实用肿瘤杂志   2025, Vol. 40 Issue (1): 1-6 本刊论文版权归本刊所有,未经授权,请勿做任何形式的转载

文章信息

高天, 李照廷, 肖敏
免疫检查点抑制剂在激素受体阳性乳腺癌新辅助治疗中的研究进展
实用肿瘤杂志, 2025, 40(1): 1-6

基金项目

国家自然科学基金面上项目(81872145)

通信作者

肖敏, Email: doctor_xm@hotmail.com

文章历史

收稿日期:2024-05-18
免疫检查点抑制剂在激素受体阳性乳腺癌新辅助治疗中的研究进展
高天 , 李照廷 , 肖敏     
哈尔滨医科大学附属肿瘤医院乳腺外科, 黑龙江 哈尔滨 150081
摘要:乳腺癌是全球发病率最高的恶性肿瘤,其中激素受体阳性(hormone receptor positive, HR+)乳腺癌占比最高。针对HR+乳腺癌的新辅助治疗,目前的主流方案是新辅助化疗(neoadjuvant chemotherapy, NACT)和新辅助内分泌治疗(neoadjuvant endocrine therapy, NET),但两者均有不足。近年来免疫治疗发展迅速,免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)作为主要的免疫治疗方法之一,在乳腺癌治疗中的应用不断前移,在新辅助治疗领域具有广阔的前景。本文就HR+乳腺癌的免疫微环境和ICIs在HR+乳腺癌新辅助治疗中的各种联合方案进行综述,以期为后续的临床研究和应用提供参考。
关键词激素受体阳性乳腺癌    免疫检查点抑制剂    新辅助治疗    免疫治疗    

乳腺癌是女性最常见癌症[1]。中国早期乳腺癌中激素受体阳性(hormone receptor positive, HR+)乳腺癌占69.8%。23.1%的早期乳腺癌患者接受新辅助治疗[2]。HR+乳腺癌新辅助药物治疗首选化疗[3],但因其对化疗不敏感,在新辅助化疗(neoadjuvant chemotherapy, NACT)后较难获得病理完全缓解(pathological complete remission, pCR),低级别肿瘤pCR率仅为7%[4]。新辅助内分泌治疗(neoadjuvant endocrine therapy, NET)是另一种安全有效的选择,但存在的许多争议限制其临床应用,包括使用基因表达检测进行患者选择、绝经前妇女的治疗和辅助全身治疗决策等[3, 5]。近年来,免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)联合NACT治疗早期三阴性乳腺癌(triple negative breast cancer, TNBC)的研究结果令人鼓舞[6-9],其中帕博利珠单抗(pembrolizumab)联合化疗被美国临床肿瘤学会临床实践指南批准用于高风险早期TNBC[10],使乳腺癌进入全新的新辅助免疫治疗时代。因此,ICIs在HR+乳腺癌新辅助治疗中的作用正被积极探索。本文结合近年来最新数据,系统阐述ICIs在HR+乳腺癌新辅助治疗中的现状和展望。

1 HR+乳腺癌的免疫微环境

肿瘤免疫微环境(tumor immune microenvironments, TIMEs)包括肿瘤细胞、免疫细胞和细胞因子等。这些成分的相互作用影响ICIs的疗效[11]。HR+乳腺癌对于免疫疗法效果较差[12-13],通常被描述为免疫冷型肿瘤。其肿瘤细胞与免疫环境的相互作用机制可能不同于其他乳腺癌亚型,表现为程序性细胞死亡配体1(programmed cell death ligand 1, PD-L1)和肿瘤浸润淋巴细胞(tumor-infiltrating lymphocytes, TILs)水平较低[14-16]。研究显示,雌激素受体(estrogen receptor, ER)的表达水平与肿瘤微环境中总免疫细胞浸润和总免疫成分含量均呈负相关关系,表明雌激素信号通路调控抗肿瘤免疫[17]。在HR+乳腺癌的预测分析微阵列50基因(prediction analysis of microarray 50, PAM50)分型中,非管腔型肿瘤比管腔型肿瘤呈现更高的TILs水平,具有更多的促炎抗肿瘤免疫浸润成分[18],相对有可能从标准化疗联合免疫治疗中获益[19]。但是,HR+肿瘤整体根据免疫特征评分归为免疫低水平肿瘤[13],因此需要定制联合治疗方案来提高其对免疫治疗的反应。

