文章信息
- 吴黄英 , 周培疆 , 黄强盛 . 2016
- WU Huangying, ZHOU Peijiang, HUANG Qiangsheng . 2016
- 以木质纤维素生物质为降解底物的微生物燃料电池
- Microbial Fuel Cells Using Lignocellulosic Biomass as Substrates
- 武汉大学学报(理学版), 2016, 62(4): 307-312
- Journal of Wuhan University(Natural Science Edition), 2016, 62(4): 307-312
- http://dx.doi.org/10.14188/j.1671-8836.2016.04.001
-
文章历史
- 收稿日期:2015-10-11
微生物燃料电池(microbial fuel cells,MFCs)是一种可直接从废弃生物质中获取电能的新兴技术[1, 2],近年来已成为新能源研究领域的热点.MFCs按构型分类一般可分为双室型、单室型和固相沉积型,双室型MFCs含有阳极室和阴极室,中间一般由质子交换膜隔开,阴极和阳极分别置于阴极室、阳极室中[3];单室型MFCs将阴极和质子交换膜压合在一起,省略了阴极室[4];固相沉积型MFCs则是将阳极置于厌氧的底泥中,阴极放在含氧的表层水中[5].在连接阴阳极之间的外电路接入负载,微生物通过呼吸作用将作为电子供体的底物(如纤维素、有机废水等)氧化,产生电子和质子,释放出来的电子传递到阳极,再经过外电路转移到阴极,质子经过质子交换膜转移到阴极,并在阴极附近与电子和电子受体(如铁氰化钾、氧气等)发生还原反应,由此产生电流[6]
随着人类对能源需求的不断加大,不可再生的化石燃料正以惊人的速度被开发利用,因此,寻求可再生、环境友好的替代能源已成为各国政府与科学家关注的焦点.全世界每年通过光合作用产生的木质纤维素生物质(lignocellulosic biomass,LB)总量高达10 000亿t[7],而中国年产可利用的LB总量也达20亿t以上[8].作为地球上最丰富与最廉价的再生资源[9],LB为绿色新能源的开发利用与生态修复提供了巨大的物质保障.
LB主要由纤维素、半纤维素和木质素组成,其中纤维素含量最高.纤维素是由D-吡喃葡萄糖基以及β-1,4-糖苷键连接而成的链状高分子聚合物,其简单分子式为(C6H10O5)n.尽管1911年英国植物学家Potter就发现了微生物细胞的产电行为[10],但直到2005年,Niessen等[11]才首次发现纤维素可用作MFCs的底物.此后,以纤维素作为底物的MFCs的相关研究逐渐发展起来.人们采用多种微生物对以纤维素为底物的MFCs进行尝试,包括嗜温的解纤维梭菌Clostridium cellulolyticum 和嗜热的热纤维梭菌Clostridium thermocellum混合菌[11]、纤维素降解菌Clostridium cellulolyticum 和产电菌Geobacter sulfurreducens[12]、阴沟肠杆菌Enterobacter cloacae[13]等.此外,由于纤维素是一种天然高分子化合物,自然条件下可降解,人们开始将有着高纤维素降解速率的天然混合物,如瘤胃液[14, 15]、土壤[6, 16]和污泥[17, 18]用于MFCs的相关研究中,得到一系列有意义的结论,如:1)在其他实验条件相同时,以可溶的羧甲基纤维素为底物比不溶的MN301纤维素(非晶纤维素和微晶纤维素的结合)为底物的MFCs能获得更大的输出功率[12];2)微生物经过预先驯化或在MFCs中添加纤维素酶则能在很大程度上提高MFCs性能[17, 18];3)菌的筛选方法至关重要,同样以土壤作为初始菌源,采用羧甲基纤维素作为碳源比采用醋酸钠和延胡索酸钠作为碳源筛选得到的菌群更能使MFCs获得更好的性能[6, 16].这些结论为LB作为MFCs底物的研究提供了一定的基础.考虑到经济效益与环境效益,相比较纤维素而言,LB与MFCs的结合具有更广阔的研究与应用前景.用作MFCs降解底物的LB的形态主要为液化态和固态,本文分别对其用于不同构型的MFCs的相关研究进行了分类介绍,并探讨发酵抑制剂对于MFCs性能的影响.
