文章快速检索     高级检索
  中国水土保持科学   2025, Vol. 23 Issue (2): 9-17.  DOI: 10.16843/j.sswc.2024025
0

引用本文 

刘雅婧, 王丹阳, 常旭, 安景源, 牧仁, 李新乐, 徐涛, 杨波. 光伏电站建设对西北荒漠区生态环境的影响研究进展[J]. 中国水土保持科学, 2025, 23(2): 9-17. DOI: 10.16843/j.sswc.2024025.
LIU Yajing, WANG Danyang, CHANG Xu, AN Jingyuan, MU Ren, LI Xinle, XU Tao, YANG Bo. Research progress in the impact of photovoltaic power station construction on the ecological environment of the desert region of Northwest China[J]. Science of Soil and Water Conservation, 2025, 23(2): 9-17. DOI: 10.16843/j.sswc.2024025.

项目名称

中国林业科学研究院基本科研业务费专项“沙区光伏电站对局地气候及风沙活动影响机制研究”(CAFYBB2023MA028);中国林业科学研究院基本科研业务费专项“黄河几字弯光伏治沙关键技术集成与研发”(CAFYBB2023ZA008- 05)和国家草业技术创新中心(筹)重大创新平台建设专项“光伏下沙化土壤改良与植被建植技术研发”(CCPTZX2023B08)联合资助

第一作者简介

刘雅婧(1993—),女,硕士,工程师。主要研究方向:荒漠化防治。E-mail:1250701950@qq.com

通信作者简介

李新乐(1989—),男,博士,高级工程师。主要研究方向:荒漠生态学。E-mail:nxylxl@126.com

文章历史

收稿日期:2024-02-27
修回日期:2024-08-29
光伏电站建设对西北荒漠区生态环境的影响研究进展
刘雅婧 1, 王丹阳 1, 常旭 2, 安景源 1, 牧仁 1, 李新乐 1, 徐涛 3, 杨波 4     
1. 中国林业科学研究院沙漠林业实验中心/内蒙古磴口荒漠生态系统定位观测研究站,015200,内蒙古磴口;
2. 中国地质调查局应用地质研究中心,610036,成都;
3. 达拉特旗水利局,014300,内蒙古达拉特旗;
4. 磴口县蒙晟生态能源科技发展有限责任公司,015200,内蒙古磴口
摘要:近年来,我国西北荒漠区建立了大量的光伏电站,这些光伏电站的建立对西北荒漠区生态环境的影响引起了众多学者的关注。笔者从光伏电站的建立对水文调控、水土保持、防风固沙、调节气候和生物多样性等方面进行综述,得出以下结论:光伏电站建设期机械碾压和填挖方会造成土壤板结和土壤肥力下降,加剧光伏电站内风沙活动和水土流失;光伏电站运营期光伏阵列的防风固沙和遮阴保湿作用能够促进光伏电站内植被恢复。不同的立地类型和气候环境都会导致光伏电站对其所处环境的土壤、植被、小气候以及生物多样性方面产生不同程度的影响。深入研究西北生态脆弱区光伏电站及其环境的互馈机制对于降低因光伏电站的建立造成的其所处区域的不良影响以及维持当地生态系统稳定性具有重要意义。
关键词生态环境    光伏电站    水土流失    植被恢复    西北荒漠区    
Research progress in the impact of photovoltaic power station construction on the ecological environment of the desert region of Northwest China
LIU Yajing 1, WANG Danyang 1, CHANG Xu 2, AN Jingyuan 1, MU Ren 1, LI Xinle 1, XU Tao 3, YANG Bo 4     
1. Experimental Center of Desert Forestry,Chinese Academy of Forestry/Inner Mongolia Dengkou Desert Ecosystem Observation Research Station, 015200, Dengkou, Inner Mongolia, China;
2. Applied Geology Research Center of China Geological Survey, 610036, Chengdu, China;
3. Dalat Banner Water Resources Bureau, 014300, Dalat Banner, Inner Mongolia, China;
4. Dengkou Mengsheng Ecological Energy Technology Development Limited Liability Company, 015200, Dengkou, Inner Mongolia, China
Abstract: [Background] With the proposal of "carbon peak and carbon neutrality" goals, many photovoltaic power stations have been established in the northwest desert areas of China. How the establishment of photovoltaic power stations affects the ecological environment of the northwest desert areas has attracted the attention of many scholars. [Methods] This study reviewed how the construction and operation periods of photovoltaic (PV) power plants in the Northwest Desert Region affected their ecological environments from the perspectives of precipitation, soil, climate, and biodiversity: Chinese and English literatures were searched from Web of Science and CNKI databases with the themes of "PV", "PV+climate", "PV+soil", and "PV+biodiversity", respectively. Literature was screened according to factors such as year of publication, number of citations, and journal of publication. [Results] PV power plants indirectly affect evapotranspiration and rainfall by changing the surface albedo; mechanical crushing and filling and excavation during the construction period of PV power plants cause soil compaction and soil fertility decline, which exacerbate wind and sand activities and soil erosion within the PV power plant; the deployment of PV arrays increases the roughness of the ground surface, reduces the near-surface wind speed, and thus lowers the surface sand transport within the PV power plant; PV panels change the composition and structure of the soil bacterial and fungal communities of the grasslands; there is a "heat island effect" of PV plants in the sandy areas. PV arrays change the composition and structure of soil bacterial and fungal communities in grasslands, and significantly increase the α-diversity of soil bacteria and fungi; PV power plants in sandy areas have a "heat island effect", which increases the temperature and reduces the humidity on sunny days in the summer; and the plant species, abundance, homogeneity and dominance as well as the biomass in the PV power plants are higher than those outside the PV power plants. [Conclusions] Different site types and climatic environments can lead to varying degrees of impact on the soil, vegetation, microclimate, and biodiversity of the environment in which PV power plants are located. It is of great significance to conduct in-depth research on the mutual feedback mechanism between PV power stations and their environment in the ecologically fragile areas of Northwest China, in order to reduce the adverse effects of the establishment of PV power stations on their location and maintain the stability of the local ecosystem.
Keywords: ecological environment    photovoltaic power station    soil erosion    vegetation restoration    desert area of Northwest China    

