文章信息
- 刘金彪, 徐瑶, 高建峰, 周立
- LIU Jinbiao, XU Yao, GAO Jianfeng, ZHOU Li
- 结核感染的固有免疫识别
- Innate Immune Recognition of Mycobacterium Tuberculosis
- 武汉大学学报(理学版), 2016, 62(6): 495-501
- Journal of Wuhan University(Natural Science Edition), 2016, 62(6): 495-501
- http://dx.doi.org/10.14188/j.1671-8836.2016.06.001
-
文章历史
- 收稿日期:2015-09-25

2. 武汉科技大学 生物医学研究院,湖北 武汉 430081
2. Institute of Biological and Medicine, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
结核病(Tuberculosis, TB)是威胁人类健康的重大传染疾病,全球每年大约有900万新增感染病例,约5%~10%病例发展成有症状的活动的肺结核,其余均处于潜伏感染[1].在最近的十几年里,人们对宿主抵抗结核分枝杆菌(Mycobacterium tuberculosis, MTB)感染的免疫机制做了大量研究,认为激活宿主固有免疫防御MTB的第一步就是对MTB的识别.在固有免疫细胞的参与下,模式识别受体(pattern recognition receptors, PRRs)首先识别MTB相关分子(pathogen-associated molecular patterns,PAMPs)包括脂多糖(lipopolysaccharide, LPS)、甘露糖(mannose)、核苷酸(细菌DNA和RNA)、细菌多肽、肽聚糖(peptidoglycan)和磷脂壁酸等[2].模式识别受体识别后发出信号,可以诱导免疫细胞产生炎症因子和趋化因子,激活免疫系统,抵抗微生物入侵.本文将着重介绍参与MTB固有免疫识别的免疫细胞及相关的模式受体,以期为固有免疫相关的抗结核治疗和疫苗研发提供新思路.
1 MTB感染在自然状态下,MTB通常以气溶胶的形式被宿主吸入肺部,部分被肺部巨噬细胞(macrophage)吞噬.未被吞噬的MTB在肺中继续增殖,吸引单核细胞和其他炎症相关细胞在肺部积聚.单核细胞会分化成巨噬细胞,继续吞噬MTB.宿主感染后的2至3周,抗原特异性的T淋巴细胞到达病灶部位,并不断增殖,导致组织轻微损伤,形成结节.淋巴细胞释放干扰素γ(interferon γ, IFN-γ)等分子,激活巨噬细胞,杀死细胞内的MTB,使MTB增殖受到抑制.于是,接下来宿主免疫系统和MTB会面临以下几种局面:1) MTB在肺部继续增殖,发展成活动性肺结核;2)少量患者肺部的MTB会随着血液循环扩散至身体其他部位,形成肺外结核感染,如胃部结核,肝结核,肠结核等;3)当机体免疫系统和MTB势均力敌,无法清除MTB时,宿主就会进入潜伏感染,而潜伏感染患者受到外界因素(如HIV感染等)刺激,MTB就可能会被重新激活,转换成活动性结核[3].
2 固有免疫细胞大量免疫细胞如巨噬细胞、树突状细胞、γδT细胞、自然杀伤细胞和中性粒细胞等各司其职,共同参与识别MTB,诱导一系列固有免疫和获得性免疫反应抵抗MTB入侵.
2.1 巨噬细胞巨噬细胞是参与肺部感染的重要防线,在抵抗MTB的过程中发挥重要作用,既参与MTB的识别和吞噬,又启动获得性免疫.巨噬细胞通过一系列重要受体,如胶原凝集素(表面活性蛋白A和D和甘露糖结合凝集素MBL等)[4]、C型凝集素(甘露糖受体MR、树突状细胞特异性细胞间粘附分子3结合非整合蛋白DC-SIGN和Dectin-1等)[5]、Toll样受体(包括TLR2、TLR4和TLR9)等[6],能够识别MTB细胞壁重要成分如糖脂,脂蛋白和糖类化合物等.