1 以LB为底物的单室或双室型MFCs用作MFCs底物的LB主要包括:农作物秸秆如玉米秸秆[4,19~21]、小麦秸秆[22, 23]和稻草[24, 25];玉米棒[26, 27];草类[3];牛粪[28, 29]等.将牛粪归为LB是由于其中也含有丰富的纤维素、半纤维素和木质素[29].
1.1 以液化LB为底物传统的作为MFCs底物的固态LB一般都要经过液化处理,以增大微生物与底物的接触面积,使之更易降解.表 1列举了几种液化的LB在MFCs中的应用研究,它们所采用菌源为污水或污泥,底物的COD(化学需氧量)浓度一般不超过1 g/L.由表 1可知,LB类型、预处理方式及MFCs构型都会对MFCs的产电性能产生影响.一般而言,相较于以小麦秸秆或稻草水解液为底物的双室MFCs,以玉米秸秆水解液作为底物的单室MFC能获得更高的最大输出功率密度.
表 1中反应器采用的底物供给方式均为序批式.2015年,Liu等[21]在给碳纳米管固定床MFCs连续供给玉米秸秆水热液化后得到的水解液时,发现有机负荷率为2.41 g·L-1·d-1时,可得到最大体积功率密度为680 mW/m3.由于实际生活中的污水处理通常采用连续流底物供给方式,该研究在一定程度上促进了液化LB产电的实际应用.
1.2 以固态LB为底物LB液化过程通常需要加热、加酸或碱,这使得成本增加,且会造成二次污染,不利于实际应用.除Wang等[19]在2009年采用蒸汽爆破法处理玉米秸秆所得固体残渣外,其他应用于MFCs的固态LB均未经加热或酸碱预处理,且Wang等研究的价值还在于此前Zuo等[20]已将玉米秸秆蒸汽曝气水解液应用于MFCs的研究中.考虑到成本问题和污染问题,直接应用固态LB作为MFCs的降解底物产电具有更大优势.
由于未经预处理的LB难以降解,在以固态LB为底物的MFCs研究中更多地使用对纤维素有着高降解速率的菌群,如“H-C”混合菌群[19]、源自土壤的纤维素降解混合菌菌群[24]、取自反刍动物瘤胃中的瘤胃液[26, 30]、颤藻Oscillatoria annae[31]等,或将其与产电菌Geobacter metallireducens[30]相结合,如:以4 g/L美人蕉为底物、瘤胃液为菌源的单室空气阴极MFCs获得405 mW/m2的最大输出功率密度[30].3个以1 g/L稻草为底物、土壤作为菌源的双室MFCs反应器串联后的最大输出功率密度为490 mW/m2,单个反应器也能达到145 mW/m2的最大功率输出[24]
1.3 以LB预处理后单种产物为底物LB生物质的预处理过程(包括水解过程)中,会产生多种物质组成的混合物,如单糖(己糖或戊糖等)、多元醇(戊糖醇或己糖醇等)、纤维二糖、腐殖酸等.混合物的组成取决于木质生物质种类和预处理方法.研究单种LB预处理产物的利用有助于推测LB产电的可行性或设计合适的产电过程来实现MFC电流输出的最大化.2008年,Catal 等[32]比较了几种戊糖醇(木糖醇,阿拉伯醇,核糖醇)和己糖醇(半乳糖醇,甘露醇,山梨糖醇)分别用作空气阴极MFCs底物的产电性能,其最大输出功率密度在1 490±160~2 650±10 mW/m2之间,其中半乳糖醇输出功率最高,甘露醇最低.Catal 等[33]还研究了12种LB单糖作为底物的产电性能,发现不同单糖的产电效果均有差异,最大输出功率密度最低为1 240±10 mW/m2,最高达2 770±30 mW/m2.2011年,Catal等[34]发现不同单糖在MFCs中的利用速率不同,其中,己糖利用速率较戊糖高,主要的中间产物是3种挥发性脂肪酸(乙酸、丙酸、丁酸).上述实验采用的反应器均为单室空气阴极反应器.
