实用肿瘤杂志   2022, Vol. 37 Issue (5): 444-449 本刊论文版权归本刊所有,未经授权,请勿做任何形式的转载

文章信息

张玉琴, 陈章兴, 戴益琛, 朱小三, 詹晓娟, 傅育卡, 吴婧
Zhang Yuqin, Chen Zhangxing, Dai Yichen, Zhu Xiaosan, Zhan Xiaojuan, Fu Yuka, Wu Jing
Pokemon在缺氧微环境中对肝细胞癌血管形成的作用
Eff ect of Pokemon on angiogenesis of hepatocellular carcinoma under hypoxia microenvironment
实用肿瘤杂志, 2022, 37(5): 444-449
Journal of Practical Oncology, 2022, 37(5): 444-449

基金项目

厦门市医疗卫生科技计划项目(3502Z20184067)

通信作者

陈章兴, E-mail: chenzx2019@126.com

文章历史

收稿日期:2021-10-29
Pokemon在缺氧微环境中对肝细胞癌血管形成的作用
张玉琴 , 陈章兴 , 戴益琛 , 朱小三 , 詹晓娟 , 傅育卡 , 吴婧     
厦门大学附属成功医院消化内科, 福建 厦门 361003
摘要目的 探讨在缺氧微环境下Pokemon对肝细胞癌血管形成的影响。方法 选取肝细胞癌细胞株HepG2和Huh7, 采用短发夹RNA稳定转染并筛选稳定沉默Pokemon基因表达的肝细胞癌细胞株。通过RT-PCR验证沉默Pokemon之后血管形成相关基因的表达。在缺氧条件下通过Western blot法验证Pokemon基因沉默后缺氧诱导因子-1α(hypoxia inducible factor-1α, HIF-1α)表达的影响。结果 成功构建Pokemon干扰质粒。HepG2和Huh7细胞在Pokemon基因沉默后, 血管形成相关基因促血管生成素2(angiopoietin-2, ANG2)、血管内皮生长因子A (vascular endothelial growth factor A, VEGFA)以及血管内皮生长因子受体2(vascular endothelial growth factor receptor 2, VEGFR2)的mRNA表达均受到抑制(均P < 0.05)。在缺氧条件下, HepG2和Huh7细胞在Pokemon基因沉默后HIF-1α蛋白表达均下调(均P < 0.05)。将HIF-1α质粒瞬转至Hela细胞36 h后, 通过Western blot检测发现HIF-1α的表达增加(P < 0.05), 而Pokemon的表达变化差异没有统计学意义(P>0.05)。结论 在缺氧微环境下Pokemon上调HIF-1α表达促进肝细胞癌血管形成, 促进肝细胞癌的发生及发展。
关键词肝细胞癌    Pokemon    血管形成    缺氧    
Eff ect of Pokemon on angiogenesis of hepatocellular carcinoma under hypoxia microenvironment
Zhang Yuqin , Chen Zhangxing , Dai Yichen , Zhu Xiaosan , Zhan Xiaojuan , Fu Yuka , Wu Jing     
Department of Gastroenterology, Chenggong Hospital of Xiamen University, Xiamen 361003, China
Abstract: Objective To investigate the effect of Pokemon on the angiogenesis of hepatocellular carcinoma cells under hypoxia microenvironment. Methods Hepatocellular carcinoma HepG2 and Huh7 cell lines were stably transfected with short hairpin RNA to establish Pokemon-silenced hepatocellular carcinoma cell lines. The expressions of angiogenesis-related genes were confirmed by RT-PCR after Pokemon silencing. The effect of Pokemon silencing on hypoxia inducible factor-1α (HIF-1α) expression was tested by Western blot under hypoxia condition. Results A plasmid encoding a short interfering RNA (siRNA) targeting Pokemon was constructed. Silencing of Pokemon inhibited angiogenesis related mRNA expressions in HepG2 and Huh7 cell lines, including mRNA of angiopoietin-2 (ANG2), vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptor 2 (VEGFR2; all P < 0.05). Under hypoxia condition, the HIF-1α expression was down-regulated in HepG2 and Huh7 cells after Pokemon silencing (both P < 0.05). When a plasmid encoding siRNA targeting HIF-1α was transitioned into HeLa cells 36 h later, the expression of HIF-1α protein was increased (P < 0.05), but the expression of Pokemon protein was unchanged (P>0.05). Conclusions The up-regulation of HIF-1α expression by Pokemon in hypoxic microenvironment promotes the angiogenesis of hepatocellular carcinoma cells and leads to the occurrence and development of hepatocellular carcinoma.
Key words: hepatocellular carcinoma    pokemon    angiogenesis    hypoxia    