2.2 树突状细胞树突状细胞(dendritic cells, DC)是主要的抗原提呈细胞,是连接固有免疫和获得性免疫的桥梁,通过提呈抗原激活T细胞,并促进其分化.DC细胞表达甘露糖受体(mannose receptors, MR)[6]、Toll样受体(TLRs)[7, 8],可以识别MTB的各种配体.DC-SIGN是树突状细胞最主要的一种受体,通过识别MTB细胞壁上的ManLAM进而识别MTB的入侵[8].
2.3 γδT细胞γδT细胞也是固有免疫的重要组成部分,绝大多数的γδT细胞为CD4-CD8-双阴性T细胞,其识别抗原不需要主要组织相容复合物分子(MHC)提呈,即可识别蛋白质和肽类抗原,具有抗原提呈细胞的特性,可直接杀伤MTB[9].γδT细胞除具有免疫杀伤功能以外,还有强大的免疫调节功能,激活的γδT细胞可以产生白介素17(IL-17)、白介素22(IL-22)以及干扰素γ(IFN-γ),参与调控CD8效应T细胞[10].
2.4 自然杀伤细胞自然杀伤细胞(natural killer, NK)是一类颗粒状的固有免疫细胞,拥有强大的溶解细胞的能力.在MTB感染早期,NK细胞快速响应,其激活不受MHC限制,也不依赖于抗体,可直接识别MTB感染的靶细胞[11].NK细胞也能通过其自然杀伤受体NKp44识别MTB细胞壁核心成分分枝酰阿拉伯半乳糖肽聚糖[12](mycolyl arabinogalactan peptidoglycan, mAGP)、分枝菌酸(mycolicacids, MA)[13]和阿拉伯半乳聚糖(arabinogalactan, AG)[14],自身被激活并诱导NK细胞表达CD25、CD69、NKp44和IFN-γ,发挥免疫调节作用[12, 15].
2.5 中性粒细胞中性粒细胞(Neutrophil)主要通过去颗粒作用及促进细胞凋亡参与机体抗MTB功能,而关于中性粒细胞对MTB的固有免疫识别的研究较少.转录组学研究发现[16],中性粒细胞表面表达一种程序性死亡配体1(programmed death ligand 1, PD-L1),参与MTB感染相关的T细胞应答,促进MTB感染的巨噬细胞的凋亡,限制MTB在宿主细胞中的存活.
3 固有免疫识别受体MTB和宿主细胞的相互作用十分复杂.模式识别受体根据其特异性配基、功能、定位或者进化关系进行分类.基于其功能基础,模式识别受体分为内吞型和信号型;而根据其定位,分为细胞膜型和细胞质型.下面将针对模式识别受体的免疫识别功能以及细胞内信号传递启动获得性免疫,阐述各类MTB免疫相关识别受体的特点和作用(图 1).
|
| 图 1 固有免疫细胞及其对MTB的免疫识别 Figure 1 Innate immune cells and immune recognition of MTB |
Toll样受体(Toll-like receptors, TLRs)是跨膜蛋白,主要在免疫细胞如巨噬细胞、树突状细胞的细胞膜或胞内小泡膜上表达,可以识别来源于微生物中具有保守结构的分子.当微生物突破机体的皮肤、粘膜等物理屏障时,TLRs通过对其进行识别并激活机体内的免疫应答系统.其中,TLR2,TLR4,TLR6和TLR9参与了MTB的免疫识别,另外TLR8也有可能发挥了部分作用.
1) TLR2与TLR1或TLR6形成异二聚体后,才能识别MTB细胞壁上的糖脂或糖蛋白.在固有免疫防御的起始阶段,TLR2可以诱导巨噬细胞分泌TNF-α[17],TLR2也可以刺激巨噬细胞释放IL-12[18].与野生型小鼠相比,TLR2缺陷小鼠对高剂量的MTB有较强的易感性,且在感染MTB后肉芽肿的形成受阻[19].有研究表明,TLR1和TLR6基因多态性的改变与结核的易感性相关[20].另外,TLR2在控制慢性MTB感染中发挥重要作用[21].