在双室MFCs的研究中,Huang等[35]利用木糖(一种典型戊糖)为底物,发现加入0.5 g/L腐殖酸(难降解,用作介体)后,电池的最大输出功率密度由69 mW/m2上升至100 mW/m2.与腐殖酸一样,木质素由于难以降解,也曾被用作MFCs的介体[36].Kokko等[37]则在2015年发现MFCs阳极电势对木糖代谢菌群有很大影响.此外,藜芦醇[38]、纤维二糖(菌源为火力发电厂粉煤灰渗滤液)[39]也都被用作MFCs的产电研究,但其产电最大功率密度一般不超过100 mW/m2.
2 以纤维素或LB为底物的固相沉积型MFCs固相沉积型MFCs(SMFCs)可由固相有机物如污泥、沉积物和被污染的土壤供能.目前,已报道的SMFCs底物多为海洋沉积物,可用于海洋环境监测设备的能量来源[40].鉴于SMFCs设计简单、底物分布范围广、实用性较高,以纤维素或LB为底物的SMFCs的研究主要集中于以下两个方面.
1) 添加纤维素类生物质.这主要是由于SMFCs中会不时有纤维素类生物质加入其中,如叶子,水草等.2007年,Rezaei等[41]首次在SMFCs中添加纤维素颗粒,其最大产电功率密度迅速由2 mW/m2增加至83±3 mW/m2,但持续时间较短.Sajana等[42]进一步发现,与未加纤维素的SMFCs相比,加入质量分数为2%的纤维素能提高COD、总氮和有机物去除率.Song等[43]也发现,加入3%的菖蒲叶或1%的小麦秸秆能增大底物与阳极的联系,并能增加有机物浓度与纤维素酶活性,从而显著提高SMFCs的功率输出.
2) 开发新的LB作为底物.Wolinska等[44]以碎燕麦秸秆为底物,研究了松软潜育土作菌源的电池性能.Song等[45]研究了大型水生植物降解问题,发现SMFCs能在加速植物降解的同时还能抑制甲烷的生成.Dai等[46]则直接构建了以森林凋落物为底物的原位SMFCs用作传感器.
3 发酵抑制剂的影响纤维素类生物质的预处理过程如稀酸预处理或酶水解过程,除了会产生多糖外,还会产生许多副产物,如呋喃衍生物(糠醛,5-羟甲基糠醛)和酚类化合物[47~49].这些副产品可能会对细胞膜功能、细胞生长以及LB发酵过程产生不利影响[50, 51].Catal等[52]研究了这些副产物对于MFCs(菌源来自废水,后在以单糖为底物的MFCs富集过)性能的影响,发现除5-羧甲基糠醛外,实验用到的其他呋喃衍生物和酚类化合物均不能在无其他电供体存在的情况下产电.5-羧甲基糠醛(一种呋喃衍生物)、肉桂酸和3,5-二甲氧基-4羟基苯丙烯酸(酚类化合物)的浓度达到10 mmol/L也不会影响MFCs从葡萄糖中产电;另外4种酚类化合物(丁香醛、香草醛、反-4-羟基-3甲氧基肉桂酸和4-羟基肉桂酸)在浓度大于5 mmol/L时会抑制产电;其他化合物,包括糠醛,苯甲醇(苄醇)和乙酰苯即使浓度低于0.2 mmol/L也会在很大程度上抑制产电.Luo等[53]用糠醛与葡萄糖混合液驯化污泥中的微生物,并逐步提高糠醛浓度,最后单独采用糠醛作为底物构建的单室MFCs能在糠醛浓度高达20 mmol/L时实现368 mW/m2的最大输出功率密度.这表明微生物经过驯化之后,一些有毒的生物难降解有机物如糠醛也可以作为MFCs的底物用来产电.采用相似菌驯化的方法,Li等[38]发现较高浓度的藜芦醇(一种苯甲醇)也能用来产电.Borole等[54]则将MFCs(菌源来自污泥,先在以乙酸钠为底物的MFCs富集过)先以葡萄糖为底物,逐步将外阻抗从500 Ω最后降至50 Ω,运行50 d后,再分批加入一定量5~20 mmol/L糠醛、5-羟甲基糠醛、香草酸、4-羟基苯甲醛和4-羟基苯乙酮,研究其产电情况,发现除4-羟基苯乙酮外,其余物质均能产生高于100 mW/m2的电功率密度,其中,糠醛的最大产电功率密度高达3 700 mW/m2,库伦效率达69%.这充分说明,采用适当方法富集的产电菌MFCs可以用来降解发酵抑制剂.
