文章信息
- 曹鹏, 邱萌
- Cao Peng, Qiu Meng
- 微卫星稳定型结直肠癌免疫治疗研究进展及热点
- Research progress and hotspots of immunotherapy for microsatellite stable colorectal cancer
- 实用肿瘤杂志, 2022, 37(2): 99-106
- Journal of Practical Oncology, 2022, 37(2): 99-106
-
通信作者
- 邱萌,E-mail:qiumeng33@hotmail.com
-
文章历史
- 收稿日期:2022-01-03
微卫星稳定型(microsatellite stable,MSS)结直肠癌约占全部结直肠癌的85%和转移性结直肠癌的95%。其免疫微环境特征以免疫豁免型和免疫荒漠型为主,肿瘤淋巴细胞浸润水平和肿瘤突变负荷(tumor mutational burden,TMB)低[1],也被认为是典型“冷肿瘤”。KEYNOTE 016研究已表明,MSS型转移性结直肠癌(metastatic colorectal cancer,mCRC)对单一免疫检查点抑制剂基本无效[2]。如何突破MSS型结直肠癌患者免疫治疗耐药瓶颈,最重要的是通过基础或转化研究明确其免疫逃逸和耐受的关键机制。受限于机制探索和新药开发尚缺乏突破性进展,临床上目前主要采用两种策略来努力提高现有结直肠癌免疫治疗疗效:(1)“联合策略”,希望通过免疫治疗与放化疗、靶向和其他局部治疗等联合手段调节MSS型结直肠癌免疫微环境,将“冷肿瘤”转变为“热肿瘤”; (2)“筛选策略”,寻找MSS型结直肠癌中免疫治疗获益的潜在分子生物标志物。以上两种策略在晚期和局部晚期结直肠癌中都在进行广泛探索。
1 晚期结直肠癌的免疫联合策略 1.1 免疫检查点抑制剂联合抗血管生成靶向药物临床前研究表明,血管内皮生长因子(vascular endothelial growth factor,VEGF)/血管内皮生长因子受体(vascular endothelial growth factor receptor,VEGFR)抑制剂可使肿瘤血管新生减少及血管正常化,增加氧气、抗肿瘤药物输送及效应免疫T细胞的浸润,增加T细胞应答的高效启动和活化,同时减少免疫抑制细胞的浸润如M2型肿瘤相关性巨噬细胞(tumor-associated macrophages with an M2 phenotype,TAMs-M2型)和调节T细胞(regulatory T cell,Treg)等,从而与免疫治疗具有协同作用[3]。以抑制VEGFR为主的多靶点酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)药物联合程序性死亡受体-1(programmed death-1,PD-1)单抗是目前最有临床前景的联合方案之一。日本REGONIVO研究是首次报道采用纳武利尤单抗联合低剂量瑞戈非尼治疗难治性MSS型结直肠癌和胃癌的探索性Ⅰb期研究,在MSS型mCRC中客观缓解率(objective response rate,ORR)高达33.3%,1年无进展生存(progression-free survival,PFS)率为41.8%,1年总生存(overall survival,OS)率为68.0%[4]。之后陆续有采用不同TKI或PD-1/程序性死亡受体配体-1(programmed death ligand-1,PD-L1)单抗联合方案作为mCRC后线治疗的多项单臂研究报道,包括北美REGNIVO[5]、REGOMUNE研究[6](瑞戈非尼联合阿维鲁单抗)、REGOTORI研究[7](瑞戈非尼联合特瑞普利单抗)、呋喹替尼联合信迪利单抗研究[8-9]以及LEAP-005研究结直肠癌队列[10](仑伐替尼联合帕博利珠单抗)等。这些研究虽没有重复出日本REGNIVO研究的高ORR,每项研究使用的药物不同且TKI剂量高低也各有差异,疗效有效率评估的独立性不同,但总体上免疫联合抗血管生成TKI方案作为mCRC三线治疗的研究报道ORR约在7%~27%,疾病控制率(disease control rate,DCR)为39%~80%,中位OS为7.5~15.5个月,与既往标准三线单药治疗(瑞戈非尼、呋喹替尼或TAS 102)随机对照试验(randomized controlled trial,RCT)研究结果比较ORR及OS在数值上均有一定提高,未来非常需要开展前瞻性RCT来头对头比较抗血管TKI联合免疫治疗与标准三线治疗的疗效和安全性,以最终支持这一联合策略进入临床诊治指南。
单抗类抗肿瘤血管生成靶向药物如贝伐珠单抗联合免疫治疗研究多为RCT研究,但屡屡受挫。2019年欧洲肿瘤内科学会(European Society for Medical Oncology,ESMO)报道的BACCI研究比较了卡培他滨和贝伐珠单抗联合阿特珠单抗或安慰剂作为三线治疗晚期结直肠患者的疗效[11]。结果显示,阿特珠单抗组较安慰剂组ORR稍提高,但中位PFS和OS无改善。MODUL研究维持队列也显示,一线治疗达疾病稳定的mCRC在5-FU+贝伐珠单抗基础上联合阿特珠单抗作为维持治疗也不改善PFS及OS[12]。直到2021年ESMO会议报道的ATEZOTRIBE研究似乎带来一丝曙光[13]。这项Ⅱ期研究共纳入218例不可手术切除的mCRC,95%是MSS型,按2∶1随机接受FOLFOXIRI(奥沙利铂+伊利替康+亚叶酸钙+氟尿嘧啶)加贝伐珠单抗联合或不联合阿特珠单抗,主要研究终点无病进展生存时间比较,两组差异具有统计学意义(13.1个月 vs 11.5个月,P=0.012),但在MSS型亚组患者中,两组差异无统计学意义(12.9个月 vs 11.4个月,P=0.071),这样的PFS优势还需获得临床医师的接受,较为意外的是,联合阿特珠单抗组的缓解率及R0切除率均低于对照组,似乎在三药化疗联合贝伐珠单抗基础上再联合免疫治疗的强强模式在未来转化治疗方向上也缺乏优势。目前还有一些RCT研究仍在探索标准一线化疗与贝伐珠单抗基础上联合免疫治疗是否有效。