中国2020年提出“双碳”目标,这就要求我国能源结构发生深刻转变,尽快完成能源转型变革[1]。太阳能具有无污染性、安全无风险性、可持续性和分布范围广等特点,成为发展前景较高的新能源之一[2]。光伏发电不仅是我国实现“碳达峰、碳中和”的重要措施,也是加快形成清洁能源利用新格局的必然举措[3]。目前,随着低碳节能和减排降碳等环保理念的提出,在荒漠生态系统和草原生态系统中建立了大量的光伏电站[4]。我国西北荒漠区作为全国太阳能资源储量最丰富区域之一,具有海拔高、水汽少、云层薄、年日照时间长和年辐射总量大等特点[5]。随着《“十四五”现代能源体系规划》的提出,加快西北荒漠区光伏电站的建设已成为今后新能源发展的趋势[6]。光伏电站的建立改变了其所处区域地表形态,在其建设和运行中对局地降水、土壤、气候和生物多样性造成不同程度的影响;使得西北荒漠区固碳潜力、水土保持、防风固沙和生物多样性等生态功能发生变化[7]

研究西北荒漠区光伏电站的建立与降水、土壤、气候和生物之间的关系,了解荒漠区布设光伏电板对周围环境的影响,是西北荒漠区实现保护生态与节能减排双赢的重要保障。笔者收集并整理大量相关文献,从“水、土、气、生”4方面综述西北荒漠区光伏电站建设期和运行期对其生态环境的影响。旨在为西北荒漠地区建设光伏电站的发展、选址和生态修复提供参考意见。

1 对局地降水的影响

关于西北地区光伏电站项目对局地降水影响研究较少。光伏电板的布设导致地表反照率降低,引起气流汇聚,使降雨量增加50%左右[89]。光伏电站的建立不会直接对局地降水产生影响,而是通过改变地表反照率间接影响蒸发量和降雨量[10]。通过模拟发现西北地区建立光伏电站能使局地总降水量增长10% ~ 40%[8]。翟波等[11]通过研究光伏电板降水再分配与土壤水分蒸散分异规律,发现光伏电板前沿下方较未架设电板处降水量增加大约110 mm,产生这种现象的原因是光伏电板具有汇水作用。

2 对局地土壤的影响

光伏电站建设对局地土壤的影响包括:施工前的场地平整和建设中的挖填土方会对原生地表土壤造成严重损坏;以及运营中光伏电板对电站内风沙流产生一定程度的影响,造成土壤沉降过程发生改变,进而导致光伏电站内表层土壤发生变化[11]

2.1 对土壤性质的影响

光伏电站建设过程中施工作业产生的碾压、挖方和复填等方式都会造成土壤板结、肥力下降和水土流失,进而影响土壤理化性质[1214]。研究表明,电站内土层深度为20 和30 cm时土壤含水量较流动沙丘分别增加1.20%和0.73%[15]。陈曦[16]对光伏部件不同位置的土壤机械组成进行研究,发现光伏板前沿土壤粒度表现出由西到东先粗粒化再细粒化的现象,光伏板正下方和光伏板后沿土壤较前沿细沙含量明显增多。电站内遮荫区域较未遮荫区域土壤含水量、土壤pH值、土壤电导率、土壤速效磷钾含量均减少,而土壤密度呈现增长趋势[17]。通过研究高寒荒漠草原区的光伏电站发现站内土壤含水量、有机质和全氮含量较未建设光伏电站区均显著增加[18]。通过研究河西走廊戈壁滩光伏电站对局地土壤和植被的影响发现,与光伏电站外围相比,光伏阵列内土壤速效磷含量显著升高,但是土壤全效氮、磷、钾含量变化并不显著[19]