2) TLR4通过与髓样分化蛋白2(myeloid differentiation-2, MD2)在细胞膜表面形成复合体,能够识别并结合MTB表面的脂多糖(lipopolysaccharide, LPS).分子结构学研究表明,在TLR4-MD2-LPS复合物中,脂多糖其中的5条脂链与MD2的疏水沟结合,另外1条链暴露在MD2表面,与TLR4相结合.TLR4-MD2-LPS在细胞膜表面形成二聚体,通过募集细胞内的接头分子传递识别信号[22].另外,LPS结合蛋白(LPS-binding protein, LBP)和CD14也参与了对LPS的结合与识别.LBP是一种可溶性的胞浆蛋白,能够结合LPS.CD14是一种甘油磷酸肌醇串联的、富含亮氨酸重复序列的蛋白,通过结合LBP进而将LPS-LBP递呈给TLR4-MD2复合物[23].此外,TLR4可以被各类MTB分泌的热休克蛋白60/50激活[24].与野生型相比,TLR4缺陷型小鼠与TLR2缺陷型小鼠一样,对MTB有较强的易感性,其巨噬细胞内TNF-α分泌量下降[25].同样,Abel等[26]发现TLR4缺陷型小鼠感染MTB后,肺部、脾脏和肝脏的MTB载量较高,且存活率较低.TLR4识别MTB还能诱导Ⅰ型干扰素(IFN-β)的产生[27].
3) TLR8可以识别病原微生物(例如RNA病毒)的单链RNA.然而,用BCG刺激巨噬细胞后,TLR8的表达上调.研究表明[21],TLR8缺陷型小鼠感染MTB后,其生存周期显著缩短,产生大量的炎性因子并伴随着严重的肝损伤.Davila等[28]发现TLR8基因4个SNP位点多态性与结核易感性显著相关,且急性期感染病人TLR8转录水平升高.到目前为止,对于TLR8的功能研究较少,TLR8通过何种信号途径识别MTB仍然未知.
4) TLR9主要识别细菌或病毒基因组DNA中的非甲基化CpG序列.研究表明,在DC细胞中MTB诱导IL-12的表达依赖于TLR9,TLR9缺陷型小鼠在感染高剂量MTB后很快就会死亡[29].细菌或者双链DNA病毒基因组中有大量的非甲基化CpG基序,可以被pDC细胞中的TLR9识别,当CpG DNA与TLR9结合后,MyD88被激活,并和其下游分子TRAF6共同激活IRF7,在内体小泡与IRF7结合形成复合物[30],进而诱导产生I型干扰素[31].另外,MTB的DNA可以通过TLR9激活巨噬细胞.与野生型相比,在TLR9缺陷型小鼠巨噬细胞中,弱毒性MTB (H37Ra)增殖明显较快,而剧毒性MTB (H37Rv)存活率与野生型相当,表明剧毒性MTB的DNA对巨噬细胞的激活效应较弱[32].TLR9基因多态性也会影响人类对MTB的易感性[33].
TLRs协同参与机体对MTB的免疫识别,各种TLRs通过不同的途径抵抗MTB的入侵,并且同一TLR可能参与不同的通路来激活机体的固有免疫和获得性免疫.与TLR单一敲除相比,TLR2和TLR9缺陷型小鼠分泌IL-12和IFN-γ的能力下降,即使用低剂量MTB感染,小鼠也会很快死去,验证了TLRs间存在协同作用[2].