2 ICIs联合NACT

临床前研究表明,化疗可通过诱导肿瘤细胞的免疫原性细胞死亡来激活免疫系统[20],增强抗肿瘤反应。Llano-León等[21]认为免疫系统和NACT之间存在双向作用,其中NACT的部分抗肿瘤作用是由免疫效应介导的,而免疫效应反过来又被细胞毒性作用增强。最初的化疗联合ICIs试验集中于晚期乳腺癌患者,帕博利珠单抗[程序性死亡受体1(programmed death-1, PD-1)抗体]分别联合艾日布林和卡培他滨的两项试验均缺乏临床获益[22-23],原因可能是这两种化疗药物不能充分提高肿瘤免疫原性。作为首个针对Luminal B型乳腺癌的ICIs新辅助治疗试验,GIADA试验结果提示,内在分型为基底型和免疫激活状态的Luminal B型乳腺癌才可能对蒽环类药物联合ICIs有应答[24]

I-SPY2试验的几个试验组纳入了HR+/人表皮生长因子受体2阴性(human epidermal growth factor receptor-2 negative, HER2-)乳腺癌患者。这些患者均通过MammaPrint检测为高风险。在帕博利珠单抗治疗臂的第四组中,40例HR+/HER2-患者的预测pCR率为30%,而96例接受标准NACT的患者的预测pCR率为13%。该方案耐受性良好,在Ⅲ期试验中成功率为99.6%[25]。在帕博利珠单抗治疗臂的第八组中帕博利珠单抗探索性地联合无蒽环的NACT方案,两组pCR率均为15%,代表无蒽环类药物NACT的初步希望[26]。最近的B-IMMUNE(NCT03356860)试验结果表明,在HR+/HER2-乳腺癌患者的NACT中仅加入2个周期的度伐利尤单抗(durvalumab,PD-L1抗体),pCR率就达到33%,免疫相关不良事件仅限于甲状腺内分泌障碍[27]。KEYNOTE-756作为其中首个全球性、随机、双盲、安慰剂对照的临床研究[28],招募了1 240例乳腺癌患者。其中,试验组患者接受术前帕博利珠单抗+NACT和术后帕博利珠单抗+内分泌治疗,对照组接受术前安慰剂+NACT和术后安慰剂+内分泌治疗。其第1次中期分析结果示,pCR率从对照组的15.6%,提升至试验组的24.3%;ER低表达(< 10%)的患者虽然例数较少,但是具有明显改善(pCR:30.2%提升至55.9%);在ER高危人群中NACT的基础上,加用帕博利珠单抗可以显著提升pCR率,且治疗期间的不良反应与既往研究[29]比较没有差别。CheckMate 7FL(NCT04109066)试验是一项前瞻性、随机、多中心、双盲、安慰剂对照试验,旨在研究纳武利尤单抗(nivolumab,PD-1抗体)联合NACT和辅助内分泌治疗(endocrine therapy, ET)治疗高危高级别ER+/HER2-原发性乳腺癌患者的获益[30]。结果显示,在NACT的基础上加用纳武利尤单抗后,总体人群的pCR(主要终点)有显著改善,对照组(安慰剂)和试验组(纳武利尤单抗)的pCR率分别为13.8%和24.5%。且在联合阳性评分(combined positive score, CPS)较高、间质肿瘤浸润淋巴细胞(stromal tumor-infiltrating lymphocyte, sTIL)≥5%、ER低表达(≤50%)和(或)孕激素受体(progesterone receptor, PR)表达(ER≥10%时≤10%)的乳腺癌患者中,纳武利尤单抗对pCR和残余癌症负荷0~1级(residual cancer burden 0-1, RCB 0-1)率的益处最大。二者结果表明,在高危ER+/HER-乳腺癌治疗中,应用免疫疗法可能使无复发生存期进一步延长[31]