2.2 对土壤抗蚀性的影响

风蚀是导致土壤沙漠化的主要原因之一,风会把地表细粒物质带走,使粗粒物质增加,导致土壤养分含量减少,土壤质量下降,土壤抗蚀性减弱,进而破坏当地土壤生态系统的稳定性[20]。我国光伏电站主要建设在西北地区的沙漠、戈壁和荒漠等区域。这些地区生态环境十分脆弱,植被稀少、土壤水肥条件较差、植物生产能力极低[21]。光伏电站建设时的场平、光伏电板支柱下埋和地下埋线等工作都会对该区土壤结构造成一定程度的破坏,原本土地上稀少的植被被碾压,地表裸露程度加大,为土壤风蚀提供了有利条件[22]。光伏电站进入运营期后,开展的一系列生态恢复措施能够削弱土壤风蚀,原因是光伏阵列的布设会增加地表粗糙度,减弱近地层风速,进而降低光伏电站内的地表输沙量[2324]。光伏板的架设对风速具有一定的削弱作用,能够有效降低近地表风速,增加土壤抗蚀性。

2.3 对土壤碳循坏的影响

光伏产业的发展是构建新能源体系的重要步骤。厘清光伏系统中碳循环机理对于促进新能源快速转型具有重要意义[25]。光伏电站建设地的气候情况、土壤情况和植被类型,很大程度上决定了植被−土壤界面上产生的碳通量情况[26]。Lambert [27]发现3月份光伏板下土壤碳排放量低于光伏板行道间,这可能是3月份气温较低、光照不强烈,不能激活土壤中的微生物,使其对植物呼吸产生影响,未能进一步影响土壤碳排放。

2.4 对土壤温湿度的影响

土壤温度对地表能量平衡起到至关重要的作用,土壤温度能够客观的表征土壤热状况,对气候变化具有重要意义[28]。光伏电站对土壤温度的影响因季节变化而存在差异。光伏电板对板下土壤具有冬天升温,春、夏降温的效果[9]。日间光伏电站内表层土壤温度小于光伏电站外,表明光伏电板具有遮阴保湿作用 [29]。土壤湿度与土壤温度具有密切的联系,降水和蒸发通过土壤含水量的形式反映土壤湿度[30]。由于光伏电板的遮挡作用,生长季光伏电板下土壤含水量比光伏电板间土壤含水量高。有降雨时,降雨沿光伏电板前沿边缘集中下渗,引起土壤湿度分布的异质性,导致光伏电板下方土壤水分高于光伏电板之间的行道区域,这种现象在干旱区尤为明显[31]。在固定轴光伏电板下方表层土壤(0~10 cm)土壤含水量每年平均增加14%左右[9]。Tanner 等[32]同样发现莫哈韦沙漠的光伏板下土壤湿度显著增加。

2.5 对土壤微生物的影响

土壤微生物在参与土壤生态和环境功能以及免疫功能中起重要作用,是维持土壤健康的重要因素[33]。土壤微生物群落多样性主要由降水量和土壤温湿度决定[3435]。丁成翔等[36]发现光伏电站建立6 a后光伏电站外土壤原核微生物的系统发育多样性、物种丰富度和Shannon-Wiener指数显著高于光伏电站内,土壤原核微生物门水平丰度与土壤水分含量呈负相关关系。工程建设降低0~60 cm土壤细菌、真菌和放线菌的数量[37]。王诗雯[38]发现光伏板阵列改变草地土壤细菌和真菌群落的组成与结构,显著提高了土壤细菌和真菌的α-多样性。

3 对局地气候的影响

目前对于光伏电站如何影响局地气候的研究主要运用现场观测法[32]。光伏发电的原理是将太阳能转化成电能,影响太阳辐射到达地面的过程。太阳能光伏板的布设会对局地下垫面产生影响,在一定程度上影响当地气候。

3.1 对太阳辐射的影响

光伏电站的建立不仅影响太阳辐射的吸收和释放过程,而且对地表辐射平衡也产生一定的影响,光伏电板的布设改变了地表反照率和太阳辐射的分配方式[3940]。光伏电板布设角度和方向对太阳辐射起到拦截作用[41]。不同位置的太阳辐射在不同季节和年份之间差别很大,所以光伏电板安装倾角一般会根据所处位置的太阳辐射拦截最大化原则确定[42]。跟踪式光伏电板和固定式光伏电板可以使地表可获得太阳辐射量分别减少50%和80%左右[43]。在莫哈韦沙漠,光伏电板可以减少85%左右的光和有效辐射[32]。杨丽薇等[44]通过观测格尔木光伏电站地表辐射发现,夜晚光伏电站对地表具有保温作用,白天则相反。在西北地区大规模建立太阳能发电站会导致局地地面净短波辐射增加,热通量升高[45]

3.2 对大气温湿度的影响

光伏电站的布设改变了地区原有的辐射平衡,光伏电板的架设对地表起到一定遮阴作用,同时对近地表形成扰流作用,进而影响大气温湿度,昼夜间光伏电站局地大气温湿度也具有差异性[46]。高晓清等[47]研究发现距离地面2 m时,光伏电站具有“增温降湿”作用;而距离地面10 m时,具有“降温增湿”作用。Chang等[48]的研究同样发现白天光伏电板上的温度高于周围环境,可能会产生“热岛效应”,而晚上光伏电板温度低于周围环境。赵鹏宇等[49]发现在沙漠区光伏电站存在“热岛效应”,夏季晴天光伏电站具有增高温度和降低湿度的作用,距离地面1.0 和2.5 m处光伏电站均具有“增温降湿”的效果。