3.2 C型凝集素受体甘露糖受体(mannose receptor, MR, CD206)是C型植物凝集素家族成员中的一种,分布于大部分巨噬细胞和DC细胞表面.MR包含8个串联的糖类识别结构域和1个富含半胱氨酸的结构域,在肺泡巨噬细胞中表达水平较高,能参与识别包括细菌、病毒、真菌和寄生虫在内的表面有甘露糖的病原微生物[34].研究表明[35],MR识别ManLAM脂糖,并与之结合,促进MTB进入细胞内,抑制溶酶体-吞噬体融合,并诱导一系列炎症因子(IL-4和IL-13)产生.Gaur等[36]研究发现,ManLAM上重要的包膜脂蛋白LprG发生突变后,可影响MR与ManLAM的结合,最终导致MTB无法进入巨噬细胞.Esparza等[37]通过免疫共沉淀研究发现,PstS-1,MTB的一种甘露糖基化糖脂蛋白,也可以直接和巨噬细胞MR结合,使之与巨噬细胞粘附,促进MTB进入细胞内.MTB毒力强弱和其细胞壁表面的ManLAM表达水平及其重要元件相关,因而其ManLAM甘露糖基化水平和关键基因突变可能影响MR的识别[38].此外,MR促进巨噬细胞的粘附和融合,在感染部位形成肉芽肿,抑制了MTB的扩散,但同时也为MTB逃避抗生素的渗透及机体免疫系统的“捕杀”提供了避难所.研究表明[34, 39],MR在肉芽肿中表达较高,同时又是MTB免疫识别中十分重要的受体,因此,可以成为抗结核药物和疫苗的潜在靶点.
Dectin-1也是C型凝集素受体家族中的一员,它包含一个胞外糖类识别结构域和一个胞内免疫受体酪氨酸活化基序(immuno-receptor tyrosine-based activation motif, ITAM),主要表达于巨噬细胞、DC细胞、中性粒细胞和部分T细胞中[40].Dectin-1主要识别真菌病原体中的β-葡聚糖,有研究证实该受体也参与了MTB的识别过程.尽管多种MTB表面都表达α-葡聚糖(一类重要的荚膜多糖),也可作为Dectin-1的配体[41],但该多糖能否被Dectin-1精确识别还有待进一步探究.当鼠骨髓源性巨噬细胞被有毒或无毒的MTB感染时,能够分别通过独立于Dectin-1和依赖于Dectin-1两种途径诱导TNF-α和IL-6参与免疫应答反应[42].在MTB感染DC细胞中,Dectin-1可以诱导IL-12的产生[43].多项研究表明,在真菌病原体识别中,TLR2与Dectin-1存在协同效应,但是该理论还需在MTB中进行验证.也有研究证明,在独立于TLR2识别通路之外,Dectin-1能够参与MTB的固有免疫识别过程,并且可以诱导Th1和Th17细胞的产生[44].
3.3 NOD样受体NOD样受体(NOD like receptors, NLRs)与植物R (resistance)蛋白极为相似,主要在淋巴细胞、巨噬细胞和DC细胞中表达,一些非免疫细胞如上皮细胞也有表达,NLRs可以和TLRs协作参与机体的炎症反应,在抵抗病原微生物入侵方面有极为重要的作用.研究表明,机体通过TLR2/TLR6和NOD2受体识别MTB并诱导产生IL-1β,同时伴随有半胱天冬酶Ⅰ的持续性激活[45].然而Master等[46]的研究结果刚好相反,他们认为MTB抑制了炎症体的激活和IL-1β的产生.NOD2是一种胞内受体,能够识别细菌肽聚糖,诱导促炎症因子的产生[47],也可以参与识别MTB [48].NOD2缺陷型小鼠在感染MTB后表现出促炎症因子和氮氧化物合成受阻[49, 50].
