实用肿瘤杂志   2023, Vol. 38 Issue (1): 86-94 本刊论文版权归本刊所有,未经授权,请勿做任何形式的转载

文章信息

潘佳妮, 曹文明
BRCA1/2突变乳腺癌PARP抑制剂治疗及回复突变研究进展
实用肿瘤杂志, 2023, 38(1): 86-94

基金项目

浙江省自然科学基金(LY21H160005)

文章历史

收稿日期:2022-02-10
BRCA1/2突变乳腺癌PARP抑制剂治疗及回复突变研究进展
潘佳妮 1,2, 曹文明 2     
1. 浙江中医药大学第二临床医学院, 浙江 杭州 310053;
2. 浙江省肿瘤医院乳腺内科, 浙江 杭州 310022
摘要:近年来,多聚腺苷二磷酸核糖聚合酶(poly ADP-ribose polymerase,PARP)抑制剂(PARP inhibitor,PARPi)在乳腺癌临床研究方面进展迅速。多项研究证实,BRCA1/2突变乳腺癌患者可从中明显获益,并被各大指南所采纳。然而,获得性耐药最终导致PARPi的治疗失败,其中回复突变是极具特色的耐药机制,也是当前的研究热点。本文旨在对PARPi治疗BRCA1/2突变乳腺癌的作用机制、临床研究进展以及BRCA1/2回复突变与乳腺癌获得性PARPi耐药的研究进展作一综述。
关键词乳腺癌    BRCA1    BRCA2    PARP抑制剂    治疗    回复突变    

2020年全球最新癌症负担数据中,女性乳腺癌新发病例达230万例(11.7%),已成为全球第一大癌症[1-2]BRCA1/2是乳腺癌最主要的遗传易感基因,在所有乳腺癌中的突变率约为5.3%[3]BRCA1/2突变携带者终生罹患乳腺癌的累积风险约为70%[4]BRCA1/2正常情况下以抑癌基因形式存在,主要通过同源重组(homologous recombination,HR)修复途径参与DNA双链断裂(double strain break,DSB)修复,在该过程中起着不可或缺的作用[5]BRCA1/2突变将导致HR定向修复功能受损,引起基因组不稳定,最终使恶性肿瘤的发生概率增加。多聚腺苷二磷酸核糖聚合酶(poly ADP-ribose polymerase,PARP)是单链DNA损伤修复的关键分子,在DNA单链断裂(single strain break,SSB)损伤修复中发挥重要作用[6]。PARPi可阻断PARP的功能,在HR修复功能缺失情况下,通过合成致死作用导致癌细胞死亡[7]

近年来,多项关于PARPi的临床试验取得佳绩,为BRCA1/2突变乳腺癌靶向治疗提供了新的选择。目前PARPi已在BRCA1/2突变乳腺癌中取得多项适应证,包括人表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)阴性复发高危早期乳腺癌术后辅助强化治疗和转移性乳腺癌的单药治疗,并被国外各大指南作为Ⅰ级推荐,同时也获得国内乳腺癌指南的推荐[8-9]。然而,PARPi获得性耐药在临床上普遍存在,是亟待解决的主要问题,其中回复突变是常见的耐药机制[10],在PARPi或铂类经治的BRCA1/2突变癌症患者中约占26%[11],但其产生机制和突变特点等仍未阐明。

本文就PARPi的作用机制、治疗BRCA1/2突变乳腺癌的研究进展及BRCA1/2回复突变作一综述。

1 PARPi治疗BRCA1/2突变乳腺癌的作用机制

PARP是一类存在于真核细胞中催化聚腺苷二磷酸核糖聚合的蛋白修饰酶,在DNA修复、转录调节、细胞代谢和死亡中具有重要作用[12]。迄今为止已经发现,PARP蛋白家族约有17个成员,其中PARP1占90%以上,PARP2仅占5%左右[13]。PARP1、PARP2和PARP3参与碱基切除修复(base excision repair,BER)对SSB的修复,而PARP1还参与HR修复过程[14]。目前,已获批用于BRCA1/2突变乳腺癌治疗的PARPi作用于不同的PARP靶点[15],如奥拉帕利作用于PARP1、PARP2和PARP3,而talazoparib仅作用于PARP1和PARP2。PARP1蛋白包含3个锌指相关结构域(zinc finger,ZnF;分别为ZnF 1、2和3),BRCA1 C-末端结构域(BRCA1 C-terminus,BRCT),富含色氨酸(tryptophan, W)、甘氨酸(glycine,G)和精氨酸(arginine,R)(WGR)结构域以及含有螺旋结构域和腺苷转移酶的催化结构域[16]。当细胞DNA发生单链损伤时,PARP1的ZnF结构域可识别并结合损伤位点,通过构象改变激活PARP1的催化活性,将ADP-核糖分子从供体β-烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)转移到受体蛋白的特定氨基酸(谷氨酸、精氨酸和天冬氨酸)基团上形成多聚ADP-核糖(poly ADP-ribose,PAR)链,这一过程也称为聚ADP-核糖化(PARylation)[17-20]。受体蛋白发生多聚ADP-核糖化后,参与一系列的生物学功能,包括维持染色体稳定、DNA损伤修复、DNA复制、细胞凋亡与死亡和基因转录调控等。