不同机制抗血管生成靶向药物与免疫治疗联合时出现疗效差异的具体机制不明,推测原因可能与TKI类药物均为多靶点,除了抑制VEGF/VEGFR通路,还可能通过抑制与免疫调控相关的靶点如血小板衍生生长因子受体(platelet-derived growth factor receptor,PDGFR)、促血管生成素受体(angiopoietin-2 receptor,TIE2)和集落刺激因子1受体(colony-stimulating factor 1 receptor,CSF-1R)等来产生更强的抗血管与免疫治疗协同作用[14]。不过TKI类药物联合免疫治疗尚缺乏前瞻性对照研究,这个结论还不宜下得过早。
1.2 免疫治疗联合抑制有丝分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路靶向药物抗表皮生长因子受体(epidermal growth factor receptor,EGFR)单抗本身有直接杀伤肿瘤作用,如西妥昔单抗作为IgG1单克隆抗体还具有抗体依赖的细胞介导的细胞毒作用(antibody-dependent cell-mediated cytotoxicity,ADCC效应),可招募anti-EGFR T细胞及CD8+/CD3+ T细胞,同时西妥昔单抗可增加肿瘤细胞的PD-L1表达,诱导免疫抑制[15],因此抗EGFR单抗与PD-1单抗可能存在协同效应,一些小样本研究初步探索这种联合模式。一线治疗方面,德国一项单臂Ⅱ期研究AVETUX研究探索化疗[FOLFOX(奥沙利铂+亚叶酸钙+氟尿嘧啶)] 与西妥昔单抗联合PD-L1单抗(avelumab)在初治RAS/ V-raf鼠肉瘤病毒癌基因同源体B(V-raf murine sarcoma viral oncogene homolog,BRAF)野生型mCRC中的疗效与安全性,结果显示,1年PFS率为40.0%,中位PFS为11.1个月,早期缩瘤率(early tumor shrinkage,ETS)为79.5%,3~4级不良反应发生率为60.5%[16]。后线治疗方面,对于既往使用过西妥昔单抗的患者,CAVE和AVETUXIRI两项单臂研究分别探索了西妥昔单抗或西妥昔单抗和伊立替康联合阿维鲁单抗的疗效[17-18],也被称为“西妥昔单抗再挑战联合免疫治疗”方案,RAS野生型的有效率分别为8.5%和30.0%,中位OS均为12个月,从数值上与既往单纯西妥昔单抗再挑战的CRICKET研究比较疗效似无差异[19]。而对于既往未使用过西妥昔单抗的RAS野生型mCRC,一项Ⅱ期研究观察双免治疗(伊匹单抗和纳武利尤单抗)联合帕尼单抗的疗效,49例患者ORR高达40.8%,中位PFS为5.7个月,中位OS更达到惊人的27个月[20],值得进一步扩大样本验证。不过真实世界中RAS野生型mCRC在前线治疗中基本都接受过西妥昔单抗,这种联合未来的适用患者较少。
MEK抑制剂与免疫联合的研究走的是“高开低走”路线。MEK抑制剂cobimetinib在临床前研究中显示可上调癌细胞的主要组织相容性复合物Ⅰ (major histocompatibility complex Ⅰ,MHC-Ⅰ)类抗原,诱导肿瘤内T细胞浸润,增强PD-L1单抗atezolizumab的抗瘤活性[21]。Ⅰb期研究中,23例MSS型结直肠癌患者[其中22例为V-Ki-ras2 Kirsten大鼠肉瘤病毒癌基因同源物(V-Ki-ras 2 Kirsten rat sarcoma viral oncogene homolog,KRAS)突变]接受cobimetinib联合atezolizumab治疗获得鼓舞人心的高ORR(17.4%) [22]。然而后续开展的Ⅲ期研究IMblaze370却以失败告终,cobimetinib联合atezolizumab在OS方面没能优于atezolizumab单药和瑞戈非尼组[23],后续转化研究如不能筛选到有效的生物标志物并进一步印证,这一联合策略将被放弃。
针对特殊基因型BRAFV600E突变/MSS型结直肠癌,目前标准二线及后线治疗为BARF抑制剂联合抗EGFR单抗或MEK抑制剂,能否也从联合免疫治疗中获益尚不清楚,基于BRAFV600E人群异质性的基因组学研究结果似也提示存在免疫治疗敏感人群。2020年ESMO报道一项丹娜法伯中心开展的研究,针对BRAFV600E突变mCRC患者采用BRAF抑制剂达拉菲尼、MEK抑制剂曲美替尼及PD-1单抗(PDR001)三联治疗,21例患者的ORR为35.0%,DCR为75.0%; 12例未接受过BRAF抑制剂治疗的MSS型患者ORR达41.6%[24],结果让人眼前一亮,显示了在这一特殊基因患者中双靶联合免疫治疗可能是潜在有效的方案。
1.3 免疫检查点抑制剂联合单纯化疗多数研究表明,化疗药物如烷化剂、铂类、FU类和紫杉类等可能通过诱发免疫原性细胞死亡,增加MHC-Ⅰ类分子表达和肿瘤细胞新生抗原释放,清除或极化免疫抑制细胞,增加肿瘤细胞PD-L1表达等途径改善肿瘤免疫微环境,但化疗种类、剂量、用法和序贯方式等可能产生截然不同的免疫调控作用[25]。KEYNOTE-651研究拟评估帕博利珠单抗同步联合标准用法的一线mFOLFOX7(奥沙利铂+亚叶酸钙+氟尿嘧啶)或二线FOLFIRI(伊利替康+亚叶酸钙+氟尿嘧啶)治疗mCRC的疗效与毒性,结果显示,安全性可,帕博利珠单抗联合mFOLFOX7组ORR为58.1%,帕博利珠单抗联合FOLFIRI组ORR为15.6%[26]。MEDETREME研究则采用FOLFOX联合度伐利尤单抗和tremelimumab双免一线治疗,ORR更高(62.5%),完全缓解(complete remission,CR)率达31.3%[27]。METIMMOX研究则探索短程重复序贯奥沙利铂为基础的节拍式化疗[FLOX(奥沙利铂+氟尿嘧啶)]联合纳武利尤单抗对比FLOX方案一线治疗MSS型mCRC的疗效,ORR分别为50.0%和23.1%,联合组CR率为17.9%,中位PFS分别为6.6和5.6个月[28]。以上研究结果与既往一线或二线化疗联合靶向治疗Ⅲ期研究比较,在ORR及生存方面似未看到明显优势,但CR率却惊人,到底是各研究入组患者的肿瘤病灶特征差异还是疗效评估的准确性差异所致不得而知。在靶向治疗已是前线标准治疗的大背景下,未来更多的探索方向会聚焦于三联方案即免疫联合化疗及靶向治疗,比如前面提及过的ATEZOTRIBE研究以及国内浙江大学医学院附属第二医院团队正在开展的XELOX(奥沙利铂+卡培他滨)+贝伐珠单抗联合PD-1单抗的Ⅲ期RCT研究等。