3.4 DC-SIGN受体DC细胞特异性细胞间粘附分子3结合非整合蛋白(DC-SIGN, CD209)在参与识别MTB感染DC细胞过程中发挥着重要的作用[51].DC-SIGN主要在DC细胞和巨噬细胞中表达,既是一个模式识别受体,也是一个细胞粘附受体[52].DC-SIGN的糖类识别结构域能够结合ManLAM和甘露聚糖,其中ManLAM的多寡直接决定结合强度.有研究证明α-葡聚糖也是DC-SIGN的一个配体.当机体接触MTB后,DC-SIGN可通过使DC细胞成熟、诱导IL-10的产生[53],促使机体产生抗炎症免疫应答反应.研究表明,DC-SIGN发挥其免疫抑制作用是通过丝/苏氨酸激酶(Raf-1)进而诱使核转录因子(NF-κB)的亚单位p65的乙酰化而实现的,但是这一过程必须同时有TLRs的参与[54].
4 结论MTB的免疫识别是一个十分复杂的过程,涉及到多种固有免疫细胞、识别受体PRRs和PAMPs.而PAMPs的特异性识别又是通过不同的细胞内信号通路来完成,例如,通过激活TLRs,NLRs和Dectin-1途径首先会引起炎症反应,而通过DC-SIGN或者MR途径主要是起到调节功能.总之,通过各个信号通路协作,机体才能更好地抵御MTB的入侵.
此外,有关MTB的体外和体内实验都具有一定的局限性,其研究结果或多或少都会因结核病患者的实际感染情况有所不同,均不能准确地模拟人体对MTB的反应.体外实验需要借助各种类型的细胞,有巨噬细胞(骨髓诱导巨噬细胞和肺泡巨噬细胞),DC细胞或者外周血单核细胞(peripheral blood mononuclear cell, PBMC).由于不同细胞类型其受体的初始表达水平和特异性不同,都会对实验结果产生影响.此外,机体免疫系统是一个大的网络系统,由多条信号通路共同参与完成.而在大部分研究中,往往选择其中一个受体,使其脱离正常生理环境,这就导致研究结果与实际偏离.另外,动物体内实验也同样存在局限性.肉芽肿的形成是MTB潜伏感染的重要特征,而小鼠模型不能形成肉芽肿,并不能准确地模拟人体和MTB的关系.猕猴模型与人类感染MTB比较相似,但由于对实验条件要求较高且价格昂贵,用的也较少.
尽管人们在MTB的固有免疫识别和宿主防御方面的研究已经取得巨大的进步,但对于结核病的临床治疗和预防仍有几点急需解决:1)耐多药结核发病率逐年上升,耐药结核杆菌的免疫识别与普通结核杆菌的识别方式是否一致,目前研究取得的成果是否适用于耐药结核的研究;2)固有免疫和获得性免疫是否存在纽带,能否联合共同抵御结核杆菌的入侵;3)如何将目前获得的基础研究成果应用于改进或发现新的免疫治疗方案.这些无疑是我们今后预防和治疗结核病的重要研究方向.
| [1] | WHO. Global Tuberculosis Report2015 [R]. Geneva: World Health Organization, 2015: 5-8. |
| [2] | KLEINNIJENHUIS J, OOSTING M, JOOSTEN L A B, et al. Innate immune recognition of Mycobacterium tuberculosis[J]. Clinical & Developmental Immunology , 2011, 2011 (1) : 405310 |
| [3] | HUNTER R L, ACTOR J K, HWANG S A, et al. Pathogenesis of post primary tuberculosis: Immunity and hypersensitivity in the development of cavities[J]. Annals of Clinical & Laboratory Science , 2014, 44 (4) : 365–387 |
| [4] | LEVINE A M, WHITSETT J A, GWOZDZ J A, et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung[J]. Journal of Immunology , 2000, 165 (7) : 3934–3940 DOI:10.4049/jimmunol.165.7.3934 |
| [5] | TAYLOR P R, MARTINEZ-POMARES L, STACEY M, et al. Macrophage receptors and immune recognition[J]. Annual Review of Immunology , 2005, 23 : 901–944 DOI:10.1146/annurev.immunol.23.021704.115816 |
| [6] | SANCHEZ D, ROJAS M, HERNANDEZ I, et al. Role of TLR2-and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death[J]. Cellular Immunology , 2010, 260 (2) : 128–136 DOI:10.1016/j.cellimm.2009.10.007 |
| [7] | KHAN N, PAHARI S, VIDYARTHI A, et al. NOD-2 and TLR-4 signaling reinforces the efficacy of dendritic cells and reduces the dose of TB drugs against Mycobacterium tuberculosis[J]. Journal of Innate Immunity , 2016, 8 (3) : 228–242 |
| [8] | TAILLEUX L, SCHWARTZ O, HERRMANN J L, et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells[J]. Journal of Experimental Medicine , 2003, 197 (1) : 121–127 DOI:10.1084/jem.20021468 |
| [9] | MERAVIGLIA S, EL DAKER S, DIELI F, et al. γδT cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection[J]. Clinical and Developmental Immunology , 2011, 2011 (1) : 587315 |
| [10] | HUANG D, CHEN C Y, ZHANG M, et al. Clonal immune responses of Mycobacterium-specific gammadelta T cells in tuberculous and non-tuberculous tissues during M. tuberculosis infection[J]. PLoS One , 2012, 7 (2) : e30631 DOI:10.1371/journal.pone.0030631 |