PARPi和β-NAD+竞争结合PARP蛋白,阻碍PARP的活性并将其捕获在DNA上,从而阻止DNA单链损伤修复,并进一步造成双链损伤,此时HR通路启动,发挥双链损伤修复的作用。DNA DSB主要由HR修复或非同源末端连接(non-homologous end joining,NHEJ)进行修复[21]。其中,HR的保真性强,是细胞修复DNA DSB的最佳途径。BRCA1/2是HR修复的关键蛋白,对于发生BRCA1/2突变的乳腺癌细胞,HR途径修复机制缺失,在PARPi的作用下DNA双链损伤不断累积,造成基因组不稳定,最终导致乳腺癌细胞死亡,这就是“合成致死效应”[20, 22]。这是PARPi治疗BRCA1/2突变乳腺癌的主要机制。

2 PARPi治疗BRCA1/2突变乳腺癌的临床研究进展 2.1 早期乳腺癌(新)辅助治疗

2021年美国临床肿瘤学会(American Society of Clinical Oncology,ASCO)会议报道OlympiA Ⅲ期临床试验(NCT02032823)结果,将结果同年发表于新英格兰医学杂志[23]。该研究共招募1 836例胚系BRCA1/2(germline BRCA1/2, gBRCA1/2)突变伴高危因素的HER2阴性早期乳腺癌患者,按照1∶1随机分配至奥拉帕利组和安慰剂组,为期1年。结果显示,奥拉帕利和安慰剂组的3年无浸润性疾病生存(invasive disease-free survival, iDFS)率分别为85.9% 和77.1%, 降低疾病复发、新发肿瘤或死亡的风险42%(HR=0.58,99.5%CI:0.41~0.82,P < 0.01);3年无远处疾病生存期(distant disease free survival,DDFS)率分别为87.5%和80.4%,降低远处疾病复发或死亡风险43%(HR=0.57,99.5%CI:0.39~0.83,P < 0.01);3年总生存(overall survival,OS)率分别为92.0%和88.3%(HR=0.68,99%CI:0.44~1.05,P=0.024),差异虽未达统计学意义,但曲线分离明显,最终结果有待更长时间的随访。根据该研究结果,2021 NCCN指南推荐对于携带gBRCA1/2突变的复发高危三阴性乳腺癌(triple-negative breast cancer,TNBC)和含紫杉与蒽环类药物新辅助化疗后未达病理完全缓解(pathologic complete response,pCR)的HER2阴性患者优选奥拉帕利辅助强化治疗[24]

同样,2021年ASCO会议报道的NEOTALA Ⅱ期临床研究(NCT03499353)旨在评估talazoparib在BRCA1/2突变乳腺癌新辅助治疗中的有效性和安全性[25]。该研究共纳入61例BRCA1/2突变且HER2阴性早期乳腺癌患者,根据独立中央审查(Independent Central Review,ICR)评估的pCR率在可评估人群中为45.8%(95%CI:32.0~60.6),在意向治疗分析(intention to treat analysis, ITT)人群中为49.2%(95%CI:36.7~61.6)。这提示在新辅助治疗中,talazoparib单药与蒽环类和紫杉类药物联合化疗的pCR率相当。

2.2 PARPi单药治疗gBRCA突变转移性乳腺癌

OlympiAD Ⅲ期临床试验共纳入302例BRCA1/2突变且HER2阴性转移性乳腺癌患者,按照2∶1的比例随机分配至奥拉帕利组(300 mg,每天2次)或医师选择的标准化疗方案组(卡培他滨或艾立布林或长春瑞滨)[9]。奥拉帕利组客观缓解率(objective response rate,ORR)较标准化疗方案组提高,分别为59.9%(95%CI:52.0%~67.4%)和28.8%(95%CI:18.3%~41.3%)。中位无进展生存期(progression-free survival,PFS)分别为7.0个月和4.2个月,疾病进展或死亡风险降低42%(HR=0.58,95%CI:0.43~0.80,P < 0.01)。延长随访发现,奥拉帕利用于一线治疗的中位OS较标准化疗方案组延长(22.6个月vs 14.7个月,HR=0.51,95%CI:0.29~0.90,P=0.02)。LUCY Ⅲb期研究共纳入252例BRCA1/2突变、HER2阴性转移性乳腺癌患者,给予奥拉帕利(300 mg,每天2次),中期研究结果显示,中位PFS为8.1个月(95%CI:6.93~8.67),临床缓解率(clinical response rate,CRR)为48.6%[26]。该研究数据与OlympiAD研究的结果相一致,进一步佐证了奥拉帕利在BRCA1/2突变转移性乳腺癌中的价值。

EMBRCA是一项开放、随机的Ⅲ期临床研究,将431例BRCA1/2突变晚期乳腺癌患者随机按照2∶1的比例分配至talazoparib(1 mg,每天1次)组和医师制定的标准化疗组(卡培他滨、艾立布林、吉西他滨或长春瑞滨)[27]。Talazoparib组患者中位PFS延长(8.6个月vs 5.6个月,HR=0.54,P < 0.01);其ORR也高于标准化疗组(62.6% vs 27.2%,HR=4.99,P < 0.01)。Talazoparib组患者中位OS为22.3个月(95%CI:18.1~26.2),标准化疗组为19.5个月(95%CI:16.3~22.4),差异无统计学意义(HR=0.76,P=0.105)。根据上述OlympiAD和EMBRCA两项临床研究结果,NCCN指南推荐奥拉帕利和talazoparib用于BRCA1/2胚系突变且HER2阴性转移性乳腺癌的优先治疗[24]