与DNA修复酶相关的化疗药物可能会在化疗与免疫治疗联合的竞争中脱颖而出,原因在于其特殊的协同机制。如O6-甲基鸟嘌呤-DNA甲基转移酶(O6 methylguanine DNA methyltransferase,MGMT)的功能是修复烷化剂导致的DNA损伤,MGMT基因启动子过甲基化导致的基因失活增强肿瘤细胞对烷化剂如替莫唑胺(temozolomide,TMZ) 的敏感性,有MGMT基因沉默(启动子甲基化及蛋白表达缺失)的肿瘤接受TMZ作用后肿瘤可出现较多继发性基因突变,导致继发高TMB。MAYA研究正是基于此理论在MSS型结直肠癌中探索TMZ诱导化疗后联合免疫的策略[29]。该Ⅱ期研究纳入多线治疗无效且有MGMT沉默表达的MSS型mCRC,接受2个周期TMZ治疗后无进展者接受TMZ联合双免治疗,近期疗效ORR高达39.0%,远高于既往报道的MGMT沉默结直肠癌单用TMZ仅10%左右的疗效,生存数据尚不成熟,但亮眼的近期疗效已吸引研究者浓厚兴趣,扩大样本的研究值得期待。
1.4 双免疫检查点抑制剂联合或联合其他机制免疫治疗结直肠癌免疫调控是多环节、多步骤和多机制参与的过程。不同作用机制的免疫治疗联合也是在MSS型结直肠癌中最早探寻的模式之一。CCTG CO.26研究是目前唯一一项对照比较细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA4)单抗tremelimumab联合PD-L1单抗度伐利尤单抗(双免疫组)与最佳支持治疗(best supportive care,BSC; BSC组)作为mCRC后线治疗的RCT研究[30]。结果显示,双免疫组较BSC组中位OS延长2个月(6.6个月 vs 4.1个月,P=0.03),但PFS和ORR未改善,ORR仅1%。后续分析显示,该研究入组患者的中位TMB高达20.4 mut/Mb; TMB > 28 mut/Mb的患者更从双免治疗中获益[31]。这种模式最大的障碍可能是临床上MSS型结直肠癌高TMB的患者还是太少了。此外,陆续也有一些早期研究报道其他免疫联合药物,如抗淋巴细胞活化基因3(lymphocyte-activation gene 3,LAG-3)抗体MK4280联合帕博利珠单抗,转化生长因子-β(transforming growth factor-β,TGF-β)1型受体抑制剂vactosertib联合帕博利珠单抗等,基本还在Ⅰ期研究阶段,但从目前报道的结果难以出现重大进展[32-33]。
1.5 免疫检查点抑制剂联合局部治疗(放疗和消融)理论上,放疗和免疫治疗具有“相互增敏”的作用,放疗可释放肿瘤抗原、促进肿瘤浸润T细胞的聚集、诱导肿瘤组织PD-L1表达上调和增强T细胞源性抗肿瘤细胞因子分泌等,同时,免疫治疗有利于解除T细胞抑制,增强放疗对局部肿瘤的杀灭作用,放疗联合免疫治疗还可引起“远隔效应”[34],消融治疗也有类似机制[35]。在mCRC中局部治疗联合免疫的研究报道不多,美国麻省总院的Ⅱ期研究采用纳武利尤单抗与伊匹木单抗联合部分病灶放疗治疗40例MSS型mCRC,主要终点为非放疗病灶的ORR[36]。结果显示,ORR为12.5%,DCR为29.2%,取得DCR者,中位OS达到15.8个月。与前面提及的靶向联合免疫疗效比较,优势尚不明显,是否与局部治疗的模式比如放疗分割方式(大或常规)、剂量(高或低)、放疗靶区选择(负荷和器官)、序贯顺序(诱导或同步)以及消融方法(冷或热)等有关,期待未来扩大样本的研究和获益人群的筛选。
2 MSS型局部晚期结直肠癌免疫治疗 2.1 局部晚期结肠癌的免疫新辅助治疗肺癌、恶性黑色素瘤以及泌尿系肿瘤中新辅助免疫治疗的优异结果掀起了在其他实体瘤中探索的研究浪潮,不过目前可切除局部晚期结肠癌的新辅助化疗都尚不是标准治疗,MSS型mCRC免疫治疗疗效差,这样的背景下探索MSS型结肠癌的免疫新辅助起初并不被期待。NICHE研究是首项报道的Ⅰ~Ⅲ期结肠癌双免治疗作为术前新辅助治疗的小样本研究,纳入错配修复缺陷(deficient mismatch repair,dMMR)和无错配修复缺陷(proficient mismatch repair,pMMR)两个队列,患者接受6周双免治疗后6周内接受手术[37]。结果显示,安全性可接受,20例dMMR患者100%获得病理缓解,60.0%达完全病理缓解(pathologic complete response,pCR); 让人意外的是,在15例可评估病理的pMMR患者中,也有4例(26.7%)表现出病理缓解,其中3例达主要病理缓解(major pathologic response,MPR; 重大病理缓解,残留肿瘤 < 10%),2例达到pCR,1例1%残留肿瘤,后续免疫微环境分析显示T细胞CD8+ PD-1+共表达可能是pMMR肠癌免疫应答的预测因素。NICOLE研究是单免纳武利尤单抗治疗未经选择MMR状态的cT3/T4可切除结肠癌的新辅助治疗研究[38]。试验队列接受2次纳武利尤单抗单药治疗后手术,对照队列为直接手术; 结果表明,试验队列22例患者有2例pMMR/MSS患者观察到MPR(包括1例CR),4例观察到肿瘤退缩≥30%,与对照队列比较,NICOLE队列(试验队列)肿瘤的CD3+和CD8+ T细胞水平更高。两项研究似乎都在提示MSS型早期结直肠癌与晚期结直肠癌对免疫治疗的敏感性存在差异,可能与结直肠癌发展不同阶段肿瘤免疫微环境、宿主机体免疫状态及免疫逃逸机制存在差异及动态改变相关,这是非常有趣的研究方向。