| [11] | ESIN S, BATONI G. Natural killer cells: A coherent model for their functional role in Mycobacterium tuberculosis infection[J]. Journal of Innate Immunity , 2015, 7 (1) : 11–24 DOI:10.1159/000363321 |
| [12] | ESIN S, COUNOUPAS C, AULICINO A, et al. Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and Toll-like receptor 2[J]. Scandinavian Journal of Immunology , 2013, 77 (6) : 460–469 DOI:10.1111/sji.2013.77.issue-6 |
| [13] | ESIN S, BATONI G, COUNOUPAS C, et al. Direct binding of human NK cell natural cytotoxicity receptor NKp44 to the surfaces of mycobacteria and other bacteria[J]. Infection and Immunity , 2008, 76 (4) : 1719–1727 DOI:10.1128/IAI.00870-07 |
| [14] | KRUSE P H, MATTA J, UGOLINI S, et al. Natural cytotoxicity receptors and their ligands[J]. Immunology and Cell Biology , 2014, 92 (3) : 221–229 DOI:10.1038/icb.2013.98 |
| [15] | SIA J K, GEORGIEVA M, RENGARAJAN J. Innate immune defenses in human tuberculosis: An overview of the interactions between Mycobacterium tuberculosis and innate immune cells[J]. Journal of Immunology Research , 2015, 2015 (1) : 747543 |
| [16] | MCNAB F W, BERRY M P R, GRAHAM C M, et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis[J]. European Journal of Immunology , 2011, 41 (7) : 1941–1947 DOI:10.1002/eji.201141421 |
| [17] | DENG Y H, HE H Y, TANG M D. Latency-associated protein Rv2660c of Mycobacterium tuberculosis augments expression of proinflammatory cytokines in human macrophages by interacting with TLR2[J]. Infectious Diseases , 2015, 47 (3) : 168–177 DOI:10.3109/00365548.2014.982167 |
| [18] | YU X W, ZENG J, XIE J P. Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control[J]. Biochimie , 2014, 102 (1) : 1–8 |
| [19] | DRENNAN M B, NICOLLE D, QUESNIAUX V J F, et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection[J]. American Journal of Pathology , 2004, 164 (1) : 49–57 DOI:10.1016/S0002-9440(10)63095-7 |
| [20] | SHEY M S, RANDHAWA A K, BOWMAKER M, et al. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide-and mycobacteria-induced interleukin-6 secretion[J]. Genes and Immunity , 2010, 11 (7) : 561–572 DOI:10.1038/gene.2010.14 |
| [21] | MORTAZ E, ADCOCK I M, TABARSI P, et al. Interaction of pattern recognition receptors with Mycobacterium tuberculosis[J]. Journal of Clinical Immunology , 2015, 35 (1) : 1–10 DOI:10.1007/s10875-014-0103-7 |
| [22] | TSUKAMOTO H, FUKUDOME K, TAKAO S, et al. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells[J]. International Immunology , 2010, 22 (4) : 271–280 DOI:10.1093/intimm/dxq005 |
| [23] | KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors[J]. Nature Immunology , 2010, 11 (5) : 373–384 DOI:10.1038/ni.1863 |
| [24] | BULUT Y, MICHELSEN K S, HAYRAPETIAN L, et al. Mycobacterium tuberculosis heat shock proteins use diverse toll-like receptor pathways to activate pro-inflammatory signals[J]. Journal of Biological Chemistry , 2005, 280 (22) : 20961–20967 DOI:10.1074/jbc.M411379200 |
