因素。本文综述了温度(包括春化途径和热感应途径)影响开花的研究进展。但是,有关温度影响开花的分子调控机制的研究还需深入,如鉴定新的依赖温度的开花调控因子,分析这些调控因子之间的相互关系,并研究不同开花途径之间的相互作用等等。随着全球气候变化异常,尤其是温度的升高,植物响应环境(温度)信号而进入开花生长阶段的时间也不断变化,而基于温度调控植物开花时间的基础研究的不断深入,将最终为解决农业生产问题提供重要的理论和实践依据。
[1] | 周川苗,王佳伟.多年生草本植物开花的分子机理[J].中国细胞生物学学报,2013,35(8):1073-1076. |
[2] | SONG Y H, ITO S, IMAIZUMI T. Flowering time regulation:photoperiod- and temperature-sensing in leaves[J]. Trends in Plant Science, 2013,18(10):575-583. |
[3] | LIU L, ZHU Y, SHEN L S, et al. Emerging insights into florigen transport[J]. Current Opinion in Plant Biology, 2013,16(5):607-613. |
[4] | SAMACH A, WIGGE P A. Ambient temperature perception in plants[J]. Current Opinion in Plant Biology, 2005,8(5):483-486. |
[5] | LAURIE D A. Comparative genetics of flowering time[J]. Plant Molecular Biology, 1997,35(1-2):167-177. |
[6] | 种康,雍伟东,谭克辉.高等植物春化作用研究进展[J].植物学通报,1999,16(5):481-487. |
[7] | CAPOVILLA G, SCHMID M, POSE D. Control of flowering by ambient temperature[J]. Journal of Experimental Botany, 2014,66(1):59-69. |
[8] | AMASINO R. Seasonal and developmental timing of flowering[J]. The Plant Journal, 2010,61(6):1001-1013. |
[9] | KOORNNEEF M, BLANKESTIJN-DE VRIES H, HANHART C, et al. The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type[J]. The Plant Journal, 1994,6(6):911-919. |
[10] | MICHAELS S D, AMASINO R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. The Plant Cell, 1999,11(5):949-956. |
[11] | SEARLE I, HE Y H, TURCK F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Genes & Development, 2006,20(7):898-912. |
[12] | LI D, LIU C, SHEN L S, et al. A repressor complex governs the integration of flowering signals in Arabidopsis[J]. Developmental Cell, 2008,15(1):110-120. |
[13] | HELLIWELL C A, WOOD C C, ROBERTSON M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex[J]. The Plant Journal, 2006,46(2):183-192. |
[14] | DENG W W, YING H, HELLIWELL C A, et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(16):6680-6685. |
[15] | HE Y H. Control of the transition to flowering by chromatin modifications[J]. Molecular Plant, 2009,2(4):554-564. |
[16] | SHELDON C C, HILLS M J, LISTER C, et al. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(6):2214-2219. |
[17] | LIM M H, KIM J, KIM Y S, et al. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C[J]. The Plant Cell, 2004,16(3):731-740. |
[18] | JOHANSON U, WEST J, LISTER C, et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time[J]. Science, 2000,290(5490):344-347. |
[19] | WERNER J D, BOREVITZ J O, UHLENHAUT N H, et al. FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions[J]. Genetics, 2005,170(3):1197-1207. |
[20] | RATAJ K, SIMPSON G G. Message ends:RNA 3' processing and flowering time control[J]. Journal of Experimental Botany, 2014,65(2):353-363. |
[21] | HEO J B, SUNG S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011,331(6013):76-79. |
[22] | SWIEZEWSKI S, LIU F Q, MAGUSIN A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target[J]. Nature, 2009,462(7274):799-802. |
[23] | MARGUERON R, JUSTIN N, OHNO K, et al. Role of the polycomb protein EED in the propagation of repressive histone marks[J]. Nature, 2009,461(7265):762-767. |
[24] | TREVASKIS B, HEMMING M N, DENNIS E S, et al. The molecular basis of vernalization-induced flowering in cereals[J]. Trends in Plant Science, 2007,12(8):352-357. |
[25] | OLIVER S N, FINNEGAN E J, DENNIS E S, et al. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(20):8386-8391. |
[26] | SASANI S, HEMMING M N, OLIVER S N, et al. The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeumvulgare)[J]. Journal of Experimental Botany, 2009,60(7):2169-2178. |