肝细胞癌是全世界常见的六大恶性肿瘤之一,病死率排第4位[1]。肝细胞癌发生和发展与肿瘤细胞增殖和凋亡密切相关。目前已有研究证实,鼠双微体2(murine double minute 2,MDM2)-p53通路及白细胞介素-6(interleukin-6,IL-6)、转化生长因子α(transforming growth factor α,TGFα)、转录因子NF-κβ和裂解刺激因子亚单位2(cleavage stimulation factor subunit 2,CSTF2)基因均参与肝癌的发生和发展[2-4]。除此之外,肿瘤血管形成在肿瘤发生和发展中扮演重要角色。肝癌是血管增生性肿瘤,其肿瘤血管丰富[5-6]。血管内皮生长因子(vascular endothlial growth factor,VEGF)是正常血管形成及肿瘤微血管形成的关键基因,在多种肿瘤中高表达[7]。而缺氧微环境是实体肿瘤中的常见现象,其与肿瘤细胞的血管形成密切相关。缺氧环境下,缺氧诱导因子1(hypoxia inducible factor-1,HIF-1)表达增加,可调控VEGF表达影响肿瘤血管形成[8]。前期研究发现,Pokemon在肝癌组织中高表达,经丝氨酸/苏氨酸蛋白激酶(protein kinase B,AKT)/细胞外调节蛋白激酶(extracellular regulated protein kinase,ERK)信号通路促进肝癌细胞增殖并经死亡受体介导的凋亡途径(Fas-FADD-caspase8途径)和线粒体途径介导的细胞凋亡通路抑制肝癌细胞的凋亡[9-10]。然而针对Pokemon对肝细胞癌血管形成的作用的相关研究甚少。本研究探讨Pokemon在缺氧条件下对肝细胞癌血管形成的影响。

1 材料与方法 1.1 细胞株及主要试剂和仪器设备

人肝细胞癌细胞株HepG2购自美国ATCC。人肝细胞癌细胞株Huh7及人宫颈癌细胞株Hela购自中国科学院上海细胞库。TRIzol和一步法RNA反转录试剂盒购自美国Invitrogen公司。脂质体2000转染试剂、胎牛血清、100×双抗、DMEM和RPMI-1640培养液均购自美国Gibco公司。荧光定量PCR仪(ABI prism7500)和PCR仪(Gene Amp2700)均购自美国Applied Biosystems公司。蛋白电泳仪和蛋白转移装置均购自美国Biorad公司。核酸蛋白检测仪购自德国Eppendorf公司。Pokemon抗体和GAPDH抗体购自英国Abcam公司。HIF1α抗体和VEGFR抗体购自美国CST公司。

1.2 细胞培养

HepG2细胞采用含10%胎牛血清的DMEM培养液进行培养。Huh7细胞采用含10%胎牛血清的RPMI-1640培养液。两者均为贴壁生长型的细胞。将细胞接种于无菌培养皿内,并放置于37℃、5%CO2、100%湿度的细胞培养箱中培养。

1.3 构建细胞培养缺氧微环境

缺氧产气袋AnaeroPack及配套2.5 L密封容器购自日本三菱公司,其基本原理是将密闭空间中的氧气完全吸收掉,然后产生二氧化碳,开发出完全厌氧培养环境(AneroPack-Anaero,30 min反应后氧气浓度降为0)。将培养皿放入装有厌氧产气袋的密闭容器,构建缺氧的培养环境,再放入细胞培养箱中培养。