| [25] | MEANS T K, JONES B W, SCHROMM A B, et al. Differential effects of a toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses[J]. Journal of Immunology , 2001, 166 (6) : 4074–4082 DOI:10.4049/jimmunol.166.6.4074 |
| [26] | ABEL B, THIEBLEMON N, QUESNIAUX V J F, et al. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice[J]. Journal of Immunology , 2002, 169 (6) : 3155–3162 DOI:10.4049/jimmunol.169.6.3155 |
| [27] | WERNER S L, BARKEN D, HOFFMANN A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity[J]. Science , 2005, 309 (5742) : 1857–1861 DOI:10.1126/science.1113319 |
| [28] | DAVILA S, HIBBERD M L, HARI DASS R, et al. Genetic association and expression studies indicate a role of Toll-like receptor 8 in pulmonary tuberculosis[J]. PLoS Genetics , 2008, 4 (10) : e1000218 DOI:10.1371/journal.pgen.1000218 |
| [29] | BAFICA A, SCANGA C A, FENG C G, et al. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis[J]. Journal of Experimental Medicine , 2005, 202 (12) : 1715–1724 DOI:10.1084/jem.20051782 |
| [30] | HONDA K, OHBA Y, YANAI H, et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction[J]. Nature , 2005, 434 (7036) : 1035–1040 DOI:10.1038/nature03547 |
| [31] | HEMMI H, TAKEUCHI O, KAWAI T, et al. A Toll-like receptor recognizes bacterial DNA[J]. Nature , 2000, 408 (6813) : 740–745 DOI:10.1038/35047123 |
| [32] | KIEMER A K, SENARATNE R H, HOPPSTAEDTER J, et al. Attenuated activation of macrophage TLR9 by DNA from virulent Mycobacteria[J]. Journal of Innate Immunity , 2009, 1 (1) : 29–45 DOI:10.1159/000142731 |
| [33] | TORRES-GARCIA D, CRUZ-LAGUNAS A, FIGUEROA M, et al. Variants in Toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population[J]. Journal of Translational Medicine , 2013, 11 (1) : 1000–1007 |
| [34] | AZAD A K, RAJARAM M V, SCHLESINGER L S. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics[J]. Journal of Cytology & Molecular Biology , 2014, 1 (1) : 1–5 |
| [35] | PHILIPS J A, ERNST J D. Tuberculosis pathogenesis and immunity[J]. Annual Review of Pathology , 2012, 7 (1) : 353–384 DOI:10.1146/annurev-pathol-011811-132458 |
| [36] | GAUR R L, REN K, BLUMENTHAL A, et al. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis[J]. PLoS Pathogens , 2014, 10 (9) : 299–300 |
| [37] | ESPARZA M, PALOMARES B, GARCIA T, et al. PstS-1, the 38-kDa Mycobacterium tuberculosis glycoprotein, is an adhesin, which binds the macrophage mannose receptor and promotes phagocytosis[J]. Scandinavian Journal of Immunology , 2015, 81 (1) : 46–55 DOI:10.1111/sji.2014.81.issue-1 |
| [38] | TORRELLES J B, SCHLESINGER L S. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host[J]. Tuberculosis , 2010, 90 (2) : 84–93 DOI:10.1016/j.tube.2010.02.003 |
| [39] | D'ADDIO S M, BALDASSANO S, SHI L, et al. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers[J]. Journal of Controlled Release , 2013, 168 (1) : 41–49 DOI:10.1016/j.jconrel.2013.02.004 |