2.2 MSS型局部晚期直肠癌免疫新辅助放化疗新辅助放化疗是局部晚期直肠癌的标准治疗模式,包括长程同步放化疗和短程放疗[39]。在标准模式基础上增加免疫治疗是期望能获得更好的术前肿瘤退缩和病理缓解,目前研究结果基本为近期疗效及安全性; 不同的研究采用的放疗方式存在不同,多采用放疗或放化疗后序贯免疫治疗的治疗顺序。日本VOLTAGE研究及意大利ANAVA研究均采取标准同步放化疗结束后序贯免疫治疗(纳武利尤单抗或avelumab),pCR分别为29.7%和21.8%,数值上稍高于历史新辅助放化疗pCR率(约15%~18%)[40-41]。然而随机对照研究NRG-GI002研究则采用全程新辅助治疗(total neoadjuvant therapy,TNT)模式即8个周期FOLFOX化疗序贯同步放化疗,试验组是卡培他滨联合帕博利珠单抗与放疗同步,对照组是单纯卡培他滨与放疗同步; 结果显示,对照组和帕博利珠单抗组pCR分别为29.4%和31.9%,差异无统计学意义(P=0.75)[42]。在放疗与免疫的协同效应方面,更多研究支持大分割放疗的免疫增效作用; 动物研究证实,大分割放疗抑制小鼠肿瘤生长的作用优于常规分割放疗,大分割放疗联合免疫治疗可诱导更多的远隔效应[43]。武汉协和医院报道一项Ⅱ期单臂研究正是采用短程5 Gy×5 f放疗序贯XELOX联合卡瑞利珠单抗治疗2个周期的新辅助治疗模式,分析的26例MSS型直肠癌pCR率达到46.2%,高于既往报道[44],基于此结果,研究者已开展Ⅲ期多中心随机对照研究。复旦大学附属肿瘤医院章真教授课题组正在开展一项在短程放疗的基础上采取TNT免疫化疗联合治疗模式,并分为诱导化疗免疫和巩固化疗免疫两个治疗组,对不同治疗组合模式进行比较,期待结果的验证和模式的优化。
3 MSS型肠癌免疫治疗疗效预测生物标志物探索除了罕见的DNA聚合酶ɛ(polymerase epsilon,POLE)/DNA聚合酶delta(polymerase delta,POLD)基因突变,目前还没有被公认的MSS型结直肠癌免疫治疗的疗效预测生物标志物或临床病理特征,但研究者们仍坚持利用现代分子生物技术及分析方法,以下是潜在的临床或分子预测标志物。
3.1 POLE/POLD基因突变POLE/POLD基因突变在全部结直肠癌中发生率约7%,多数发生于MSS型结直肠癌。POLE/POLD1基因突变肠癌通常伴有高TMB状态。既往研究表明,POLE或POLD1突变是实体瘤免疫治疗有效的疗效预测标志物[45]。后续有回顾性研究结果进一步表明,具有POLE致病性突变可能才是免疫治疗敏感的关键因素[46]。
3.2 TMB虽然最新荟萃分析及CO.26研究表明,高TMB状态与MSS型结直肠癌免疫治疗获益相关,但各研究的样本数量有限及TMB分析方法、高TMB界值不同(9~28 mut/Mb)[4, 30, 47],因此TMB的临床意义仍存在较大争议,尚无法指导临床。
3.3 转移器官REGNIVO、REGOMUNE及REGOTORI等多项研究亚组分析均提示,肝转移是免疫治疗负性疗效因素,肝转移灶对免疫治疗几乎无效,其机制可能与肝脏免疫微环境中巨噬细胞亚群诱导CD8+ T细胞凋亡或树突状细胞(dendritic cell,DC)有关[48-49]。
3.4 肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte,TIL)、免疫评分和PD-L1表达肿瘤淋巴细胞浸润尤其是CD8+ T细胞密度与结直肠癌预后相关[50],基于肿瘤免疫细胞比例的免疫评分在早中期结直肠癌中的预后预测价值甚至高于TNM分期及微卫星不稳定性(microsatellite instability,MSI)状态[51],但在晚期肠癌中对免疫治疗的疗效预测价值尚未显现。肿瘤组织PD-L1高表达在许多实体瘤中都与免疫治疗疗效相关,但在晚期结直肠癌中前瞻性研究分析表明,其表达不具有免疫疗效预测作用[52]。
4 结语MSS型结直肠癌作为对免疫检查点抑制剂不敏感的“冷肿瘤”,其免疫治疗之路虽启程艰难,进展缓慢,但仍有众多小样本研究初步探索了多种免疫联合治疗策略,在晚期结直肠癌多线治疗及局部晚期结直肠癌围手术期治疗中都有值得深入的“亮点”方向。未来MSS型结直肠癌免疫治疗的突破,需要依赖基础与临床研究者共同努力,阐明MSS型结直肠癌免疫逃逸和免疫耐受的关键机制和靶点,引导开发出更有效的免疫治疗方法或药物; 在目前阶段,需要继续扩大样本开展RCT研究,夯实免疫联合治疗策略的有效性,同时进一步寻找生物标志物指导筛选免疫获益人群,重视特殊有效的个体患者,以指导下一阶段更加精准的研究和治疗模式探寻。MSS型结直肠癌免疫之路未来仍可期。
[1] |
Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 361-375. |
[2] |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520. DOI:10.1056/NEJMoa1500596 |
[3] |
Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340. |
[4] |
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ⅰb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061. DOI:10.1200/JCO.19.03296 |
[5] |