1.4 实时荧光定量PCR检测

实验所用引物由北京华大基因有限公司合成(引物序列见表 1)。采用SYBR Green Ⅰ试剂进行检测;收获HepG2和Huh7细胞后,提取细胞总RNA,反转录为cDNA;循环参数:95℃ 5 min,94℃ 40 s,60℃ 40 s,72℃ 40 s;共40个循环,最后72℃ 10 min。

表 1 实验所用引物序列 Table 1 Sequences of primers used in the experiment
基因 引物序列
Pokemon F:5'-GGGGACAGCGACGAGGAG-3'
R:5'-CGTAGTTGTGGGCAAAGG-3'
HIF-1α F:5'-TATGAGCCAGAAGAACTTTTAGGC-3'
R:5'-CACCTCTTTTGGCAAGCATCCTG-3'
VEGFA F:5'-TTGCCTTGCTGCTCTACCTCCA-3'
R:5'-GATGGCAGTAGCTGCGCTGATA-3'
VEGFR2 F:5'-GGAACCTCACTATCCGCAGAGT-3'
R:5'-CCAAGTTCGTCTTTTCCTGGGC-3'
ANG2 F:5'-TCCTATGGAGGACATTCCGACG-3'
R:5'-CTGCAACACCATCAATGGCGGA-3'
GAPDH F:5'-CGACAGTCAGCCGCATCTT-3'
R:5'-CCCCATGGTGTCTGAGCG-3'
  注  HIF-1α:缺氧诱导因子-1α(hypoxia inducible factor-1α);VEGFA:血管内皮生长因子A(vascular endothelial growth factor A);VEGFR2:血管内皮生长因子受体2(vascular endothelial growth factor receptor 2);ANG2:促血管生成素2(angiopoietin-2);GAPDH:甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase);F: 上游引物;R: 下游引物
1.5 Western blot检测

RIPA裂解液提取细胞总蛋白,Bradford法检测蛋白浓度,采用恒压电泳及恒流电转将蛋白转移至PVDF膜上,用5%无脂奶粉封闭PVDF膜,孵育一抗(抗体按1∶1 000稀释于BSA液中,加入抗体水平摇床4℃孵育过夜),次日用TBS(含0.1%Tween20)洗涤PVDF膜3次(水平摇床,每次洗膜10 min);孵育二抗(将膜浸泡于按1∶5 000稀释的二抗中,室温下水平摇床缓慢摇动孵育1 h),用TBS洗涤PVDF膜3次(水平摇床,每次洗膜10 min),最后使用ECL法显影。

1.6 靶向Pokemon基因干扰质粒构建及验证

运用RNA干扰技术(RNAi),成功构建靶向Pokemon基因的siRNA重组质粒psiRNA。psiRNA上游引物:5'-CACCAGTAGAATGTGTACGGGATACGTGTGCTGTCCGTATCTCGTCACGTTCTGCTTTTTT-3',下游引物:5'-GCATAAAAAGCAGAACGTGTACGAGATACGGACAGCACACGTATCCCGTACACATTCTACT-3'。将干扰质粒psiRNA和PU6空载质粒分别稳定转染HepG2和Huh7细胞,利用嘌呤霉素筛选出稳转细胞株HepG2 si-Pokemon、HepG2-PU6(对照)、Huh7 si-Pokemon和Huh7-PU6(对照),并在蛋白水平验证Pokemon的干扰效果。

1.7 构建过表达HIF-1α的Hela细胞

培养HeLa细胞密度约占培养板的80%,进行转染,转染前1 d细胞换新的培养液;用250 μL无血清培养液稀释HIF-1α质粒(0、5、10和15 μg),轻轻混匀;用无血清培养液稀释Lipofectamine 2000(0、12.5、25和37.5 μL)至250 μL,轻轻混匀,室温孵育5 min;将质粒稀释液和转染试剂稀释液混匀,室温孵育20 min;将复合物加入培养板中,放入37℃ CO2培养箱孵育36 h,最后用Western blot验证。

1.8 统计学分析

采用Graphpad Prism软件进行数据分析。组间比较采用t检验。以P < 0.05为差异具有统计学意义。

2 结果 2.1 肝细胞癌细胞Pokemon的表达及沉默效果验证

HepG2和Huh7细胞中Pokemon均高表达(图 1)。采用RNA沉默技术构建稳定沉默Pokemon基因的稳转细胞株(HepG2 si-Pokemon和Huh7 si-Pokemon)。Western-blot法显示,HepG2 si-Pokemon和Huh7 si-Pokemon细胞株中Pokemon表达受到抑制(均P < 0.05,图 1)。