| [40] | BROWN G D. Dectin-1: A signalling non-TLR pattern-recognition receptor[J]. Nature Reviews Immunology , 2006, 6 (1) : 33–43 DOI:10.1038/nri1745 |
| [41] | DINADAYALA P, LEMASSU A, GRANOVSKI P, et al. Revisiting the structure of the anti-neoplastic Glucans of Mycobacterium bovis Bacille Calmette-Guerin-Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains[J]. Journal of Biological Chemistry , 2004, 279 (13) : 12369–12378 DOI:10.1074/jbc.M308908200 |
| [42] | YADAV M, SCHOREY J S. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria[J]. Blood , 2006, 108 (9) : 3168–3175 DOI:10.1182/blood-2006-05-024406 |
| [43] | ROTHFUCHS A G, BAFICA A, FENG C G, et al. Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells[J]. Journal of Immunology , 2007, 179 (6) : 3463–3471 DOI:10.4049/jimmunol.179.6.3463 |
| [44] | VAN DE VEERDONK F L, TEIRLINCK A C, KLEINNIJENHUIS J, et al. Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1[J]. Journal of Leukocyte Biology , 2010, 88 (2) : 227–232 DOI:10.1189/jlb.0809550 |
| [45] | KLEINNIJENHUIS J, JOOSTEN L A B, VAN DE VEERDONK F L, et al. Transcriptional and inflammasome-mediated pathways for the induction of IL-1 beta production by Mycobacterium tuberculosis[J]. European Journal of Immunology , 2009, 39 (7) : 1914–1922 DOI:10.1002/eji.200839115 |
| [46] | MASTER S S, RAMPINI S K, DAVIS A S, et al. Mycobacterium tuberculosis prevents inflammasome activation[J]. Cell Host & Microbe , 2008, 3 (4) : 224–232 |
| [47] | GIRARDIN S E, BONECA I G, VIALA J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection[J]. Journal of Biological Chemistry , 2003, 278 (11) : 8869–8872 DOI:10.1074/jbc.C200651200 |
| [48] | FERWERDA G, GIRARDIN S E, KULLBERG B J, et al. NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis[J]. PLoS Pathogens , 2005, 1 (3) : 279–285 |
| [49] | GANDOTRA S, JANG S, MURRAY P J, et al. Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis[J]. Infection and Immunity , 2007, 75 (11) : 5127–5134 DOI:10.1128/IAI.00458-07 |
| [50] | DIVANGAHI M, MOSTOWY S, COULOMBE F, et al. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity[J]. Journal of Immunology , 2008, 181 (10) : 7157–7165 DOI:10.4049/jimmunol.181.10.7157 |
| [51] | HOSSAIN M M, NORAZMI M N. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection-the double-edged sword[J]. Biomed Research International , 2013, 2013 (1) : 179174 |
| [52] | GEIJTENBEEK T B H, TORENSMA R, VAN VLIET x S J, et al. Identification of DC-SIGN, a novel dendritic cell specific ICAM-3 receptor that supports primary immune responses[J]. Cell , 2000, 100 (5) : 575–585 DOI:10.1016/S0092-8674(00)80693-5 |
| [53] | GEIJTENBEEK T B H, VAN VLIET S J, KOPPEL E A, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function[J]. Journal of Experimental Medicine , 2003, 197 (1) : 7–17 DOI:10.1084/jem.20021229 |
| [54] | GRINGHUIS S I, DEN DUNNEN J, LITJENS M, et al. C-Type Lectin DC-SIGN modulates Toll-liker receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB[J]. Immunity , 2007, 26 (5) : 605–616 DOI:10.1016/j.immuni.2007.03.012 |
2016, Vol. 62