Fakih M, Raghav KPS, Chang DZ, et al. Single-arm, phase 2 study of regorafenib plus nivolumab in patients with mismatch repair-proficient (pMMR)/microsatellite stable (MSS) colorectal cancer (CRC)[J]. J Clin Oncol, 2021, 39(15_suppl): 3560. DOI:10.1200/JCO.2021.39.15_suppl.3560 |
[6] |
Cousin S, Bellera CA, Guégan JP, et al. REGOMUNE: a phase Ⅱ study of regorafenib plus avelumab in solid tumors-Results of the non-MSI-H metastatic colorectal cancer (mCRC) cohort[J]. J Clin Oncol, 2020, 38(15_suppl): 4019. DOI:10.1200/JCO.2020.38.15_suppl.4019 |
[7] |
Wang F, He MM, Yao YC, et al. Regorafenib plus toripalimab in patients with metastatic colorectal cancer: a phase Ⅰb/Ⅱ clinical trial and gut microbiome analysis[J]. Cell Rep Med, 2021, 2(9): 100383. DOI:10.1016/j.xcrm.2021.100383 |
[8] |
Gou MM, Yan H, Liu Tie E, et al. Fruquintinib combination with sintilimab in refractory metastatic colorectal cancer patients in China[J]. J Clin Oncol, 2020, 38(15_suppl): 4028. DOI:10.1200/JCO.2020.38.15_suppl.4028 |
[9] |
Guo Y, Zhang WJ, Ying JE, et al. Preliminary results of a phase 1b study of fruquintinib plus sintilimab in advanced colorectal cancer[J]. J Clin Oncol, 2021, 39(15_suppl): 2514. DOI:10.1200/JCO.2021.39.15_suppl.2514 |
[10] |
Gomez-Roca CA, Yanez E, Im SA, et al. LEAP-005: A phase 2 multicohort study of lenvatinib plus pembrolizumab in patients with previously treated selected solid tumors-Results from the colorectal cancer cohort[J]. J Clin Oncol, 2021, 39(15_suppl): 3564. DOI:10.1200/JCO.2021.39.15_suppl.3564 |
[11] |
Mettu NB, Twohy E, Ou FS, et al. BACCI: a phase Ⅱ randomized, double-blind, multicenter, placebo-controlled study of capecitabine (C) bevacizumab (B) plus atezolizumab (A) or placebo (P) in refractory metastatic colorectal cancer (mCRC): an ACCRU network study[J]. Ann Oncol, 2019, 30: v203. |
[12] |
Grothey A, Tabernero J, Arnold D, et al. Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): Findings from Cohort 2 of MODUL - a multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy[J]. Ann Oncol, 2018, 29: LBA19. |
[13] |
Cremolini C, Rossini D, Antoniotti C, et al. LBA20 FOLFOXIRI plus bevacizumab (bev) plus atezolizumab (atezo) versus FOLFOXIRI plus bev as first-line treatment of unresectable metastatic colorectal cancer (mCRC) patients: results of the phase Ⅱ randomized AtezoTRIBE study by GONO[J]. Ann Oncol, 2021, 32: S1294-S1295. |
[14] |
Arai H, Battaglin F, Wang JY, et al. Molecular insight of regorafenib treatment for colorectal cancer[J]. Cancer Treat Rev, 2019, 81: 101912. DOI:10.1016/j.ctrv.2019.101912 |
[15] |