3.3 对地表风速流场及风沙输移规律的影响

光伏电板防风固沙作用体现在2方面:一是光伏电板自身对于风沙流阻碍作用;二是光伏板截留的雨水和清洗水集中下渗促进植物生长,起到固沙作用[50]。对磴口县光伏电站进行研究,发现光伏电板前沿和后沿处风速较光伏电站外明显下降[51]。光伏阵列与风向垂直时,光伏阵列内风速与输沙量降低程度最大,夹角为85°~90°、高度为200 cm时光伏电站阵列内平均风速降低64.25%[52]。光伏电板的尺寸、安装角度、距离地面的高度以及排列组合方式都会影响地形地貌和下垫面植被状况,进而影响光伏电站周围的流场分布。对毛乌素沙地的光伏电站进行观测发现,光伏电站内 20 和200 cm 高度处风速分别降低 44.06%和 63.68%[53]。郭彩贇等[54]发现,在库布齐沙漠光伏电站光伏电板的作用下,周围的气流场产生分异区,即板下集流加速区、板前板后遇阻减速区、板面抬升区和板间恢复区;光伏电板对 20 cm 高度处风速影响最大,主要降低光伏设施附近的风速,向两侧板间区域过渡时风速逐渐恢复。袁方等[53]在毛乌素沙地的光伏电站观测发现光伏电板增加了近地面出风口处风速,降低了远地面进风口处风速。光伏电板在边缘区对接近垂直电板方向气流的作用机理是设置导风板通过“汇流加速”作用,来增加近地面出风口风速[55]。目前关于光伏电站对风沙输移规律研究较少,陈曦等[56]发现,光伏板前、后沿处为风蚀状态,光伏电板行道间为堆积状态,这可能和光伏板的布设影响风沙流结构有关。光伏板对风沙流的导向作用,导致光伏板下方形成气流加速区,出现掏蚀现象。不同研究者在不同观测时期的环境地形地貌、风况、光伏电板安装规格、安装角度、高度、间距等条件下,得到光伏阵列地表风沙输移规律的影响规律不具有一致性。

4 对局地生物多样性的影响 4.1 对植物多样性的影响

光伏电站在建设施工期开挖和碾压会对原生地表植被的生长产生影响,一般而言,光伏电站的施工期短,所以光伏电站建设时,虽然个别物种数量减少,但不会导致物种在该区域内直接消失[57]。目前对于光伏电站对植物多样性的影响研究主要集中在植物多样性和植物生物量两方面。Armstrong 等[57]研究英国草地光伏电板下、板间行道和光伏电站外的对照区域的植物生物量和植物多样性,发现光伏电板下植物生物量和植物多样性相对其他两个区域较低。王涛[17]发现光伏电站内植物种类、丰富度、均匀度和优势度以及生物量较光伏电站外均有所增加,而光伏电站内光伏板间的行道处植物种类、丰富度、均匀度、优势度和生物量均高于光伏电板下。翟波等[58]研究发现光伏板正下方物种丰富度、均匀度、优势度较光伏板前沿和后沿都显著减少,而植被生物量为光伏板下方高于光伏板前沿和后沿。

4.2 对动物多样性的影响

目前光伏电站建立对动物多样性的影响鲜少研究。光伏电站在建设过程中由于临时道路的修建、人为活动的干扰以及原材料堆放会影响动物的栖息地,施工过程中的噪声也会对动物产生影响,有些动物会选择迁徙[59]。Suuronen等[60]发现,蜘蛛目(Araneae)、鞘翅目(Coleoptera)、双翅目(Diptera)和膜翅目(Hymenoptera)等动物将固定式光伏电板作为它们生活的避难所,光伏电板下蜘蛛(Arachnoida)数量最多。美国的一篇报道指出,Ivanpah太阳能光伏发电会对当地的沙蜥(Phrynocephalus versicolor)产生威胁[61]。由此看来,光伏电站的建立能对本地动植物的生活条件造成一定影响,也可能为某些特定动植物创造新的栖息地。

5 结论

对于光伏电站的研究,国外大多运用模型模拟和大尺度进行研究,我国目前主要基于对野外观测资料的分析,通过对太阳辐射、大气温湿度、土壤温湿度和土壤理化性质等指标的比较,分析光伏电站对局域生态环境的影响。光伏电站运营期能够导致地表反照率降低增加降水量;增加土壤含水量、有机质含量和全氮含量;提高土壤细菌和真菌的α-多样性。光伏电站建设期的挖填方,短时间内会对局地原生植物造成破坏,加剧西北荒漠区的风沙活动。在西北荒漠区建设光伏电站选址时要尽量选择原生植被较少,沙丘起伏程度较小,坡度最好不要超过3°,风沙活动相对较小,且对光伏板布设及日常运行和维护不构成威胁的区域。