炎性乳腺癌(inflammatory breast cancer, IBC)属于局部进展型乳腺癌,侵袭性高。多项研究正在探索ICIs新辅助治疗HR+ IBC的疗效和安全性,如NCT03742986、NCT03515798和NCT02971748研究。NCT03742986试验初步结果显示,将纳武利尤单抗添加到乳腺癌患者的新辅助治疗中是可耐受的,并在IBC中显示出良好的抗肿瘤活性[32]。从当前的几项研究可以看出,ICIs与NACT联合使用取得令人满意的抗肿瘤疗效,但是仍需等待大样本量的临床研究结果来评价其临床获益。

3 ICIs联合NET

目前NET药物主要是他莫昔芬、芳香化酶抑制剂(aromatase inhibitor, AI)和选择性的ER下调剂氟维司群[5]。研究表明,雌激素的免疫抑制作用包括诱导M2型巨噬细胞极化,破坏树突状细胞分化,抑制自然杀伤(natural killer, NK)细胞毒性活性等[33],理论上抗雌激素治疗可以促进抗肿瘤免疫。研究发现,他莫昔芬通过延缓骨髓源性抑制细胞的动员来增强T细胞依赖性抗肿瘤免疫[34]。NET中使用AI后TILs组成发生改变,CD8+调节性T细胞(CD8+ regulatory T cell, CD8+ Treg)的比例增加[35],免疫细胞亚群的改变有助于提高ICIs的疗效。Ⅱ期临床试验NCT03874325纳入17例乳腺癌患者接受阿那曲唑联合度伐利尤单抗,治疗6个月后,pCR率为58.8%,客观缓解率为100%[36]

4 ICIs联合靶向药物 4.1 细胞周期蛋白依赖性激酶4/6(cyclin-dependent kinase 4/6, CDK4/6)抑制剂

CDK4/6抑制剂作用于CDK4/6-视网膜母细胞瘤蛋白轴,将细胞分裂控制在G1期,阻止肿瘤细胞分裂[37]。近几年相关药物的应用研究越来越多[38]。阿贝西利(abemaciclib)还被证明可以通过增加抗原呈递、CD8+ T细胞浸润和肿瘤细胞上PD-L1表达,减少Treg浸润来增强TIMEs内的免疫原性[39-40]。因此,CDK4/6抑制剂是联合ICIs的潜在候选药物。

CheckMate 7A8试验是一项Ⅱ期研究,纳入21例HR+绝经后乳腺癌患者, 患者均接受纳武利尤单抗和阿那曲唑。结果显示,9例患者因毒性停止治疗,总体pCR率仅为4.8%,后续研究者宣布停止该试验[41]。ImmunoADAPT试验选择了Ⅱ或Ⅲ期HR+乳腺癌患者,均接受他莫昔芬和阿维鲁单抗(avelumab,PD-L1抗体),联合或不联合palbociclib治疗4个周期,主要终点是通过MRI确定的临床完全缓解率,次要终点包括TILs评估,结果尚未公布[42]。目前另一项Ⅰ期临床试验NCT04088032正在探究度伐利尤单抗、阿贝西利和AI三药联合新辅助治疗时乳腺癌患者的耐受性和TILs变化。总体而言,CDK4/6抑制剂对ICIs有额外的协同作用,但目前极高的安全风险可能阻碍其临床应用。