BRAVO Ⅲ期临床试验共纳入215例BRCA1/2突变且HER2阴性转移性乳腺癌患者,按照2∶1的比例随机分配至尼拉帕利组(300 mg,每天1次)或医师选择的化疗组(艾立布林、吉西他滨、卡培他滨或长春瑞滨)[28]。最终分析显示,尼拉帕利组(n=141)和化疗组(n=74)的中位PFS分别为4.1个月和3.1个月(HR=0.96,95%CI:0.65~1.44,P=0.86),ORR分别为35%和31%,另外,在TNBC亚组中,尼拉帕利组的ORR高于化疗组,分别为32%和9%(P=0.05),提示TNBC是潜在的优势人群。BRAVO研究虽未证实尼拉帕利更优于医师选择的化疗,但也提示尼拉帕利有与化疗可比的临床疗效。

2021 ASCO会议首次报道了中国乳腺癌人群PARPi的研究(BGB-290-201)[29]。这是一项帕米帕利(pamiparib)治疗中国gBRCA1/2突变局部晚期或转移性HER2阴性乳腺癌患者的Ⅱ期研究(NCT03333915),共纳入88例患者,其中TNBC队列的ORR为38.2%(21/55),激素受体(hormone receptor,HR)阳性且HER2阴性队列的ORR为61.9%(13/21)。TNBC亚组分析显示,帕米帕利一线、二线和三线治疗的ORR分别为66.7%、34.5%和9.1%,提示既往早期使用获益更明显。该研究为中国gBRCA1/2突变的局部晚期或转移性HER2阴性乳腺癌患者提供了一种新的治疗选择。

2.3 PARPi联合化疗治疗gBRCA突变转移性乳腺癌

BROCADE3 Ⅲ期临床研究共纳入509例HER2阴性gBRCA1/2突变晚期/转移性乳腺癌患者,按照2∶1的比例随机分配至veliparib+紫杉醇+卡铂组(Veliparib组,n=337)和安慰剂+紫杉醇+卡铂组(对照组,n=172)[30]。Veliparib组中位PFS为14.5个月,对照组中位PFS为12.6个月,Veliparib组较对照组疾病进展风险降低29%(HR=0.71,95%CI:0.57~0.88;P=0.001 6)。Veliparib组中位OS为33.5个月, 对照组中位PFS为28.2个月(HR=0.95, 95%CI:0.73~1.23,P=0.67),差异虽无统计学意义,但显示出延长趋势。Veliparib组3年PFS率(25.7% vs 10.7%)和OS率(46.4% vs 39.3%)均高于对照组。这是第1个评估PARPi与铂类联合治疗晚期gBRCA突变乳腺癌患者的Ⅲ期临床研究,采用了PARP捕获能力较弱的veliparib,在降低严重不良反应的同时,还获得了PFS延长,拓展了PARPi的临床应用。

2.4 PARPi联合免疫治疗gBRCA转移性乳腺癌

前期研究表明,PARPi作用后细胞的DNA损伤水平增高,双链DNA片段释放进入细胞质中,从而激活干扰素基因激活分子(stimulator of interferon genes, STING)通路[31]。STING通路是胞质DNA激活的固有免疫通路,该通路的激活可以诱导抗肿瘤免疫反应,如引起肿瘤特异新抗原的产生、诱导T细胞介导的抗肿瘤免疫反应、新抗原负荷、新抗原克隆性和T细胞激活,这些过程均与患者对免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)的疗效有关。此外,DNA损伤的增加促进DNA损伤感受激酶[包括ataxia telangiectasia and Rad3(ATR)、ataxia telangiectasia mutated protein(ATM)和checkpoint kinase 1(Chk1)]的激活,可以诱导PD-L1的表达。上述机制提示PARPi与免疫治疗联合可发挥协同抗肿瘤作用。

TOPACIO研究在2018年ASCO会议上亮相,首次证实PARPi联合ICIs对肿瘤细胞BRCA(tumor BRCA,tBRCA)突变晚期或转移性TNBC具有较高疗效[32]。该研究共入组55例TNBC患者,在尼拉帕利联合帕博利珠单抗的ITT人群中ORR达21%,其中,tBRCA突变的患者中ORR高达47%(7/15),中位PFS为8.3个月。该研究的ORR略低于PARPi单药在gBRCA突变人群(奥拉帕利55%,他拉唑帕利62%),但是中位PFS是高于这2个PARPi单药在TNBC亚组中的数据(奥拉帕利5.5个月,他拉唑帕利5.8个月)。该研究结果显示,尼拉帕利联合帕博利珠单抗在晚期或转移性TNBC患者中提供了较可观的抗肿瘤活性,在具有tBRCA突变的患者中具有更高的反应率,并具有可耐受的安全性,值得进一步研究。

MEDIOLA研究进一步探索gBRCA1/2突变患者PARPi联合ICIs的疗效[33]。该研究于2019年欧洲肿瘤内科学会(European Society for Medical Oncology,ESMO)上公布,共纳入34例HER2阴性BRCA1/2突变的转移性乳腺癌患者,首先给予奥拉帕利治疗1个月时间,激活肿瘤的免疫原性,再加用度伐利尤单抗,结果显示奥拉帕利联合度伐利尤单抗ORR高达63.3%,既往未接受或仅接受一线化疗的患者ORR为70%。发生缓解的患者表现出持久的获益,中位缓解持续时间(duration of response,DOR)为9.2个月,中位PFS和OS分别为8.2个月(95%CI:4.6~11.8)和21.5个月(95%CI:14.4~25.5)。以上研究提示PARPi和ICIs联合治疗gBRCA1/2突变转移性乳腺癌患者具有良好的抗肿瘤活性和安全性。