4 展 望目前,有关MFCs降解底物的研究已从最初的纯物质发展到现在的多种混合生物质.简单小分子底物由于容易被微生物利用,其MFCs能量利用率和功率密度一般较高,但其微生物多样性相对单一,且微生物种类少,不利于实际应用[55].因此,在MFCs应用研究方面,以LB为底物的MFCs多与发酵过程联用,将发酵产氢气或甲烷的废液作为MFCs的底物,以实现更高的能量效率[11, 27, 36, 39, 56].与微生物电解池的联用包括采用微生物电解池高效驯化产电菌以提高MFCs效率[17]、将MFCs的反应终产物供微生物电解池使用[27]或采用MFCs为微生物电解池供能[56]等方法.Krishnaraj等[57]在降解纤维素产电的同时得到了天然染料如藻红素和藻青素.这些应用研究表明,在MFCs未来的研究中,除了优化生物质预处理技术、改进MFCs构型及其材料、寻找铂等贵金属催化剂和质子交换膜替代物、优化降解菌与产电菌的结合、加强MFCs产电机理研究等致力于提高MFCs产电性能或降低MFCs成本等方面之外,MFCs的实际应用研究同样重要,如串联多个MFCs为微型设备供能、用作不同环境的传感器研究和生产副产物等.
[1] | KIRAN V, GAUR B. Microbial fuel cell: Technology for harvesting energy from biomass[J]. Reviews in Chemical Engineering, 2013, 29 (4) : 189 –203. |
[2] | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40 (17) : 5181 –5192. |
[3] | PAN R, ZHANG S, YU Y, et al. Power generation performance of microbial fuel cells with elephant grass straw hydrolyzate[C]//2013 International Conference on Materials for Renewable Energy and Environment: China. Chengdu: Institute of Electrical and Electronics Engineers Inc, 2013: 236-239. |
[4] | ZHANG J, ZHANG B G, TIAN C X, et al. Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells[J]. Bioresource Technology, 2013, 138 : 198 –203. |
[5] | REIMERS C E, TENDER L M, FERTIG S, et al. Harvesting energy from the marine sediment-water interface[J]. Environmental Science & Technology, 2001, 35 (1) : 192 –195. |
[6] | HASSAN S H A, KIM Y S, OH S E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell[J]. Enzyme and Microbial Technology, 2012, 51 (5) : 269 –273. |
[7] | 陈洪章. 纤维素生物技术.[M] 北京: 化学工业出版社, 2005 . CHEN H Z. Biological Technology of Cellulose.[M] Beijing: Chemical Industry Press, 2005 . |
[8] | 陈明. 利用玉米秸秆制取燃料乙醇的关键技术研究[D]. 杭州: 浙江大学, 2007. CHEN M. Study on Key Technologies in Ethanol Production from Corn Stover[D]. Hangzhou: Zhejiang University, 2007(Ch). |
[9] | Energy Information Administration. International Energy Outlook.[M] Washington: Department of Energy, 2008 : 4 -5. |
[10] | POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character, 1911, 84 (571) : 260 –276. |
[11] | NIESSEN J, SCHRODER U, HARNISCH F, et al. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation[J]. Letters in Applied Microbiology, 2005, 41 (3) : 286 –290. |
[12] | REN Z Y, WARD T E, REGAN J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J]. Environmental Science & Technology, 2007, 41 (13) : 4781 –4786. |
[13] | REZAEI F, XING D F, WAGNER R, et al. Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell[J]. Applied and Environmental Microbiology, 2009, 75 (11) : 3673 –3678. |
[14] | RISMANI-YAZDI H, CHRISTY A D, DEHORITY B A, et al. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells[J]. Biotechnology and Bioengineering, 2007, 97 (6) : 1398 –1407. |
[15] | RISMANI-YAZDI H, CHRISTY A D, CARVER S M, et al. Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells[J]. Bioresource Technology, 2011, 102 (1) : 278 –283. |
[16] | ISHII S, SHIMOYAMA T, HOTTA Y, et al. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell[J]. Bmc Microbiology, 2008, 8 (6) : 1 –2. |
[17] | REZAEI F, RICHARD T L, LOGAN B E. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell[J]. Biotechnol Bioeng, 2008, 101 (6) : 1163 –1169. |
[18] | CHENG S A, KIELY P, LOGAN B E. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs[J]. Bioresource Technology, 2011, 102 (1) : 367 –371. |
[19] | WANG X, FENG Y J, WANG H M, et al. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells[J]. Environmental Science & Technology, 2009, 43 (15) : 6088 –6093. |