4.2 ICIs联合聚腺苷二磷酸核糖聚合酶抑制剂(poly ADP-ribose polymerase inhibitor, PARPi)

PARPi在DNA单链断裂修复中加剧基因组不稳定性进而导致肿瘤细胞死亡,奥拉帕尼(olaparib)已被批准用于治疗乳腺癌易感基因(breast cancer susceptibility gene, BRCA)生殖系突变的晚期乳腺癌[43]。研究发现,在乳腺癌细胞株和小鼠模型中,PARPi可以增加PD-L1的表达,提供了PARPi和PD-L1抑制剂组合的证据[44]。在I-SPY2研究的度伐利尤单抗和奥拉帕尼联合紫杉醇的试验组中纳入52例HR+乳腺癌患者,pCR率较单药紫杉醇对照组提高(28% vs 14%)[45]。该方案在Ⅲ期临床试验中成功的概率为74.5%。预先指定的亚组分析表明,MammaPrint超高风险组的HR+/HER2-乳腺癌患者从三药联合方案中获益最大(预测pCR率:64% vs 22%)。更重要的是,无论BCRA状态如何,PARRi与ICIs均具有协同作用。帕博利珠单抗联合奥拉帕尼(NCT05203445)和度伐利尤单抗联合奥拉帕尼(NCT05498155)的两项Ⅱ期临床试验还在进行中,其结果值得期待。值得注意的是,在晚期BRCA突变的乳腺癌患者中,阿替利珠单抗(atezolizumab,PD-LI抗体)联合奥拉帕尼的方案并未增加疗效,但增加额外的毒性[46]

5 ICIs联合放疗

放疗是一种局部治疗方法,辐射诱导的DNA损伤可以激发全身系统免疫介导的抗肿瘤反应,称为abscopal效应[47]。一项临床前研究表明,放疗和氟维司群的组合可以克服抑制性的TIMEs并增加对ICIs的应答[48]。Neo-CheckRay试验在HR+乳腺癌中评估了立体定向放射治疗与抗CD73(oleclumab)结合使用后,度伐利尤单抗和NACT方案对pCR率的影响,纳入标准仅限于MammaPrint基因组高风险的HR+乳腺癌[49]。除此之外,NCT03366844正在研究帕博利珠单抗联合术前放疗的安全性,NCT04443348正在探索放疗与帕博利珠单抗和NACT联合使用时的最佳放疗剂量。与其他组合策略一样,找到最佳的患者群体、治疗顺序和生物标志物,ICIs联合放疗才可能达到最大化的临床效果。

6 结语与展望

总之,ICIs在HR+乳腺癌新辅助阶段的应用得到越来越多的认可。从临床前角度来看,基于HR+乳腺癌TIMEs的低免疫原性,多种免疫调节策略提高了抗PD-(L)1抗体的活性。重要的是,I-SPY2试验揭示了两种临床有效的策略用于HR+乳腺癌患者,即ICIs联合NACT或PARPi。KEYNOTE-756与CheckMate 7FL研究进一步证明了ICIs的临床应用价值。另外,CDK4/6抑制剂与ICIs相结合的潜在治疗优势必须与毒性风险相权衡。放疗作为局部疗法与ICIs相结合已显示出希望。下一步的临床试验应设计适当的联合方案,评估多种生物标志物,量身定制的药物组合和精准的患者选择将是未来开发ICIs用于HR+乳腺癌新辅助治疗的关键。