3 BRCA1/2回复突变

尽管近年来BRCA1/2突变乳腺癌的药物治疗取得了显著进展,但获得性耐药仍是目前临床工作中的瓶颈问题。已证实的PARPi耐药机制包括BRCA1/2回复突变[34-38]和非回复突变机制(如HR途径恢复、复制叉稳定增强和药物外排蛋白的过表达等)[39-40],其中回复突变在近年来倍受关注,gBRCA1/2突变肿瘤经PARPi治疗后,肿瘤细胞中可发生BRCA1/2基因的回复突变,该突变可恢复开放阅读框(open reading frame, ORF),与野生型蛋白比较,回复突变后的蛋白有数个或大片段的氨基酸残基缺失,但恢复了野生型蛋白的部分功能(如HR修复功能等),从而介导PARPi耐药。

2008年,2个研究团队同时在Nature杂志发表研究成果,首次证实了BRCA2基因回复突变对PARPi耐药的相关性。Edwards等[38]采用CAPAN1胰腺癌细胞株, 该细胞株携带BRCA2c.6174delT移码突变,在形成损伤诱导的RAD51焦点和HR功能上存在缺陷,对PARPi极为敏感。通过浓度递增的PARPi连续处理后获得耐药株,测序发现这些耐药株通过回复突变恢复了原突变位点后续部分的阅读框架,并表达了与野生型相似的BRCA2蛋白,同时具备野生型蛋白的功能,如核易位、与RAD51相互作用和HR功能等。这一耐药机制在2例BRCA2 c.6174delT突变经卡铂治疗后耐药的卵巢癌患者中得到了证实,患者的BRCA2基因分别发生外显子11内137 bp缺失和8 bp缺失,均导致BRCA2的ORF恢复。同年,Sakai等[37]检测到PARPi耐药的CAPAN1细胞株恢复了几乎全长BRCA2蛋白的表达,BRCA2的回复突变纠正了6174delT突变引起的移码,回复突变的类型包括在靠近原始突变位点小的缺失和(或)插入以及原始突变位点两侧的框内缺失,证实回复突变恢复了野生型BRCA2阅读框从而使PARPi获得性耐药。Tobalina等[11]首次报道肿瘤患者中BRCA1/2回复突变的情况,该研究共纳入327例gBRCA突变、经铂类或PARPi治疗后进展的卵巢癌、乳腺癌、胰腺癌或前列腺癌患者,结果显示总体回复突变率为26%,其中BRCA1BRCA2的回复突变率分别为22.0%和30.7%。

由于回复突变发生于肿瘤细胞,因此可以通过肿瘤组织或循环肿瘤DNA(circulating tumor DNA,ctDNA)检测发现[37-38, 41],目前已报道多例BRCA突变乳腺癌经PARPi或铂类治疗后出现BRCA基因的回复突变(表 1[34-37, 42-54],其原始致病突变多为移码突变和无义突变,BRCA1突变多位于第10号外显子,而BRCA2突变多位于第11号外显子。然而,携带致病性错义突变或剪接位点突变的患者发生回复突变罕见[35],具体原因不详。