图 1 Western blot验证稳转肝细胞癌细胞株中Pokemon的干扰效率 Fig.1 Western blot analysis confirmed siRNA-mediated Pokemon silencing in hepatocellular carcinoma cells
2.2 Pokemon基因沉默抑制肝细胞癌细胞血管形成相关基因的表达

RT-PCR检测显示,与HepG2-PU6细胞比较,HepG2 si-Pokemon细胞中血管形成相关基因(ANG2VEGFAVEGFR2)的表达受到抑制,差异均具有统计学意义(均P < 0.05)。与Huh7-PU6细胞比较,Huh7 si-Pokemon细胞中ANG2VEGFAVEGFR2基因的表达也受到抑制(均P < 0.05,图 2)。

注  A:HepG2细胞Pokemon沉默后血管形成相关基因表达变化;B:Huh7细胞Pokemon沉默后血管形成相关基因表达变化;ANG2:促血管生成素2(angiopoietin-2);VEGFA:血管内皮生长因子A(vascular endothelial growth factor A);VEGFR2:血管内皮生长因子受体2(vascular endothelial growth factor receptor 2);*P < 0.05 图 2 RT-PCR检测沉默Pokemon的肝细胞癌细胞株HepG2和Huh7中血管形成相关基因表达的变化 Fig.2 Expressions of angiogenesis related genes in hepatocellular carcinoma HepG2 and Huh7 cells with Pokemon silenced detected by RT-PCR
2.3 缺氧条件下肝细胞癌细胞Pokemon基因沉默抑制HIF-1α表达

Western blot法检测显示,缺氧条件下,HepG2 si-Pokemon细胞培养2、4和6 h后,HIF-1α的表达均较HepG2-PU6细胞减少(P < 0.05,图 3)。缺氧条件下,Huh7 si-Pokemon细胞培养6 h后,HIF-1α的表达较Huh7-PU6细胞减少(P < 0.05)。

注  A:HepG2-PU6和HepG2 si-Pokemon细胞中HIF-1α和Pokemon的蛋白表达;B:Huh7-PU6和Huh7 si-Pokemon细胞中HIF-1α和Pokemon的蛋白表达;HIF-1a:缺氧诱导因子-1α(hypoxia inducible factor-1α);GAPDH:甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase) 图 3 Western blot法检测缺氧条件下肝细胞癌细胞HepG2 si-Pokemon、HepG2-PU6、Huh7 si-Pokemon和Huh7-PU6中HIF-1α和Pokemon的蛋白表达 Fig.3 Expression of HIF-1α and Pokemon in hepatocellular carcinoma cells HepG2 si-Pokemon, HepG2-PU6, Huh7 si-Pokemon, and Huh7-PU6 detected by Western blot under hypoxia condition

而在Hela细胞中采用0、5、10和15 μg HIF-1α质粒瞬转36 h后,Western blot检测发现,随着HIF-1α的表达增加,Pokemon蛋白的表达变化差异无统计学意义(P > 0.05,图 4)。缺氧条件下,沉默Pokemon基因可抑制HIF-1α的表达,而过表达HIF-1α并不能调控Pokemon的表达。

注  HIF-1a:缺氧诱导因子-1α(hypoxia inducible factor-1α);GAPDH:甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase) 图 4 Western blot检测过表达HIF-1α的HeLa细胞中Pokemon蛋白表达变化 Fig.4 Expression of Pokemon in Hela cells with HIF-1α overexpression detected by Western blot
3 讨论