6 展望

不同立地类型和气候环境都会导致光伏电站对其所处环境的土壤、植被、小气候以及生物多样性等方面产生不同程度的影响。深入研究西北生态脆弱区光伏电站及其环境的互馈机制有利于维持我国西北地区生态平衡,促进生态环境友好可持续发展。近年我国光伏电站发展势头迅猛,对其如何影响生态环境的研究比较多,而怎样能使光伏电站可持续利用也是未来几年或者几十年,我们将面临的一个现实问题。因此,未来在西北荒漠区光伏电站选址过程中一定要考虑工程建设对生态环境的破坏程度以及对周围人文环境的消极影响,并提前做好生态恢复规划。另外关于光伏电站对西北荒漠区降水、动物迁徙、植物群落组成、昆虫和土壤微生物的影响研究相对较少,还需要进一步加强。

7 参考文献
[1]
长三角地区乔木林碳汇及其对“双碳”目标贡献预测[J]. 生态学杂志, 2024, 43(12): 3817.
ZHU Nianfu, ZHENG Yeshi, TONG Ran, et al. Prediction of carbon sink and contribution to the carbon peaking and carbon neutrality goals of arbor forests in the Yangtze River Delta region of China[J]. Chinese Journal of Ecology, 2024, 43(12): 3817.
[2]
李珍. 太阳能与空气源热泵不同耦合方式的运行特性研究[D]. 吉林吉林:东北电力大学,2021:3.
LI Zhen. Study on operation characteristics of solar energy and air source heat pump in different coupling modes[D]. Jilin,Jilin:Northeast Electric Power University,2021:3.
[3]
干热河谷区光伏电站建设的生态效应与植被恢复探讨[J]. 中国水土保持, 2023(1): 15.
LIU Wenxiang, WAN Dan, GAN Guoquan, et al. Ecological effect and vegetation restoration of photovoltaic power station construction in hot and dry valley areas[J]. Soil and Water Conservation in China, 2023(1): 15. DOI:10.3969/j.issn.1000-0941.2023.01.006
[4]
碳中和目标下我国能源转型路径探讨[J]. 中国煤炭, 2021, 47(8): 7.
LI Quansheng. Discussion on the path of China’s energy transformation under the goal of carbon neutrality[J]. China Coal, 2021, 47(8): 7. DOI:10.3969/j.issn.1006-530X.2021.08.001
[5]
气候变化背景下未来全球陆地风、光资源的预估[J]. 干旱气象, 2018, 36(5): 725.
ZHANG Feimin, WANG Chenghai, XIE Guohui, et al. Projection of global wind and solar energy over land under different climate change scenarios during 2020-2030[J]. Journal of Arid Meteorology, 2018, 36(5): 725.
[6]
“碳中和”下光伏对西北荒漠生态因子与植被分布的影响[J]. 草地学报, 2023, 31(5): 1520.
QIAO Shengchao, YU Chaoqing, HUANG Xiao, et al. The impacts of centralized photovoltaic power plants on ecological drivers and vegetation development in China’s northwestern desert regions under the carbon neutrality strategy[J]. Acta Agrestia Sinica, 2023, 31(5): 1520.
[7]
LIU Yu, ZHANG Ruiqi, HUANG Ze, et al. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem[J]. Land Degradation & Development, 2019, 30(18): 2177.
[8]
岳生娟. 青海荒漠区大规模光伏开发生态环境效应研究[D]. 西安:西安理工大学,2022:79.
YUE Shengjuan. Research on eco-environmental effects of large-scale photovoltaic development in Qinghai Desert area[D]. Xi'an:Xi'an University of Technology,2022:79.
[9]
LI Yan, KALNAY E, MOTESHARREI S, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science, 2018, 361(6406): 1019. DOI:10.1126/science.aar5629
[10]
LI Zhenchao, ZHAO Yanyan, YANG Jiaxi, et al. A comparative study on surface energy flux characteristics of photovoltaic power station in Gobi in summer[J]. Theoretical and Applied Climatology, 2022, 148(3): 1239.
[11]
内蒙古典型草原区光伏电板降水再分配与土壤水分蒸散分异规律[J]. 中国农业大学学报, 2020, 25(9): 144.
ZHAI Bo, DANG Xiaohong, CHEN Xi, et al. Difference regularity of precipitation redistribution and soil water evapotranspiration in photovoltaic panels in typical steppe areas of Inner Mongolia[J]. Journal of China Agricultural University, 2020, 25(9): 144. DOI:10.11841/j.issn.1007-4333.2020.09.15
[12]
DHAR A, NAETH M A, JENNINGS P D, et al. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems[J]. Science of the Total Environment, 2020, 718: 134602. DOI:10.1016/j.scitotenv.2019.134602
[13]
大规模光伏开发对局地气候生态影响研究[J]. 太阳能学报, 2023, 44(8): 253.
ZHENG Juanqing, LUO Yong, CHANG Rui, et al. Study on impact of large-scaled photovoltaic development on local climate and ecosystem[J]. Acta Energige Solaris Sinica, 2023, 44(8): 253.
[14]
光伏电站建设对沙区生态环境的影响[J]. 水土保持通报, 2019, 39(1): 191.
WANG Zhenyi, WANG Ji, GAO Yong, et al. Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Bulletin of Soil and Water Conservation, 2019, 39(1): 191.
[15]
碳中和背景下光伏阵列对沙漠地区微气候的影响[J]. 甘肃农业大学学报, 2024, 59(5): 228.