参考文献
[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI:10.3322/caac.21708
[2]
Li JB, Zhou JF, Wang HB, et al. Trends in disparities and transitions of treatment in patients with early breast cancer in China and the US, 2011 to 2021[J]. JAMA Netw Open, 2023, 6(6): e2321388. DOI:10.1001/jamanetworkopen.2023.21388
[3]
Tamirisa N, Hunt KK. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. Ann Surg Oncol, 2022, 29(3): 1489-1492. DOI:10.1245/s10434-021-11223-3
[4]
Cortazar P, Zhang LJ, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI:10.1016/S0140-6736(13)62422-8
[5]
Sella T, Weiss A, Mittendorf EA, et al. Neoadjuvant endocrine therapy in clinical practice: a review[J]. JAMA Oncol, 2021, 7(11): 1700-1708. DOI:10.1001/jamaoncol.2021.2132
[6]
Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer[J]. N Engl J Med, 2022, 386(6): 556-567. DOI:10.1056/NEJMoa2112651
[7]
Loibl S, Schneeweiss A, Huober J, et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response[J]. Ann Oncol, 2022, 33(11): 1149-1158. DOI:10.1016/j.annonc.2022.07.1940
[8]
Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial[J]. Lancet, 2020, 396(10257): 1090-1100. DOI:10.1016/S0140-6736(20)31953-X
[9]
丁梦羽, 王晓稼. 2023 SABCS年会乳腺癌免疫治疗进展[J]. 实用肿瘤杂志, 2024, 39(2): 186-191.
[10]
Korde LA, Somerfield MR, Hershman DL, et al. Use of immune checkpoint inhibitor pembrolizumab in the treatment of high-risk, early-stage triple-negative breast cancer: ASCO guideline rapid recommendation update[J]. J Clin Oncol, 2022, 40(15): 1696-1698. DOI:10.1200/JCO.22.00503
[11]
Lv BZ, Wang YP, Ma DJ, et al. Immunotherapy: reshape the tumor immune microenvironment[J]. Front Immunol, 2022, 13: 844142. DOI:10.3389/fimmu.2022.844142
[12]
Vathiotis IA, Trontzas I, Gavrielatou N, et al. Immune checkpoint blockade in hormone receptor-positive breast cancer: resistance mechanisms and future perspectives[J]. Clin Breast Cancer, 2022, 22(7): 642-649. DOI:10.1016/j.clbc.2022.06.004
[13]
Yao J, Li SW, Wang XS. Identification of breast cancer immune subtypes by analyzing bulk tumor and single cell transcriptomes[J]. Front Cell Dev Biol, 2022, 9: 781848. DOI:10.3389/fcell.2021.781848
[14]
Onkar SS, Carleton NM, Lucas PC, et al. The great immune escape: understanding the divergent immune response in breast cancer subtypes[J]. Cancer Discov, 2023, 13(1): 23-40. DOI:10.1158/2159-8290.CD-22-0475
[15]
Miglietta F, Griguolo G, Guarneri V, et al. Programmed cell death ligand 1 in breast cancer: technical aspects, prognostic implications, and predictive value[J]. Oncologist, 2019, 24(11): e1055-e1069. DOI:10.1634/theoncologist.2019-0197
[16]
Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol, 2018, 19(1): 40-50. DOI:10.1016/S1470-2045(17)30904-X
[17]
Hanamura T, Kitano S, Kagamu H, et al. Expression of hormone receptors is associated with specific immunological profiles of the breast cancer microenvironment[J]. Breast Cancer Res, 2023, 25(1): 13. DOI:10.1186/s13058-023-01606-7
[18]
Griguolo G, Dieci MV, Paré L, et al. Immune microenvironment and intrinsic subtyping in hormone receptor-positive/HER2-negative breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 12. DOI:10.1038/s41523-021-00223-x
[19]
Falato C, Schettini F, Pascual T, et al. Clinical implications of the intrinsic molecular subtypes in hormone receptor-positive and HER2-negative metastatic breast cancer[J]. Cancer Treat Rev, 2023, 112: 102496. DOI:10.1016/j.ctrv.2022.102496
[20]