Pokemon是具有原癌基因活性的转录抑制因子,是POZ and Kruppel(POK)家族中的成员之一,其包括C末端的Kruppel型结构域和N末端的POZ/BTB结构域。N末端结构域可为蛋白招募联合抑制因子,从而起到转录抑制作用。Pokemon基因与多种肿瘤如结肠癌、乳腺癌、前列腺癌和甲状腺肿瘤的发生和发展密切相关[11-14]。研究发现,Pokemon通过多种分子机制促进肿瘤发生和发展:(1)Pokemon可抑制ARF的转录活性,从而激活MDM2,进一步抑制下游靶基因p53的表达,导致肿瘤发生[15];(2)Pokemon可抑制阻滞细胞周期的关键因子p21,调控细胞周期,促进肿瘤的发生和发展[16];(3)Pokemon促进NF-κB入核及定位,并促进NF-κB应答基因E-selectin的转录活性,从而导致肿瘤的发生[17]。而在肝细胞癌中,目前已有研究证实,原癌基因Pokemon可通过促进肝癌细胞的增殖及抑制其凋亡参与肿瘤发生和发展[9-10]。但是Pokemon对肿瘤细胞血管形成相关方面的机制研究较少,而本实验结果显示,Pokemon在肝细胞癌血管形成中起着关键性作用。

肝癌细胞代谢旺盛,需要依赖肿瘤新生血管来供给营养,因此肿瘤血管形成在肝癌细胞中增殖、侵袭和转移中起着至关重要的作用[18]。促血管生成因子VEGF和VEGFR在肝细胞癌血管形成中起着关键性的作用[6, 19]。肿瘤缺氧微环境是固体肿瘤中常见现象,也常见于肝细胞癌中[20]。其可诱导HIF-1α的形成。HIF-1α作为低氧适应性介导者,可活化血管形成信号通路的相关基因包括VEGFVEGFR[21]。在肝癌中血管形成相关基因ANG2VEGFAVEGFR2是高表达的[22-23],也有临床研究显示,VEGF与肝癌进展及临床预后差高度相关[21, 24]。本研究显示,在抑制Pokemon基因的表达后,血管形成相关基因的表达均受到抑制,说明Pokemon基因与肝癌细胞血管形成正相关。为了研究其调控的相关分子机制,本研究模拟了肝癌细胞生存的缺氧微环境,证实了Pokemon可调控HIF-1α的表达。在肝癌细胞中,Pokemon可能通过上调HIF-1α的表达而促进肝癌细胞的血管形成。

综上所述,Pokemon不仅参与肝癌细胞增殖和凋亡过程。本研究也证实,Pokemon可参与肝癌细胞血管形成。目前肝癌的治疗主要有手术、射频消融、介入靶向和免疫疗法[25-26],结合本研究结果,Pokemon基因有望成为肝细胞癌的生物学标志物及治疗的有效靶点,对肝细胞癌的诊断、疗效预测及预后起关键性作用。