ZHANG Chengchun, ZHANG Weifu, DONG Zhijin, et al. Impact of photovoltaic arrays on microclimate in desert areas under the background of carbon neutral[J]. Journal of Gansu Agricultural University, 2024, 59(5): 228.
[16]
陈曦. 沙区光伏电站对气固两相流及地表土壤粒径的影响研究[D]. 呼和浩特:内蒙古农业大学,2019:109.
CHEN Xi. Research on impact effect of gas-solid two-phase flow and soil mechanical composition to photovoltaic power station[D]. Hohhot:Inner Mongolia Agricultural University,2019:109.
[17]
王涛. 光伏电站建设对靖边县土壤、植被的影响研究[D]. 陕西杨凌:西北农林科技大学,2015:28.
WANG Tao. The impact of photovoltaic power construction on soil and vegetation in Jingbian County[D]. Yangling,Shaanxi:Northwest A&F University,2015:28.
[18]
TANNER K E, MOORE-O'LEARY K A, PARKER I M, et al. Simulated solar panels create altered microhabitats in desert landforms[J]. Ecosphere, 2020, 11(4): e03089. DOI:10.1002/ecs2.3089
[19]
光伏电站工程对土壤与植被的影响: 以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学, 2019, 17(2): 132.
ZHOU Maorong, WANG Xijun. Influence of photovoltaic power station engineering on soil and vegetation: Taking the Gobi Desert area in the Hexi corridor of Gansu as an example[J]. Science of Soil and Water Conservation, 2019, 17(2): 132.
[20]
WANG Chun, HILL R L, BU Chongfeng, et al. Evaluation of wind erosion control practices at a photovoltaic power station within a sandy area of northwest, China[J]. Land Degradation & Development, 2021, 32(4): 1854.
[21]
双碳背景下中国西北地区光伏电站建设现状与潜力分析[J]. 干旱区资源与环境, 2024, 38(2): 20.
QU Zhun, YANG Suchang, XIAO Jianhua. Current situation and potential of photovoltaic power plant construction in northwestern China under the background of carbon peaking and carbon neutrality[J]. Journal of Arid Land Resources and Environment, 2024, 38(2): 20.
[22]
光伏电站对生态环境影响及发展思路[J]. 红水河, 2023, 42(5): 83.
WU Quanrong, CHEN Tanjian. Impact of photovoltaic power station on ecological environment and its development ideas[J]. Hongshui River, 2023, 42(5): 83. DOI:10.3969/j.issn.1001-408X.2023.05.016
[23]
姚娜,吴薇,程艳辉,等. 光伏电场水土保持措施配置初探:以郧西县光伏发电工程为例[J]. 亚热带水土保持,2014,26(1):52.
YAO Na,WU Wei,CHENG Yanhui,et al. Preliminary study on the configuration of soil and water conservation measures for photovoltaic electric fields:Taking the photovoltaic power generation project in Yunxi county as an example[J]. Subtropical Soil and Water Conservation,2014,26(1):52.
[24]
吴巍,袁博,邹鹏辉,等. 太阳能发电对生态环境影响的研究动态与展望[J]. 能源与环境,2023(2):4.
WU Wei,YUAN Bo,ZHOU Penghui,et al. Research trends and prospects on the impact of solar power generation on the ecological environment[J]. Energy and Environment,2023(2):4.
[25]
光伏发电系统碳中和及其影响因素[J]. 资源科学, 2022, 44(8): 1735.
WANG Xinmiao, MA Zhiyong, ZHOU Wangxiao, et al. Carbon neutralization in photovoltaic power generation system and influencing factors[J]. Resources Science, 2022, 44(8): 1735. DOI:10.18402/resci.2022.08.15
[26]
光伏电站建设对陆地生态环境的影响: 研究进展与展望[J]. 环境科学, 2024, 45(1): 239.
TIAN Zhengqing, ZHANG Yong, LIU Xiang, et al. Effects of photovoltaic power station construction on terrestrial environment: Retrospect and prospect[J]. Environmental Science, 2024, 45(1): 239.
[27]
LAMBERT Q, BISCHOFF A, CUEFF S, et al. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate[J]. Land Degradation & Development, 2021, 32(18): 5190.
[28]
WANG Xiqiang, CHEN Rensheng, HAN Chuntan, et al. Response of shallow soil temperature to climate change on the Qinghai-Tibetan Plateau[J]. International Journal of Climatology, 2021, 41(1): 1. DOI:10.1002/joc.6605
[29]
光伏电站对格尔木荒漠地区土壤温度的影响研究[J]. 太阳能学报, 2016, 37(6): 1439.
GAO Xiaoqing, YANG Liwei, LÜ Fang, et al. Effect of PV farm on soil temperature in Golmud Desert area[J]. Acta Energiae Solaris Sinica, 2016, 37(6): 1439. DOI:10.3969/j.issn.0254-0096.2016.06.012
[30]
土壤温度变化在绿洲及沙漠近地层能量平衡中的作用分析[J]. 太阳能学报, 2010, 31(12): 1628.