表 1 BRCA突变乳腺癌经PARPi或铂类治疗后的回复突变
基因 来源 原始突变 回复突变 药物 参考文献
突变位点 氨基酸改变 突变类型 外显子
BRCA1 SUM149 c.2169delT p.Pro724LeufsTer12 frameshift 10 c.2169delT; 2175_2254del80 Olaparib和talazoparib [47]
BC c.4327C > T p.Arg1443Ter stopgain 12 c.4327C > T; 4329A > G Carboplatin、paclitaxel和veliparib [48]
PDX c.2210delC p.Thr737LysfsTer16 frameshift 10 c.2008_2709del702 Cisplatin [49]
c.2184_2197del; 2210delC Cisplatin [49]
c.2207delAAACAG Cisplatin [49]
c.2206_2220del15 Melphalan [49]
c.2188_2198del11; 2210delC Nimustine [49]
c.2165_2172del8; 2210delC Nimustine [49]
c.2191_2214del24 Olaparib [49]
c.2205_2222del18 Olaparib [49]
BC c.1961delA p.Lys654SerfsTer47 frameshift 10 c.1961delA; 1990_2033del44 PARPi [50]
c.1961delA; 1996_2051del56 PARPi [50]
c.1961delA; 2067_2113del47 PARPi [50]
c.1961delA; 2040_2053del14 PARPi [50]
SUM149 c.2169delT p.Pro724LeufsTer12 frameshift 10 c.2128_2169del42 NA [36]
c.2150_2157del8; 2169delT NA [36]
BC c.427G > T p.Glu143Ter stopgain 6 c.423_432delACCCGAAAA Olaparib [51]
BC c.4041_4042delAG p.Gly1348AsnfsTer7 frameshift 10 c.4041_4042delAG; 4062delT Olaparib [51]
c.4041_4042delAG; 4050delC Olaparib [51]
BC c.1360_1361delAG p.Ser454Ter stopgain 10 c.1360_1401del42 Platinum [52]
BC c.390C > A p.Tyr130Ter stopgain 6 c.386-409del Carboplatin、paclitaxel和veliparib [45]
BC c.1360_1361delAG p.Ser454Ter stopgain 10 c.1141_1432del292ins1; 1360_1361delAG Olaparib [34]
c.1360_1361delAG; 4083G > C Olaparib [34]
BC c.2341G > T p.Glu781Ter stopgain 10 c.2307_2348del NA [54]
c.2339_2347del NA [54]
c.2343A > T p.E781Y NA [54]
c.2342A > C p.E781S NA [54]
c.2341G > C p.E781Q NA [54]
BC c.3754_3755del p.Leu1252ValfsTer2 frameshift 10 c.3710_3711dup Carboplatin和olaparib [54]
BC c.3436_3439del p.Cys1146LeufsTer8 frameshift 10 c.3430_3450del Carboplatin和olaparib [54]
BC c.66dup p.Glu23ArgfsTer18 frameshift 2 c.67G > C p.E23Q NA [54]
BRCA2 BC c.145G > T p.Glu49Ter stopgain 3 c.145_168del24 Olaparib [53]
HCC1428 c.6174delT p.Phe2058LeufsTer12 frameshift 11 c.4430_7069del2640 Cisplatin [37]
c.4883_7069del2187 Cisplatin [37]
BC c.5576_5579delTTAA p.Ile1859LysfsTer3 frameshift 11 c.5550_5572del23; 5576_5579delTTAA NA [50]
BC c.2385_2386insAA p.Asp796LysfsTer15 frameshift 11 c.2385_2386insAA; 2401_2420del20 PARPi [50]
c.2385_2386insAA; 2404_2429del29 PARPi [50]
c.2385_2386insAA; 2412_2452del41 PARPi [50]
c.2370_2387del18 PARPi [50]
c.2362_2369del8; 2385_2386insAA PARPi [50]
c.2385_2386insAA; 2397insA PARPi [50]
c.2354_2364del11; 2385_2386insAA PARPi [50]
c.2385_2386insAA; 2392insC PARPi [50]
c.2366_2373del8; 2385_2386insAA PARPi [50]
c.2385_2386insAA; 2395_2414del20 PARPi [50]
c.2352_2374del23; 2385_2386insAA PARPi [50]
c.2379_2390del12 PARPi [50]
c.2380_2397del18 PARPi [50]
c.2385_2386insAAA PARPi [50]
c.2385_2386insAA; 2414_2436del23 PARPi [50]
c.2385_2386insAA; 2401_2419dup PARPi [50]
BC c.3689delC p.Ser1230LeufsTer9 frameshift 11 c.3668_3700del33 PARPi [50]
c.3680_3681delTG; 3689delC PARPi [50]
c.3689delC; 3699_3703del5 PARPi [50]
c.3676_3693del18 PARPi [50]
c.3656_3666del11; 3689delC PARPi [50]
c.3687_3713del27 PARPi [50]
BC c.2808_2811delACAA p.Ala938ProfsTer21 frameshift 11 c.2808_2811delACAA; 2836_2870del35 PARPi [50]
c.2803_2812del10ins7 PARPi [50]
BC c.1189_1190insTTAG p.Gln397LeufsTer25 frameshift 10 c.1189_1190insTTAG; 1212delT PARPi [50]
c.1189_1212del24 PARPi [50]
c.1189_1190insTTAG; 1245_1272del28 PARPi [50]
c.1189_1190insTTAG; 1227delG PARPi [50]
c.1189_1190insTTAG; 1246_1255del10 PARPi [50]
c.1189_1190insTTAG; 1249_1252del4 PARPi [50]
BC c.3847_3848delGT p.Val1283LysfsTer2 frameshift 11 c.3838_3864del27 Olaparib [43]
BC c.8878C > T p.Gln2960Ter stopgain 22 c.8878C > G Olaparib [42]
BC c.250C > T p.Gln84Ter stopgain 3 c.252A > T Carboplatin、paclitaxel和veliparib [45]
BC c.8869C > T p.Gln2957Ter stopgain 22 c.8856_8873del Carboplatin、paclitaxel和veliparib [45]
c.8866_8874del Carboplatin、paclitaxel和veliparib [45]
BC c.5946_5950del p.Ser1982ArgfsTer21 frameshift 11 c.5992_6014del Carboplatin、paclitaxel和veliparib [45]
c.5991_5992insTGCATTA Carboplatin、paclitaxel和veliparib [45]
c.5996_5999delinsATGC Carboplatin、paclitaxel和veliparib [45]
BC c.407delA p.Asn136IlefsTer16 frameshift 4 c.402_413del12 Platinum和talazoparib [46]
c.389_406del18 Platinum和talazoparib [46]
BC c.750_753delGACA p.Asp252ValfsTer24 frameshift 9 c.750_753delGACA; 764_765delAC Platinum和PARPi [46]
c.739_765del27 Platinum和PARPi [46]
c.728_738del11; 750_753delGACA Platinum和PARPi [46]
c.731_732delAT; 750_753delGACA Platinum和PARPi [46]
c.750_753delGACA; 773_774delAA Platinum和PARPi [46]
c.730_753del24 Platinum和PARPi [46]
c.735insT; 750_753delGACA Platinum和PARPi [46]
c.750_753delGACA; 763insC Platinum和PARPi [46]
c.750_753delGACA; 768insG Platinum和PARPi [46]
BC c.4473_4476delGAAA p.Glu1493ValfsTer10 frameshift 11 c.4458_4468del11; 4473_4476del4 Olaparib [34]
c.4456_4469del14; 4473_4476del4 Olaparib [34]
c.4466_4477del12 Olaparib [34]
c.4156_6696del2541 Olaparib [34]
c.4274_5415del1142 Olaparib [34]
BC c.5718_5719delCT p.Leu1908ArgfsTer2 frameshift 11 c.5641_5877del237 Carboplatin [34]
c.5718_5719delCT; 6079_6842+353_del1117 Carboplatin [34]
BC c.5153insT p.Asn1718Ile missense 11 c.5153insT; 5545_6841+77del1374 Carboplatin、paclitaxel和veliparib [34]
BC c.8451T > A p.Cys2817Ter stopgain 19 c.8450G > C PARPi(IMP4297) [54]
BC c.2870del p.Asn957IlefsTer3 frameshift 11 c.2837_2838insG NA [54]
BC c.8878C > T p.Gln2960Ter stopgain 22 c.8878C > A Olaparib [54]
注  PARPi:多聚腺苷二磷酸核糖聚合酶抑制剂(poly ADP-ribose polymerase inhibitor);SUM149:人乳腺癌细胞株;BC:乳腺癌(breast cancer);PDX:人源性组织异种移植(patient-derived xenografts);NA:无法获得(not acquired)