Bernal-Estévez DA, Ortíz Barbosa MA, Ortíz-Montero P, et al. Autologous dendritic cells in combination with chemotherapy restore responsiveness of T cells in breast cancer patients: a single-arm phase Ⅰ/Ⅱ trial[J]. Front Immunol, 2021, 12: 669965. DOI:10.3389/fimmu.2021.669965
[21]
Llano-León M, Martínez-Enriquez LC, Rodríguez-Bohórquez OM, et al. Effect of neoadjuvant chemotherapy on tumor immune infiltration in breast cancer patients: Systematic review and meta-analysis[J]. PLoS One, 2023, 18(4): e0277714. DOI:10.1371/journal.pone.0277714
[22]
Tolaney SM, Barroso-Sousa R, Keenan T, et al. Randomized phase Ⅱ study of eribulin mesylate (E) with or without pembrolizumab (P) for hormone receptor-positive (HR+) metastatic breast cancer (MBC)[J]. J Clin Oncol, 2019, 37(15_suppl): 1004. DOI:10.1200/JCO.2019.37.15_suppl.1004
[23]
Shah AN, Flaum L, Helenowski I, et al. Phase Ⅱ study of pembrolizumab and capecitabine for triple negative and hormone receptor-positive, HER2-negative endocrine-refractory metastatic breast cancer[J]. J Immunother Cancer, 2020, 8(1): e000173. DOI:10.1136/jitc-2019-000173
[24]
Dieci MV, Guarneri V, Tosi A, et al. Neoadjuvant chemotherapy and immunotherapy in luminal B-like breast cancer: results of the phase Ⅱ GIADA trial[J]. Clin Cancer Res, 2022, 28(2): 308-317. DOI:10.1158/1078-0432.CCR-21-2260
[25]
Nanda RT, Liu MC, Yau C, et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial[J]. JAMA Oncol, 2020, 6(5): 676-684. DOI:10.1001/jamaoncol.2019.6650
[26]
Liu MC, Robinson PA, Yau C, et al. Abstract P3-09-02: evaluation of a novel agent plus standard neoadjuvant therapy in early stage, high-risk HER2 negative breast cancer: results from the I-SPY 2 TRIAL[J]. Cancer Res, 2020, 80(4_suppl): P3-9-02-P3-09-02.
[27]
Devaux A, Beniuga G, Quaghebeur C, et al. Abstract P4-07-16: B-IMMUNE final analysis: a phase Ⅰb/Ⅱ study of durvalumab combined with dose-dense EC in a neoadjuvant setting for patients with locally advanced luminal B HER2 (-) or triple negative breast cancers[J]. Cancer Res, 2023, 83(5_suppl): P4-7-16-P4-07-16.
[28]
Cardoso F, Bardia A, Andre F, et al. KEYNOTE-756: Randomized, double-blind, phase 3 study of pembrolizumab vs placebo combined with neoadjuvant chemotherapy and adjuvant endocrine therapy for high-risk, early-stage estrogen receptor-positive, human epidermal growth factor receptor 2-negative (ER+/HER2-) breast cancer[J]. J Clin Oncol, 2019, 37(15_suppl): TPS601. DOI:10.1200/JCO.2019.37.15_suppl.TPS601
[29]
Schlam I, Corti C, Sammons S, et al. Checkpoint inhibition for early-stage hormone receptor-positive breast cancer[J]. Expert Opin Biol Ther, 2024, 24(6): 511-520. DOI:10.1080/14712598.2024.2370395
[30]
Loi S, McArthur HL, Harbeck N, et al. A phase Ⅲ trial of nivolumab with neoadjuvant chemotherapy and adjuvant endocrine therapy in ER+/HER2- primary breast cancer: CheckMate 7FL[J]. J Clin Oncol, 2020, 38(15_suppl): TPS604. DOI:10.1200/JCO.2020.38.15_suppl.TPS604
[31]
Ríos-Hoyo, A, Cobain, E, Huppert, L A, et al. Neoadjuvant chemotherapy and immunotherapy for estrogen receptor-positive human epidermal growth factor 2-negative breast cancer[J]. J Clin Oncol, 2024, 42(22): 2632-2636. DOI:10.1200/JCO.23.02614
[32]
Kwa MJ, Novik Y, Speyer JL, et al. Nivolumab with chemotherapy as neoadjuvant treatment for inflammatory breast cancer[J]. J Clin Oncol, 2022, 40(16_suppl): e12633. DOI:10.1200/JCO.2022.40.16_suppl.e12633
[33]
Huang HH, Zhou J, Chen HL, et al. The immunomodulatory effects of endocrine therapy in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 19. DOI:10.1186/s13046-020-01788-4
[34]