HAN Bo, LÜ Shihua, AO Yinhuan. Analysis on the contribution of soil temperature variation to the energy balance at desert and oasis surface layer[J]. Acta Energiae Solaris Sinica, 2010, 31(12): 1628.
[31]
D'ODORICO P, CAYLOR K, OKIN G S, et al. On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112(G4): G04010.
[32]
TANNER K E,MOORE K A,PAVLIK B M. Changes to shade and water regimes imposed by solar development affect desert plant performance and community attributes[C]. Esa Convention, 2014.
[33]
土壤微生物群落对枯落物输入的响应[J]. 应用生态学报, 2022, 33(11): 2943.
ZHANG Yaqi, CHEN Lin, PANG Danbo, et al. Responses of soil microbial community structure to litter inputs[J]. Chinese Journal of Applied Ecology, 2022, 33(11): 2943.
[34]
SHI Yu, ZHANG Kaoping, LI Qian, et al. Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland[J]. Science of the Total Environment, 2020, 714: 136794. DOI:10.1016/j.scitotenv.2020.136794
[35]
MA Wenjun, LI Jian, GAO Ying, et al. Responses of soil extracellular enzyme activities and microbial community properties to interaction between nitrogen addition and increased precipitation in a semi-arid grassland ecosystem[J]. Science of the Total Environment, 2020, 703: 134691. DOI:10.1016/j.scitotenv.2019.134691
[36]
光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[J]. 草地学报, 2021, 29(5): 1061.
DING Chengxiang, LIU Yu. Effects of solar photovoltaic park construction on soil microbial community in Alpine Desert of Qinghai Tibet Plateau[J]. Acta Agrestia Sinica, 2021, 29(5): 1061.
[37]
干热河谷水电建设干扰对表土层土壤养分及微生物的影响[J]. 水土保持学报, 2016, 30(1): 147.
LI Yanmei, CHEN Qibo, LIANG Mao, et al. Effect of disturbance of hydropower construction on soil nutrients and microorganisms in Dry-Hot River Valley[J]. Journal of Soil and Water Conservation, 2016, 30(1): 147.
[38]
王诗雯. 光伏板阵列对松嫩草地土壤微生物群落组成与多样性的影响[D]. 长春:东北师范大学,2023:61.
WANG Shiwen. Effects of photovoltaic panel arrays on components and biodiversities of soil microbes in the Songnen grassland[D]. Changchun:Northeast Normal University,2023:61.
[39]
LI Zhenchao, ZHAO Yanyan, LUO Yong, et al. A comparative study on the surface radiation characteristics of photovoltaic power plant in the Gobi Desert[J]. Renewable Energy, 2022, 182: 764. DOI:10.1016/j.renene.2021.10.054
[40]
BROADBENT A M, KRAYENHOFF E S, GEORGESCU M, et al. The observed effects of utility-scale photovoltaics on near-surface air temperature and energy balance[J]. Journal of Applied Meteorology and Climatology, 2019, 58(5): 989. DOI:10.1175/JAMC-D-18-0271.1
[41]
SAGAR M K, WAGH M M, GHANE S G, et al. Experimental analysis of effect of vegetation under PV solar panel on performance of polycrystalline solar panel[J]. Journal of Fundamentals of Renewable Energy and Applications, 2016, 6(5): 1000215.
[42]
单面和双面光伏组件最佳安装倾角的设计对比研究[J]. 太阳能, 2022(6): 85.
MA Jingtao. Comparative study on the design of optimal installation inclination angle of single-sided and bifacial PV modules[J]. Solar Energy, 2022(6): 85.
[43]
ARAKI K, NAGAI H, LEE K H, et al. Analysis of impact to optical environment of the land by flat-plate and array of tracking PV panels[J]. Solar Energy, 2017, 144: 278. DOI:10.1016/j.solener.2017.01.021
[44]
光伏电站对格尔木荒漠地区太阳辐射场的影响研究[J]. 太阳能学报, 2015, 36(9): 2160.
YANG Liwei, GAO Xiaoqing, LÜ Fang, et al. Study on the impact of large solar farm on radiation field in desert areas of Golmud[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2160. DOI:10.3969/j.issn.0254-0096.2015.09.019
[45]
我国西北大规模太阳能与风能发电场建设产生的可能气候效应[J]. 气候与环境研究, 2021, 26(2): 124.
LIANG Hong, WEI Ke, MA Jiao. Climate effect assessment of ideal large-scale solar and wind power farms in Northwest China[J]. Climatic and Environmental Research, 2021, 26(2): 124.
[46]