目前的研究发现,回复突变后需要保留BRCA蛋白特定的结构域。BRCA1由BRCT、N-末端RING结构域和卷曲螺旋结构域组成。BRCT负责结合磷酸化蛋白,如C-末端结合蛋白的相互作用蛋白(C-terminal binding protein interacting protein,CtIP)。N-端RING结构域可以稳定BRCA1,保证E3连接酶活性[55]。恢复BRCT和N-末端RING结构域功能的回复突变在PAPRi耐药性中发挥重要作用[56-58]。基于细胞株的研究表明,分别在BRCA1外显子11 1806C > T(L56-BRC1细胞株)、2288delT(SUM149PT细胞株)和2594delC(UWB1.289细胞株)突变的细胞株中过表达外源性BRCA1-Δ11q剪接体(外显子11敲除的BRCA1),体内外实验证实BRCA1-Δ11q蛋白能够介导PARPi耐药,BRCA1外显子11编码氨基酸序列占整个蛋白的60%,可见这些区域对于治疗耐药是非必需的[36]。BRCA2通过8个保守的BRC-重复基序和一个靠近羧基(C-)端的独特的RAD51结合域与重组酶RAD51相互作用促进DSB修复。作为对DNA损伤的反应,BRCA2将RAD51定位在DSB位点并介导修复[38, 55]。BRCA2 C-末端区域编码寡核苷酸/寡糖结合(oligonucleotide/oligosaccharide binding,OB)折叠、核定位信号(nuclear localization signal,NLS)和TR2结构域,TR2结构域的缺失可导致HR功能的中度缺失[59]。在细胞株模型中发现,BRCA2回复突变后允许删除多个C-末端外显子以及基因内大片段的编码序列,但仍需保留TR2结构域,表明TR2结构域为PARPi耐药所必需[38]

4 问题与展望

PARPi是首个基于“合成致死”理念的抗肿瘤药物,无论是单药还是联合治疗都在gBRCA突变的乳腺癌中显示出良好的抗肿瘤活性,而PARPi的耐药势必会成为临床所面临的挑战。HR修复功能的恢复是PARPi耐药的重要机制,其中很大一部分源于BRCA1/2基因的回复突变,然而,回复突变的具体机制、突变类型及频率尚不明确。目前,已有研究表明,某些药物可增强PARPi敏感性并逆转耐药,如细胞周期蛋白依赖性激酶(cyclin-dependent protein kinases,CDKs)抑制剂[60]、表观遗传药物[如组蛋白去乙酰化抑制剂(histone deacetylase inhibitor,HDACi)[61-62]和组蛋白甲基转移酶抑制剂(enhancer of zeste 2 polycomb repressive complex 2 subunit inhibitor,EZH2i)[63-64]]等。延缓或逆转耐药,选择合适的生物标志物使PARP抑制剂的使用更加精准是值得进一步研究的方向。