Ferris RL, Lenz HJ, Trotta AM, et al. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation[J]. Cancer Treat Rev, 2018, 63: 48-60. |
[16] |
Stein A, Binder M, Goekkurt E, et al. Avelumab and cetuximab in combination with FOLFOX in patients with previously untreated metastatic colorectal cancer (MCRC): final results of the phase Ⅱ AVETUX trial (AIO-KRK-0216)[J]. J Clin Oncol, 2020, 38(4_suppl): 96. DOI:10.1200/JCO.2020.38.4_suppl.96 |
[17] |
Martinelli E, Martini G, Troiani T, et al. 397O Avelumab plus cetuximab in pre-treated RAS wild type metastatic colorectal cancer patients as a rechallenge strategy: the phase Ⅱ CAVE (cetuximab-avelumab) mCRC study[J]. Ann Oncol, 2020, 31: S409-S410. |
[18] |
van den Eynde M, Huyghe N, de Cuyper A, et al. Interim analysis of the AVETUXIRI trial: Avelumab combined with cetuximab and irinotecan for treatment of refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC)—A proof of concept, open-label, nonrandomized phase Ⅱa study[J]. J Clin Oncol, 2021, 39(3_suppl): 80. DOI:10.1200/JCO.2021.39.3_suppl.80 |
[19] |
Cremolini C, Rossini D, Dell'Aquila E, et al. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial[J]. JAMA Oncol, 2019, 5(3): 343-350. DOI:10.1001/jamaoncol.2018.5080 |
[20] |
Lee MS, Loehrer PJ, Imanirad I, et al. Phase Ⅱ study of ipilimumab, nivolumab, and panitumumab in patients with KRAS/NRAS/BRAF wild-type (WT) microsatellite stable (MSS) metastatic colorectal cancer (mCRC)[J]. J Clin Oncol, 2021, 39(3_suppl): 7. DOI:10.1200/JCO.2021.39.3_suppl.7 |
[21] |
Ebert PJR, Cheung J, Yang YG, et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade[J]. Immunity, 2016, 44(3): 609-621. |
[22] |
Bendell JC, Kim TW, Goh BC, et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC)[J]. J Clin Oncol, 2016, 34(15_suppl): 3502. |
[23] |
Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial[J]. Lancet Oncol, 2019, 20(6): 849-861. |
[24] |
Corcoran R, Giannakis M, Allen J, et al. SO-26 Clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAFV600E colorectal cancer patients[J]. Ann Oncol, 2020, 31: S226-S227. |
[25] |
Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, et al. Paradigms on immunotherapy combinations with chemotherapy[J]. Cancer Discov, 2021, 11(6): 1353-1367. |
[26] |
Kim R, Chaves J, Kavan P, et al. 493P Pembrolizumab (pembro) plus mFOLFOX7 or FOLFIRI in patients (pts) with metastatic colorectal cancer (mCRC): updated results from KEYNOTE-651 cohorts B and D[J]. Ann Oncol, 2020, 31: S450. |
[27] |