ADEH E H, SELKER J S, HIGGINS C W, et al. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency[J]. PLoS one, 2018, 13(11): e0203256. DOI:10.1371/journal.pone.0203256
[47]
光伏电站对格尔木荒漠地区空气温湿度影响的观测研究[J]. 太阳能学报, 2016, 37(11): 2909.
GAO Xiaoqing, WANG Liwei, LÜ Fang, et al. Observational study on the impact of the large solar farm on air temperature and humidity in desert areas of Golmud[J]. Acta Energiae Solaris Sinica, 2016, 37(11): 2909.
[48]
CHANG Rui, SHEN Yanbo, LUO Yong, et al. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China[J]. Renewable Energy, 2018, 118: 131. DOI:10.1016/j.renene.2017.11.007
[49]
赵鹏宇,高永,陈曦,等. 沙漠光伏电站对空气温湿度影响研究[J]. 西部资源,2016,72(3):125.
ZHAO Pengyu,GAO Yong,CHEN Xi,et al. Research on the impact of desert photovoltaic power stations on air temperature and humidity[J]. Western Resources,2016,72(3):125.
[50]
沙漠戈壁光伏电场固沙效应初步研究: 以甘肃河西走廊为例[J]. 中国水土保持, 2018(8): 18.
CHANG Zhaofeng, WANG Qi, LIU Shizeng, et al. Sand fixation effect of photovoltaic field of Gobi Desert[J]. Soil and Water Conservation in China, 2018(8): 18. DOI:10.3969/j.issn.1000-0941.2018.08.008
[51]
赵鹏宇. 光伏电板对地表土壤颗粒及小气候的影响:以磴口县光伏电站为例[D]. 呼和浩特:内蒙古农业大学,2016:39.
ZHAO Pengyu. Effect of photovoltaic panels on the surface of soil particles and microclimate:Taking Dengkou photovoltaic power station as an example[D]. Hohhot:Inner Mongolia Agricultural University,2016:39.
[52]
唐国栋. 沙区光伏阵列地表形变规律及其动力学机制[D]. 呼和浩特:内蒙古农业大学,2021:114.
TANG Guodong. Study on the solar photovoltaic array surface geomorphology development characteristics and dynamic mechanism in desert area[D]. Hohhot:Inner Mongolia Agricultural University,2021:114.
[53]
毛乌素沙地光伏电站项目区风速流场及风蚀防治措施[J]. 中国沙漠, 2016, 36(2): 287.
YUAN Fang, ZHANG Zhenshi, BO Congfeng, et al. Wind speed flow field and wind erosion control measures at photovoltaic power plant project area in Mu Us Sandy Land[J]. Journal of Desert Research, 2016, 36(2): 287.
[54]
库布齐沙漠110 MW光伏基地次生风沙危害的动力学机制[J]. 中国沙漠, 2018, 38(2): 225.
GUO Caiyun, HAN Zhiwen, LI Aimin, et al. Dynamic mechanism research on the secondary blown sand disaster in the 110 MW photovoltaic arrays of the Hobq Desert[J]. Journal of Desert Research, 2018, 38(2): 225. DOI:10.7522/j.issn.1000-694X.2016.00142
[55]
HAN Yanlong, GAO Yong, MENG Zhongju, et al. Effects of wind guide plates on wind velocity acceleration and dune leveling: A case study in Ulan Buh Desert, China[J]. Journal of Arid Land, 2017, 9(5): 743. DOI:10.1007/s40333-017-0101-8
[56]
沙区光伏电场的风沙流输移特征[J]. 干旱区研究, 2019, 36(3): 684.
CHEN Xi, GAO Yong, ZHAI Bo, et al. Transport of wind-drift sand in photovoltaic electric field in sand area[J]. Arid Zone Research, 2019, 36(3): 684.
[57]
ARMSTRONG A, OSTLE N J, WHITAKER J. Solar park microclimate and vegetation management effects on grassland carbon cycling[J]. Environmental Research Letters, 2016, 11(7): 074016. DOI:10.1088/1748-9326/11/7/074016
[58]
光伏电板对羊草群落特征及多样性的影响[J]. 生态学杂志, 2018, 37(8): 2237.
ZHAI Bo, GAO Yong, DANG Xiaohong, et al. Effects of photovoltaic panels on the characteristics and diversity of Leymus chinensis community[J]. Chinese Journal of Ecology, 2018, 37(8): 2237.
[59]
王晓文. 辽西地区风电场生态环境影响分析与可持续发展模式研究[D]. 辽宁阜新:辽宁工程技术大学,2017:43.
WANG Xiaowen. Eco-environmental impact analysis and sustainable development model of wind farms in Western Liaoning[D]. Fuxin,Liaoning:Liaoning Technical University,2017:43.
[60]
SUURONEN A, MUÑOZ-ESCOBAR C, LENSU A, et al. The influence of solar power plants on microclimatic conditions and the biotic community in Chilean Desert environments[J]. Environmental Management, 2017, 60(4): 630. DOI:10.1007/s00267-017-0906-4
[61]
SUURONEN A. Ecological and social impacts of photovoltaic solar power plants and optimization of their locations in northern Chile[D]. Jyväskylä, Finland:University of Jyväskylä,2017:61.