参考文献
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660
[2]
肖文铉, 江一舟, 邵志敏. 人工智能在乳腺癌精准诊疗中的应用[J]. 实用肿瘤杂志, 2022, 37(2): 112-116. DOI:10.13267/j.cnki.syzlzz.2022.019
[3]
Koboldt DC, Fulton RS, McLellan MD, et al. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70. DOI:10.1038/nature11412
[4]
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers[J]. JAMA, 2017, 317(23): 2402-2416. DOI:10.1001/jama.2017.7112
[5]
Evers B, Helleday T, Jonkers J. Targeting homologous recombination repair defects in cancer[J]. Trends Pharmacol Sci, 2010, 31(8): 372-380. DOI:10.1016/j.tips.2010.06.001
[6]
Ohmoto A, Yachida S. Current status of poly(ADP-ribose) polymerase inhibitors and future directions[J]. Onco Targets Ther, 2017, 10: 5195-5208. DOI:10.2147/OTT.S139336
[7]
D'Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance[J]. DNA Repair, 2018, 71: 172-176. DOI:10.1016/j.dnarep.2018.08.021
[8]
Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N Engl J Med, 2017, 377(6): 523-533. DOI:10.1056/NEJMoa1706450
[9]
Robson ME, Tung N, Conte P, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer[J]. Ann Oncol, 2019, 30(4): 558-566. DOI:10.1093/annonc/mdz012
[10]
陈启庭, 韦雄, 蔡俊媛, 等. PARP抑制剂在乳腺癌中的治疗进展及耐药机制[J]. 实用肿瘤杂志, 2022, 37(4): 376-381.
[11]
Tobalina L, Armenia J, Irving E, et al. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance[J]. Ann Oncol, 2021, 32(1): 103-112. DOI:10.1016/j.annonc.2020.10.470
[12]
Eustermann S, Wu WF, Langelier MF, et al. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1[J]. Mol Cell, 2015, 60(5): 742-754. DOI:10.1016/j.molcel.2015.10.032
[13]
Schreiber V, Dantzer F, Ame JC, et al. Poly(ADP-ribose): novel functions for an old molecule[J]. Nat Rev Mol Cell Biol, 2006, 7(7): 517-528. DOI:10.1038/nrm1963
[14]
de Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art[J]. Biochem Pharmacol, 2012, 84(2): 137-146. DOI:10.1016/j.bcp.2012.03.018
[15]
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future[J]. Nat Rev Drug Discov, 2020, 19(10): 711-736. DOI:10.1038/s41573-020-0076-6
[16]
Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling[J]. Nat Rev Mol Cell Biol, 2017, 18(10): 610-621. DOI:10.1038/nrm.2017.53
[17]
Alemasova EE, Lavrik OI. Poly(ADP-ribosyl)ation by PARP1:reaction mechanism and regulatory proteins[J]. Nucleic Acids Res, 2019, 47(8): 3811-3827. DOI:10.1093/nar/gkz120
[18]
Keung MYT, Wu YY, Vadgama JV. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers[J]. J Clin Med, 2019, 8(4): E435. DOI:10.3390/jcm8040435
[19]
Langelier MF, Planck JL, Roy S, et al. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1[J]. Science, 2012, 336(6082): 728-732. DOI:10.1126/science.1216338
[20]
Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic[J]. Science, 2017, 355(6330): 1152-1158. DOI:10.1126/science.aam7344
[21]
Brown JS, O'Carrigan B, Jackson SP, et al. Targeting DNA repair in cancer: beyond PARP inhibitors[J]. Cancer Discov, 2017, 7(1): 20-37. DOI:10.1158/2159-8290.CD-16-0860
[22]
Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what's next after PARP inhibitors?[J]. Nat Rev Clin Oncol, 2018, 15(9): 564-576. DOI:10.1038/s41571-018-0055-6
[23]
Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1-or BRCA2-mutated breast cancer[J]. N Engl J Med, 2021, 384(25): 2394-2405. DOI:10.1056/NEJMoa2105215
[24]
Gradishar WJ, Moran MS, Abraham J, et al. NCCN Guidelines® Insights: Breast cancer, version 4.2021[J]. J Natl Compr Canc Netw, 2021, 19(5): 484-493. DOI:10.6004/jnccn.2021.0023
[25]
Litton JK, Scoggins ME, Hess KR, et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant[J]. J Clin Oncol, 2020, 38(5): 388-394. DOI:10.1200/JCO.19.01304
[26]
Gelmon KA, Fasching PA, Couch FJ, et al. Clinical effectiveness of olaparib monotherapy in germline BRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: phase Ⅲb LUCY interim analysis[J]. Eur J Cancer, 2021, 152: 68-77. DOI:10.1016/j.ejca.2021.03.029
[27]
Ettl J, Quek RGW, Lee KH, et al. Quality of life with talazoparib versus physician's choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase Ⅲ trial[J]. Ann Oncol, 2018, 29(9): 1939-1947. DOI:10.1093/annonc/mdy257
[28]
Turner NC, Balmaña J, Poncet C, et al. Niraparib for advanced breast cancer with germline BRCA1 and BRCA2 mutations: the EORTC 1307-BCG/BIG5-13/TESARO PR-30-50-10-C BRAVO study[J]. Clin Cancer Res, 2021, 27(20): 5482-5491. DOI:10.1158/1078-0432.CCR-21-0310
[29]
Sun T, Shi Y, Cui J, et al. A phase 2 study of pamiparib in the treatment of patients with locally advanced or metastatic HER2-negative breast cancer with germline BRCA mutation[J]. J Clin Oncol, 2021, 39(15): 1087.
[30]
Diéras V, Han HS, Kaufman B, et al. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(10): 1269-1282. DOI:10.1016/S1470-2045(20)30447-2
[31]
Mouw KW, D'Andrea AD. DNA repair deficiency and immunotherapy response[J]. J Clin Oncol, 2018, 36(17): 1710-1713. DOI:10.1200/JCO.2018.78.2425
[32]
Vinayak S, Tolaney SM, Schwartzberg L, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer[J]. JAMA Oncol, 2019, 5(8): 1132-1140. DOI:10.1001/jamaoncol.2019.1029
[33]
Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study[J]. Lancet Oncol, 2020, 21(9): 1155-1164. DOI:10.1016/S1470-2045(20)30324-7
[34]
Waks AG, Cohen O, Kochupurakkal B, et al. Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer[J]. Ann Oncol, 2020, 31(5): 590-598. DOI:10.1016/j.annonc.2020.02.008
[35]
Pettitt SJ, Frankum JR, Punta M, et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance[J]. Cancer Discov, 2020, 10(10): 1475-1488. DOI:10.1158/2159-8290.CD-19-1485
[36]