Svoronos N, Perales-Puchalt A, Allegrezza MJ, et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells[J]. Cancer Discov, 2017, 7(1): 72-85. DOI:10.1158/2159-8290.CD-16-0502
[35]
Chan MSM, Wang L, Felizola SJA, et al. Changes of tumor infiltrating lymphocyte subtypes before and after neoadjuvant endocrine therapy in estrogen receptor-positive breast cancer patients: an immunohistochemical study of Cd8+ and Foxp3+ using double immunostaining with correlation to the pathobiological response of the patients[J]. Int J Biol Markers, 2012, 27(4): e295-304. DOI:10.5301/JBM.2012.10439
[36]
Khong HT, Goodridge DN, Khakpour N, et al. Abstract OT-15-01: a phase Ⅱ trial with safety Run-in of neoadjuvant therapy with an aromatase inhibitor in combination with durvalumab (MEDI4736) in postmenopausal patients with hormone-receptor-positive (HR+) breast cancer[J]. Cancer Res, 2021, 81(4_suppl): OT-15-01-OT-15-01.
[37]
Spring LM, Wander SA, Andre F, et al. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future[J]. Lancet, 2020, 395(10226): 817-827. DOI:10.1016/S0140-6736(20)30165-3
[38]
严雪绮, 黄香, 李薇, 等. 晚期乳腺癌内分泌分层治疗进展[J]. 实用肿瘤杂志, 2023, 38(2): 105-109.
[39]
Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity[J]. Nature, 2017, 548(7668): 471-475. DOI:10.1038/nature23465
[40]
Zhang JF, Bu X, Wang HZ, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance[J]. Nature, 2018, 553(7686): 91-95. DOI:10.1038/nature25015
[41]
Jerusalem G, Prat A, Salgado RF, et al. 92MO Neoadjuvant nivolumab (NIVO) + palbociclib (PALBO) + anastrozole (ANA) for estrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) primary breast cancer (BC): CheckMate 7A8[J]. Ann Oncol, 2022, 33: S165-S166. DOI:10.1016/j.annonc.2022.03.108
[42]
Santa-Maria CA, Wang C, Cimino-Mathews A, et al. Abstract OT3-02-03: immune modulation in early stage estrogen receptor positive breast cancer treated with neoadjuvant avelumab, palbociclib, and tamoxifen: the ImmunoADAPT study (NCT03573648)[J]. Cancer Res, 2019, 79(4_suppl): OT3-2-03-OT3-02-03.
[43]
Caulfield SE, Davis CC, Byers KF. Olaparib: a novel therapy for metastatic breast cancer in patients with a BRCA 1/2 mutation[J]. J Adv Pract Oncol, 2019, 10(2): 167-174.
[44]
Jiao SP, Xia WY, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression[J]. Clin Cancer Res, 2017, 23(14): 3711-3720. DOI:10.1158/1078-0432.CCR-16-3215
[45]
Pusztai L, Yau C, Wolf DM, et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage Ⅱ/Ⅲ breast cancer: Results from the adaptively randomized I-SPY2 trial[J]. Cancer Cell, 2021, 39(7): 989-998. DOI:10.1016/j.ccell.2021.05.009
[46]
Fanucci KA, Pilat MJ, Shyr D, et al. Abstract CT145: olaparib +/- atezolizumab in patients with BRCA-mutated (BRCAmt) locally advanced unresectable or metastatic (advanced) breast cancer: an open-label, multicenter, randomized phase Ⅱ trial[J]. Cancer Res, 2023, 83(8_suppl): CT145.
[47]
Liu Y, Dong YP, Kong L, et al. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors[J]. J Hematol Oncol, 2018, 11(1): 104. DOI:10.1186/s13045-018-0647-8
[48]
O'Leary KA, Bates AM, Jin WJ, et al. Estrogen receptor blockade and radiation therapy cooperate to enhance the response of immunologically cold ER+ breast cancer to immunotherapy[J]. Breast Cancer Res, 2023, 25(1): 68. DOI:10.1186/s13058-023-01671-y
[49]
De Caluwé A, Buisseret L, Poortmans P, et al. Neo-CheckRay: radiation therapy and adenosine pathway blockade to increase benefit of immuno-chemotherapy in early stage luminal B breast cancer, a randomized phase Ⅱ trial[J]. BMC Cancer, 2021, 21(1): 899. DOI:10.1186/s12885-021-08601-1