参考文献
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI:10.3322/caac.21492
[2]
Cao H, Chen XS, Wang ZJ, et al. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation[J]. Cell Death Discov, 2020, 6: 53.
[3]
Alqahtani A, Khan Z, Alloghbi A, et al. Hepatocellular carcinoma: molecular mechanisms and targeted therapies[J]. Medicina (Kaunas), 2019, 55(9): E526. DOI:10.3390/medicina55090526
[4]
王雪, 郭传影, 王侠, 等. 基于TCGA数据集分析CSTF2基因在肝细胞癌中的表达和临床意义[J]. 实用肿瘤杂志, 2021, 36(6): 550-555. DOI:10.13267/j.cnki.syzlzz.2021.108
[5]
Srivastava A, Shukla V, Tiwari D, et al. Targeted therapy of chronic liver diseases with the inhibitors of angiogenesis[J]. Biomedecine Pharmacother, 2018, 105: 256-266. DOI:10.1016/j.biopha.2018.05.102
[6]
Morse MA, Sun WJ, Kim R, et al. The role of angiogenesis in hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(3): 912-920. DOI:10.1158/1078-0432.CCR-18-1254
[7]
Ceci C, Atzori MG, Lacal PM, et al. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic cancer models[J]. Int J Mol Sci, 2020, 21(4): 1388. DOI:10.3390/ijms21041388
[8]
Weinkopff T, Roys H, Bowlin A, et al. Leishmania infection induces macrophage vascular endothelial growth factor A production in an ARNT/HIF-dependent manner[J]. Infect Immun, 2019, 87(11): e00088-e00019.
[9]
Lin CC, Zhou JP, Liu YP, et al. The silencing of Pokemon attenuates the proliferation of hepatocellular carcinoma cells in vitro and in vivo by inhibiting the PI3K/Akt pathway[J]. PLoS One, 2012, 7(12): e51916. DOI:10.1371/journal.pone.0051916
[10]
Zhang YQ, Xiao CX, Lin BY, et al. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells[J]. PLoS One, 2013, 8(7): e68981. DOI:10.1371/journal.pone.0068981
[11]
Wang L, Zhang MX, Zhang MF, et al. ZBTB7A functioned as an oncogene in colorectal cancer[J]. BMC Gastroenterol, 2020, 20(1): 370. DOI:10.1186/s12876-020-01456-z
[12]
Chen L, Zhong J, Liu JH, et al. Pokemon inhibits transforming growth factor β-Smad4-related cell proliferation arrest in breast cancer through specificity protein 1[J]. J Breast Cancer, 2019, 22(1): 15-28. DOI:10.4048/jbc.2019.22.e11
[13]
Jiang FQ, Zheng QF, Chang LP, et al. Pro-oncogene pokemon promotes prostate cancer progression by inducing STRN4 expression[J]. J Cancer, 2019, 10(8): 1833-1845. DOI:10.7150/jca.29471
[14]
Chang K, Do SI, Kim K, et al. Proto-oncogene Pokemon in thyroid cancer: a potential promoter of tumorigenesis in papillary thyroid carcinoma[J]. J Pathol Transl Med, 2021, 55(5): 317-323. DOI:10.4132/jptm.2021.06.28
[15]
Agrawal A, Yang JH, Murphy RF, et al. Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer[J]. Exp Mol Pathol, 2006, 81(2): 115-122. DOI:10.1016/j.yexmp.2006.07.001
[16]
Zhu XS, Dai YC, Chen ZX, et al. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity[J]. Oncol Res, 2013, 20(8): 377-381. DOI:10.3727/096504013X13657689383012
[17]
Choi WI, Jeon BN, Yun CO, et al. Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1[J]. J Biol Chem, 2009, 284(19): 12633-12644. DOI:10.1074/jbc.M809794200
[18]
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2): 455-467.
[19]
Choi SB, Han HJ, Kim WB, et al. VEGF overexpression predicts poor survival in hepatocellular carcinoma[J]. Open Med (Wars), 2017, 12: 430-439. DOI:10.1515/med-2017-0061
[20]
Xiong XX, Qiu XY, Hu DX, et al. Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma[J]. Mol Pharmacol, 2017, 92(3): 246-255. DOI:10.1124/mol.116.107706
[21]
Liu F, Luo LM, Wei YG, et al. Association of VEGFA polymorphisms with susceptibility and clinical outcome of hepatocellular carcinoma in a Chinese Han population[J]. Oncotarget, 2017, 8(10): 16488-16497. DOI:10.18632/oncotarget.14870
[22]
Zhang L, Wang JN, Tang JM, et al. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells[J]. Mol Biol Rep, 2012, 39(5): 5085-5093. DOI:10.1007/s11033-011-1304-2
[23]
Bupathi M, Kaseb A, Janku F. Angiopoietin 2 as a therapeutic target in hepatocellular carcinoma treatment: current perspectives[J]. Onco Targets Ther, 2014, 7: 1927-1932.
[24]
Mao CS, Yin H, Ning HB, et al. Levels of HBx, VEGF, and CEACAM1 in HBV-related hepatocellular carcinoma and their correlation with cancer prognosis[J]. Eur Rev Med Pharmacol Sci, 2017, 21(17): 3827-3833.
[25]
都亚薇, 张宁宁, 陆伟. 肝癌免疫治疗的研究现状及展望[J]. 实用肿瘤杂志, 2021, 36(5): 393-398.
[26]
孙瑾瑜, 刘亨晶, 汪泳, 等. ABCB1与肝细胞癌多药耐药的研究进展[J]. 实用肿瘤杂志, 2020, 35(6): 574-578. DOI:10.13267/j.cnki.syzlzz.2020.06.019