[20] | ZUO Y, MANESS P C, LOGAN B E. Electricity production from steam-exploded corn stover biomass[J]. Energy & Fuels, 2006, 20 (4) : 1716 –1721. |
[21] | LIU Z, HE Y, SHEN R, et al. Performance and microbial community of carbon nanotube fixed-bed microbial fuel cell continuously fed with hydrothermal liquefied cornstalk biomass[J]. Bioresource Technology, 2015, 185 : 294 –301. |
[22] | THYGESEN A, POULSEN F W, ANGELIDAKI I, et al. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate[J]. Biomass & Bioenergy, 2011, 35 (11) : 4732 –4739. |
[23] | ZHANG Y, MIN B, HUANG L, et al. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells[J]. Applied and Environmental Microbiology, 2009, 75 (11) : 3389 –3395. |
[24] | HASSAN S H A, GAD EL-RAB S M F, RAHIMNEJAD M, et al. Electricity generation from rice straw using a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39 (17) : 9490 –9496. |
[25] | WANG Z J, LEE T, LIM B, et al. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate[J]. Biotechnology for Biofuels, 2014, 7 (9) : 1 –10. |
[26] | GREGOIRE K P, BECKER J G. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity[J]. Bioresource Technology, 2012, 119 : 208 –215. |
[27] | YAN D, YANG X W, YUAN W Q. Electricity and H2 generation from hemicellulose by sequential fermentation and microbial fuel/electrolysis cell[J]. Journal of Power Sources, 2015, 289 : 26 –33. |
[28] | ZHAO G, MA F, WEI L, et al. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations[J]. Waste Management, 2012, 32 (9) : 1651 –1658. |
[29] | INOUE K, ITO T, KAWANO Y, et al. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells[J]. Journal of Bioscience and Bioengineering, 2013, 116 (5) : 610 –615. |
[30] | ZANG G L, SHENG G P, TONG Z H, et al. Direct electricity recovery from canna indica by an air-Cathode microbial fuel cell inoculated with rumen microorganisms[J]. Environmental Science & Technology, 2010, 44 (7) : 2715 –2720. |
[31] | KRISHNARAJ R N, BERCHMANS S, PAL P. The three-compartment microbial fuel cell: A new sustainable approach to bioelectricity generation from lignocellulosic biomass[J]. Cellulose, 2015, 22 (1) : 655 –662. |
[32] | CATAL T, XU S T, LI K C, et al. Electricity generation from polyalcohols in single-chamber microbial fuel cells[J]. Biosensors & Bioelectronics, 2008, 24 (4) : 849 –854. |
[33] | CATAL T, LI K, BERMEK H, et al. Electricity production from twelve monosaccharides using microbial fuel cells[J]. Journal of Power Sources, 2008, 175 (1) : 196 –200. |
[34] | CATAL T, FAN Y Z, LI K C, et al. Utilization of mixed monosaccharides for power generation in microbial fuel cells[J]. Journal of Chemical Technology and Biotechnology, 2011, 86 (4) : 570 –574. |
[35] | HUANG L P, ANGELIDAKI I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells[J]. Biotechnology And Bioengineering, 2008, 100 (3) : 413 –422. |
[36] | SAKDARONNARONG C, ITTITANAKAM A, TANUBUMRUNGSUK W, et al. Potential of lignin as a mediator in combined systems for biomethane and electricity production from ethanol stillage wastewater[J]. Renew Energy, 2015, 76 : 242 –248. |
[37] | KOKKO M E, MAKINEN A E, SULONEN M L K, et al. Effects of anode potentials on bioelectrogenic conversion of xylose and microbial community compositions[J]. Biochemical Engineering Journal, 2015, 101 : 248 –252. |