Wang YF, Bernhardy AJ, Cruz C, et al. The BRCA1-Δ11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to PARP inhibition and cisplatin[J]. Cancer Res, 2016, 76(9): 2778-2790. DOI:10.1158/0008-5472.CAN-16-0186
[37]
Sakai W, Swisher EM, Karlan BY, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers[J]. Nature, 2008, 451(7182): 1116-1120. DOI:10.1038/nature06633
[38]
Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic deletion in BRCA2[J]. Nature, 2008, 451(7182): 1111-1115. DOI:10.1038/nature06548
[39]
Montoni A, Robu M, Pouliot E, et al. Resistance to PARP-inhibitors in cancer therapy[J]. Front Pharmacol, 2013, 4: 18.
[40]
Holohan C, van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm[J]. Nat Rev Cancer, 2013, 13(10): 714-726. DOI:10.1038/nrc3599
[41]
Dhillon KK, Swisher EM, Taniguchi T. Secondary mutations of BRCA1/2 and drug resistance[J]. Cancer Sci, 2011, 102(4): 663-669. DOI:10.1111/j.1349-7006.2010.01840.x
[42]
Barber LJ, Sandhu S, Chen LN, et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor[J]. J Pathol, 2013, 229(3): 422-429. DOI:10.1002/path.4140
[43]
Gornstein EL, Sandefur S, Chung JH, et al. BRCA2 reversion mutation associated with acquired resistance to olaparib in estrogen receptor-positive breast cancer detected by genomic profiling of tissue and liquid biopsy[J]. Clin Breast Cancer, 2018, 18(2): 184-188. DOI:10.1016/j.clbc.2017.12.010
[44]
Pan JN, Lei L, Ye WW, et al. BRCA1 reversion mutation confers resistance to olaparib and camrelizumab in a patient with breast cancer liver metastasis[J]. J Breast Cancer, 2021, 24(5): 474-480. DOI:10.4048/jbc.2021.24.e39
[45]
Puhalla SL, Diéras V, Arun BK, et al. Relevance of platinum-free interval and BRCA reversion mutations for veliparib monotherapy after progression on carboplatin/paclitaxel for gBRCA advanced breast cancer (BROCADE3 crossover)[J]. Clin Cancer Res, 2021, 27(18): 4983-4993. DOI:10.1158/1078-0432.CCR-21-0748
[46]
Weigelt B, Comino-Méndez I, de Bruijn I, et al. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer[J]. Clin Cancer Res, 2017, 23(21): 6708-6720. DOI:10.1158/1078-0432.CCR-17-0544
[47]
Dréan A, Williamson CT, Brough R, et al. Modeling therapy resistance in BRCA1/2-mutant cancers[J]. Mol Cancer Ther, 2017, 16(9): 2022-2034. DOI:10.1158/1535-7163.MCT-17-0098
[48]
Meijer TG, Verkaik NS, Hm VDC, et al. Direct ex vivo observation of homologous recombination defect reversal after DNA-damaging chemotherapy in patients with metastatic breast cancer[J]. JCO Precis Oncol, 2019, 3(3): 1-12.
[49]
Ter Brugge P, Kristel P, van der Burg E, et al. Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer[J]. J Natl Cancer Inst, 2016, 108(11): djw148. DOI:10.1093/jnci/djw148
[50]
Vidula N, Rich TA, Sartor O, et al. Routine plasma-based genotyping to comprehensively detect germline, somatic, and reversion BRCA mutations among patients with advanced solid tumors[J]. Clin Cancer Res, 2020, 26(11): 2546-2555. DOI:10.1158/1078-0432.CCR-19-2933
[51]
Yap TA, Kristeleit R, Michalarea V, et al. Phase Ⅰ trial of the PARP inhibitor olaparib and AKT inhibitor capivasertib in patients with BRCA1/2-and non-BRCA1/2-mutant cancers[J]. Cancer Discov, 2020, 10(10): 1528-1543. DOI:10.1158/2159-8290.CD-20-0163
[52]
Afghahi A, Timms KM, Vinayak S, et al. Tumor BRCA1 reversion mutation arising during neoadjuvant platinum-based chemotherapy in triple-negative breast cancer is associated with therapy resistance[J]. Clin Cancer Res, 2017, 23(13): 3365-3370. DOI:10.1158/1078-0432.CCR-16-2174
[53]
Cruz C, Castroviejo-Bermejo M, Gutiérrez-Enríquez S, et al. RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer[J]. Ann Oncol, 2018, 29(5): 1203-1210. DOI:10.1093/annonc/mdy099
[54]
Zong H, Zhang J, Xu Z, et al. Comprehensive analysis of somatic reversion mutations in homologous recombination repair (HRR) genes in A large cohort of Chinese pan-cancer patients[J]. J Cancer, 2022, 13(4): 1119-1129. DOI:10.7150/jca.65650
[55]
Roy R, Chun J, Powell SN. BRCA1 and BRCA2:different roles in a common pathway of genome protection[J]. Nat Rev Cancer, 2012, 12(1): 68-78. DOI:10.1038/nrc3181
[56]
Johnson N, Johnson SF, Yao W, et al. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance[J]. Proc Natl Acad Sci USA, 2013, 110(42): 17041-17046. DOI:10.1073/pnas.1305170110
[57]
Wang YF, Krais JJ, Bernhardy AJ, et al. RING domain-deficient BRCA1 promotes PARP inhibitor and platinum resistance[J]. J Clin Invest, 2016, 126(8): 3145-3157. DOI:10.1172/JCI87033
[58]
Wang YF, Bernhardy AJ, Nacson J, et al. BRCA1 intronic Alu elements drive gene rearrangements and PARP inhibitor resistance[J]. Nat Commun, 2019, 10(1): 5661. DOI:10.1038/s41467-019-13530-6
[59]
Kass EM, Lim PX, Helgadottir HR, et al. Robust homology-directed repair within mouse mammary tissue is not specifically affected by BRCA2 mutation[J]. Nat Commun, 2016, 7: 13241. DOI:10.1038/ncomms13241
[60]
Johnson SF, Cruz C, Greifenberg AK, et al. CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer[J]. Cell Rep, 2016, 17(9): 2367-2381. DOI:10.1016/j.celrep.2016.10.077
[61]
Min A, Im SA, Kim DK, et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells[J]. Breast Cancer Res, 2015, 17: 33.
[62]
Ha K, Fiskus W, Choi DS, et al. Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells[J]. Oncotarget, 2014, 5(14): 5637-5650.
[63]
Chen MK. Efficacy of PARP inhibition combined with EZH2 inhibition depends on BRCA mutation status and microenvironment in breast cancer[J]. FEBS J, 2021, 288(9): 2884-2887.
[64]
Karakashev S, Fukumoto T, Zhao B, et al. EZH2 inhibition sensitizes CARM1-high, homologous recombination proficient ovarian cancers to PARP inhibition[J]. Cancer Cell, 2020, 37(2): 157-167.