Ghiringhelli F, Chibaudel B, Taieb J, et al. Durvalumab and tremelimumab in combination with FOLFOX in patients with RAS-mutated, microsatellite-stable, previously untreated metastatic colorectal cancer (MCRC): Results of the first intermediate analysis of the phase Ⅰb/Ⅱ MEDETREME trial[J]. J Clin Oncol, 2020, 38(15_suppl): 3006. |
[28] |
Ree AH, Hamre H, Kersten C, et al. Repeat sequential oxaliplatin-based chemotherapy (FLOX) and nivolumab versus FLOX alone as first-line treatment of microsatellite-stable (MSS) metastatic colorectal cancer (mCRC): Initial results from the randomized METIMMOX study[J]. J Clin Oncol, 2021, 39(15_suppl): 3556. |
[29] |
Pietrantonio F, Morano F, Lonardi S, et al. MAYA trial: Temozolomide (TMZ) priming followed by combination with low-dose ipilimumab and nivolumab in patients with microsatellite stable (MSS), MGMT silenced metastatic colorectal cancer (mCRC)[J]. Ann Oncol, 2021, 32(5_suppl): S530-S582. |
[30] |
Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian cancer trials group CO.26 study[J]. JAMA Oncol, 2020, 6(6): 831-838. |
[31] |
Chen E, Jonker D, Kennecke H, et al. CCTG CO.26: Updated analysis and impact of plasma-detected microsatellite stability (MSS) and tumor mutation burden (TMB) in a phase Ⅱ trial of durvaluma b (D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with refractory metastatic colorectal carcinoma (rmCRC)[J]. J Clin Oncol, 2019, 37(15_suppl): 3512. |
[32] |
Garralda E, Sukari A, Lakhani NJ, et al. A phase 1 first-in-human study of the anti-LAG-3 antibody MK4280 (favezelimab) plus pembrolizumab in previously treated, advanced microsatellite stable colorectal cancer[J]. J Clin Oncol, 2021, 39(15_suppl): 3584. |
[33] |
Kim TW, Lee KW, Ahn JB, et al. Efficacy and safety of vactosertib and pembrolizumab combination in patients with previously treated microsatellite stable metastatic colorectal cancer[J]. J Clin Oncol, 2021, 39(15_suppl): 3573. |
[34] |
Wang YF, Liu ZG, Yuan HF, et al. The reciprocity between radiotherapy and cancer immunotherapy[J]. Clin Cancer Res, 2019, 25(6): 1709-1717. |
[35] |
Qian L, Shen YH, Xie J, et al. Immunomodulatory effects of ablation therapy on tumors: Potentials for combination with immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188385. |
[36] |
Parikh AJ, Clark JW, Wo JY, et al. A phase Ⅱ study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC)[J]. J Clin Oncol, 2019, 37(15_suppl): 3514. |
[37] |
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576. |
[38] |
Avallone A, Delrio P, Nasti G, et al. Preoperative nivolumab in patients(pts) with locally advanced colon cancer (T3 or T4): a window-of-opportunity study (NICOLE)[J]. Ann Oncol, 2018, 29: viii203. |