[27] | DISTELFELD A, DUBCOVSKY J. Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN3 and FT transcript levels[J]. Molecular Genetics and Genomics, 2010,283(3):223-232. |
[28] | KOJIMA S, TAKAHASHI Y, KOBAYASHI Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition[J]. Plant and Cell Physiology, 2002,43(10):1096-1105. |
[29] | IZAWA T, TAKAHASHI Y, YANO M. Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis[J]. Current Opinion in Plant Biology, 2003,6(2):113-120. |
[30] | BALASUBRAMANIAN S, SURESHKUMAR S, LEMPE J, et al. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. PLoS Genetics, 2006,2(7):e106. |
[31] | BLÁZQUEZ M A, AHN J H, WEIGEL D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature Genetics, 2003,33(2):168-171. |
[32] | FITTER A H, FITTER R S. Rapid changes in flowering time in British plants[J]. Science, 2002,296(5573):1689-1691. |
[33] | MACKNIGHT R, BANCROFT I, PAGE T, et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains[J]. Cell, 1997,89(5):737-745. |
[34] | QUESADA V, MACKNIGHT R, DEAN C, et al. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time[J]. The EMBO Journal, 2003,22(12):3142-3152. |
[35] | JEON J, KIM J. FVE, an Arabidopsis homologue of the retinoblastoma-associated protein that regulates flowering time and cold response, binds to chromatin as a large multiproteincomplex[J]. Molecules and Cells, 2011,32(3):227-234. |
[36] | AUSÍN I, ALONSO-BLANCO C, JARILLO J A, et al. Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nature Genetics, 2004,36(2):162-166. |
[37] | KIM W, PARK T I, YOO S J, et al. Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation[J]. Journal of Experimental Botany, 2013,64(6):1715-1729. |
[38] | LEE J H, YOO S J, PARK S H, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes & Development, 2007,21(4):397-402. |
[39] | YAN Y Y, SHEN L S, CHEN Y, et al. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis[J]. Developmental Cell, 2014,30(4):437-448. |
[40] | LEE J H, KIM J J, KIM S H, et al. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2012,53(10):1802-1814. |
[41] | KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012,484(7393):242-245. |
[42] | THINES B C, YOUN Y, DUARTE M I, et al. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5[J]. Journal of Experimental Botany, 2014,65(4):1141-1151. |
[43] | KUMAR S V, WIGGE P A. H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010,140(1):136-147. |
[44] | POSÉ D, VERHAGE L, OTT F, et al. Temperature-dependent regulation of flowering by antagonistic FLM variants[J]. Nature, 2013,503(7476):414-417. |
[45] | HWAN L J, SOOK C K, KIM S K, et al. Post-translational regulation of SHORT VEGETATIVE PHASE as a major mechanism for thermoregulation of flowering[J]. Plant Signaling & Behavior, 2014,9(4):e28193. |
[46] | LEE J H, RYU H S, CHUNG K S, et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors[J]. Science, 2013,342(6158):628-632. |
[47] | LEE H, YOO S J, LEE J H, et al. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis[J]. Nucleic Acids Research, 2010,38(9):3081-3093. |
[48] | KIM J J, LEE J H, KIM W, et al. The microRNA156-SQUAMOSAPROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiology, 2012,159(1):461-478. |
[49] | LEE J H, KIM J J, AHN J H. Role of SEPALLATA3(SEP3) as a downstream gene of miR156-SPL3-FT circuitry in ambient temperature-responsive flowering[J]. Plant Signaling & Behavior, 2012,7(9):1151-1154. |
[50] | JUNG J H, SEO P J, AHN J H, et al. Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering[J]. The Journal of Biological Chemistry, 2012,287(19):16007-16016. |
[51] | CHO H J, KIM J J, LEE J H, et al. SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis[J]. FEBS Letters, 2012,586(16):2332-2337. |