[38] | LI M C, ZHANG C P, LIU G L, et al. Power generation from veratryl alcohol and microbial community analysis in the microbial fuel cell[J]. Journal of Environmental Science and Health Part A, 2010, 45 (10) : 1195 –1206. |
[39] | VARANASI J L, ROY S, PANDIT S, et al. Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40 (26) : 8311 –8321. |
[40] | TENDER L M, GRAY S A, GROVEMAN E, et al. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy[J]. Journal of Power Sources, 2008, 179 (2) : 571 –575. |
[41] | REZAEI F, RICHARD T L, BRENNAN R A, et al. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems[J]. Environmental Science & Technology, 2007, 41 (11) : 4053 –4058. |
[42] | SAJANA T K, GHANGREKAR M M, MITRA A. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell[J]. Bioresource Technology, 2014, 155 : 84 –90. |
[43] | SONG T S, WANG D B, HAN S, et al. Influence of biomass addition on electricity harvesting from solid phase microbial fuel cells[J]. International Journal Of Hydrogen Energy, 2014, 39 (2) : 1056 –1062. |
[44] | WOLINSKA A, STEPNIEWSKA Z, BIELECKA A, et al. Bioelectricity production from soil using microbial fuel cells[J]. Applied Biochemistry And Biotechnology, 2014, 173 (8) : 2287 –2296. |
[45] | SONG N, JIANG H L, CAI H Y, et al. Beyond enhancement of macrophyte litter decomposition in sediments from a terrestrializated shallow lake through bioanode employment[J]. Chemical Engineering Journal, 2015, 279 : 433 –441. |
[46] | DAI J N, WANG J J, CHOW A T, et al. Electrical energy production from forest detritus in a forested wetland using microbial fuel cells[J]. Global Change Bidogy Bioenesgy, 2015, 7 (2) : 244 –252. |
[47] | CANTARELLA M, CANTARELLA L, GALLIFUOCO A, et al. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF[J]. Biotechnology Progress, 2004, 20 (1) : 200 –206. |
[48] | ALMEIDA J R, MODIG T, PETERSSON A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J]. Journal of Chemical Technology and Biotechnology, 2007, 82 (4) : 340 –349. |
[49] | LI H, CHEN H. Detoxification of steam-exploded corn straw produced by an industrial-scale reactor[J]. Process Biochemistry, 2008, 43 (12) : 1447 –1451. |
[50] | TAHERZADEH M J, GUSTAFSSON L, NIKLASSON C, et al. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 1999, 87 (2) : 169 –174. |
[51] | LARSSON S, CASSLAND P, JÖNSSON L J. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase[J]. Applied and Environmental Microbiology, 2001, 67 (3) : 1163 –1170. |
[52] | CATAL T, FAN Y Z, LI K C, et al. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells[J]. Journal of Power Sources, 2008, 180 (1) : 162 –166. |
[53] | LUO Y, LIU G L, ZHANG R D, et al. Power generation from furfural using the microbial fuel cell[J]. Journal of Power Sources, 2010, 195 (1) : 190 –194. |
[54] | BOROLE A P, MIELENZ J R, VISHNIVETSKAYA T A, et al. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells[J]. Biotechnology for Biofuels, 2009, 2 (7) : 1 –14. |
[55] | PANT D, VAN BOGAERT G, DIELS L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource technology, 2010, 101 (6) : 1533 –1543. |
[56] | WANG A J, SUN D, CAO G L, et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell[J]. Bioresource Technology, 2011, 102 (5) : 4137 –4143. |
[57] | KRISHNARAJ R N, BERCHMANS S, PAL P. Symbiosis of photosynthetic microorganisms with nonphotosynthetic ones for the conversion of cellulosic mass into electrical energy and pigments[J]. Cellulose, 2014, 21 (4) : 2349 –2355. |