[39] |
刘爽, 姜婷, 陈功, 等. 局部进展期直肠癌治疗模式新进展[J]. 实用肿瘤杂志, 2021, 36(1): 10-17. |
[40] |
Yuki S, Bando H, Tsukada Y, et al. Short-term results of VOLTAGE-A: nivolumab monotherapy and subsequent radical surgery following preoperative chemoradiotherapy in patients with microsatellite stable andmicrosatellite instability-high locally advanced rectal cancer (EPOC 1504)[J]. J Clin Oncol, 2020, 38(15_suppl): 4100. |
[41] |
Salvatore L, Bensi M, Corallo S, et al. Phase Ⅱ study of preoperative (PREOP) chemoradiotherapy (CTRT) plus avelumab (AVE) in patients (PTS) with locally advanced rectal cancer (LARC): the AVANA study[J]. J Clin Oncol, 2021, 39(15_suppl): 3511. |
[42] |
George TJ, Yothers G, Theodore S, et al. NRG-GI002: A phase Ⅱ clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC)-First experimental arm (EA) initial results[J]. J Clin Oncol, 2019, 37(15_suppl): 3505. |
[43] |
Dutt S, Ahmed MM, Loo BW Jr, et al. Novel radiation therapy paradigms and immunomodulation: Heresies and hope[J]. Semin Radiat Oncol, 2020, 30(2): 194-200. |
[44] |
Lin Z, Cai M, Zhang P, et al. Phase Ⅱ, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9(11): e003554. |
[45] |
Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types[J]. JAMA Oncol, 2019, 5(10): 1504-1506. |
[46] |
Garmezy B, Gheeya JS, Zin Thein K, et al. Correlation of pathogenic POLE mutations with clinical benefit to immune checkpoint inhibitor therapy[J]. J Clin Oncol, 2020, 38(15_suppl): 3008. |
[47] |
Fabrizio DA, George TJ Jr, Dunne RF, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition[J]. J Gastrointest Oncol, 2018, 9(4): 610-617. |
[48] |
Yu JL, Green MD, Li SS, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J]. Nat Med, 2021, 27(1): 152-164. |
[49] |
Ho WW, Gomes-Santos IL, Aoki S, et al. Dendritic cell paucity in mismatch repair-proficient colorectal cancer liver metastases limits immune checkpoint blockade efficacy[J]. Proc Natl Acad Sci USA, 2021, 118(45): e2105323118. |
[50] |
Huh JW, Lee JH, Kim HR. Prognostic significance of tumor-infiltrating lymphocytes for patients with colorectal cancer[J]. Arch Surg, 2012, 147(4): 366-372. |
[51] |
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study[J]. Lancet, 2018, 391(10135): 2128-2139. |
[52] |
Overman MJ, Lonardi S, Leone F, et al. Nivolumab in patients with DNA mismatch repair deficient/microsatellite instability high metastatic colorectal cancer: update from CheckMate 142[J]. J Clin Oncol, 2017, 35(4_suppl): 519. |