2. 江西省鄱阳湖流域生态水利技术创新中心,330029,南昌;
3. 赣州市赣县区水利局,341100,江西赣州
中国水土保持科学 2025, Vol. 23 Issue (1): 102-108. DOI: 10.16843/j.sswc.2024064 |
崩岗是指岩石体风化壳、山坡土体在重力、水力作用下发生分解、崩塌、堆积的侵蚀现象[1]。崩岗侵蚀使生态环境极度恶化,土地生产力遭到破坏,变成“江南沙漠”和“白沙岗”[2],被形象地称为生态环境的“溃疡”[3]。崩岗主要分布于长江以南的广东、江西、福建、湖北、安徽、湖南、广西等省(自治区),具有发展较快、泥沙量大、危害巨大和治理难度大等特征,造成的水土流失危害极为严重,是我国南方红壤丘陵区生态环境、公共安全和经济发展的主要威胁[4]。
随着经济发展与人口增长,我国南方红壤丘陵区地少人多的矛盾日益突出,将崩岗侵蚀劣地开发利用种植果树,已成为许多地方山地开发主要模式之一[5−6]。将崩岗整治为梯田后,梯壁抗蚀性极差,尤其是在果园开发建设初期,剧烈的人为扰动导致梯壁植被、土壤结构破坏严重,加上区域内降雨集中、强度大,并且由于缺少人为管护,梯壁植被恢复较慢,松散的土体极易被冲刷,产生严重的水土流失而发生崩塌[7],成为南方红壤区重要的水土流失策源地[8−9]。
植物护坡是果园梯壁防护的重要组成内容,其植物配置形式决定植物固土保水效果的好坏[10]。椰纤植生毯建植护坡通过把椰纤植生毯固定在坡面上,并在坡面上种植水土保持灌草保护土壤、改善坡面土壤性质[11−12]。该技术使用材料生态环保,施工简单快捷,经济合理,后期维护管理成本低,绿化效果显著。在赣州市山水林田湖草生态保护修复工程中,椰纤植生毯+宽叶雀稗(Paspalum wettsteinii)的植被恢复措施得到广泛的应用,并取得显著的综合效益,在江西省崩岗侵蚀防治中得到推广应用。但是,目前对于椰纤植生毯建植护坡技术改善果园梯壁土壤理化性质的研究较少,在一定程度上制约该项技术的推广应用。为揭示椰纤植生毯覆盖对果园梯壁土壤的影响,笔者通过野外试验,分析不同植被覆盖措施下果园梯壁土壤理化性质的影响,以期为崩岗的合理开发利用提供理论和实践依据。
1 研究区概况研究区位于江西省赣县区白鹭乡上塘村境内(E 115°11′35″,N 26°12′07″)。该区域属亚热带季风气候区,年平均气温19.3℃,年平均降水量
2022年8月,在赣县区金钩形崩岗治理工程项目区内选择同一等高线的水平梯田梯壁做为研究样地,梯壁高度为3 m、坡度70°、坡向为阳坡,现状以裸露为主,部分区域长有芒萁。在研究样地设置4个处理,每个处理为2 m(等高线平行方向)×3 m(顺坡方向)。自然恢复芒萁覆盖(GX1):水平梯田整地,梯壁未扰动,保留原有植被,芒萁覆盖;人工恢复梯壁植草(GX2):水平梯田整地,梯壁条播种植宽叶雀稗;人工恢复椰纤植生毯覆盖(GX3):水平梯田整地,梯壁采用椰纤植生毯覆盖,并条播种植宽叶雀稗;对照(CK):水平梯田整地,梯壁裸露。试验布设后,于2023年8月对不同处理进行取样。采用土钻取样,每个处理按照“S形采样法”分别选取5个点,每个点取0 ~ 30 cm土壤混合样。
2.2 土壤理化性质测定土壤样品在室内自然风干、研磨、过筛,土壤理化性质按照常规分析法测定[13]。土壤机械组成测定采用比重计法,根据美国农部制土粒分级标准,将土壤颗粒划为黏粒(< 0.002 mm)、粉粒(0.002 ~ 0.05 mm)和砂粒(0.05 ~ 2 mm)3个粒级[14];土壤水稳性团聚体测定采用湿筛法;阳离子交换量测定采用乙酸铵交换法。
2.3 数据处理与计算利用Microsoft Excel 2017软件进行数据整理及制作图表。
采用土壤团聚体平均质量直径MWD(mean weight diameter,MWD)和破坏率PAD(percentage of aggregate destruction,PAD)来评价土壤团聚体稳定性。
| $ {M}_{\mathrm{W}\mathrm{D}} = \sum _{i = 1}^{n}{W}_{i}{X}_{i} ;$ | (1) |
| $ P_{\mathrm{A}\mathrm{D}}=(D_{0.25}-W_{0.25})/D_{0.25}\times100 \text{%} 。$ | (2) |
式中:Wi为第i级团聚体占总团聚体的质量比例,%;Xi为第i级团聚体的平均直径,mm;D0.25为粒径 > 0.25 mm的机械稳定性团聚体质量分数,%;W0.25为粒径 > 0.25 mm的水稳性团聚体质量分数,%。
3 结果与分析 3.1 不同处理对土壤机械组成的影响不同措施配置下土壤机械组成见图1,不同处理土壤颗粒都以砂粒为主。这一土壤颗粒的组成特点是因为由于长期的侵蚀作用和人为活动的剧烈扰动,导致表土层和红土层被全部冲刷,顶部为砂土层,砂土土壤中含有大量的石英、长石或其他矿物颗粒。采用水平梯田整地后,人工恢复梯壁植草(黏壤土)、人工恢复椰纤植生毯覆盖(壤黏土)、梯壁裸露(壤土)土壤黏粒含量变化呈现相似的规律,土壤中黏粒质量分数相比自然恢复芒萁覆盖(壤黏土)都有所下降,分别减少54.62%、24.40%和60.68%。经过1年的恢复后,人工恢复椰纤植生毯覆盖、人工恢复梯壁植草土壤黏粒质量分数比梯壁裸露分别增加92.28%、15.37%。
|
GX1:自然恢复芒萁覆盖;GX2:人工恢复梯壁植草;GX3:人工恢复椰纤植生毯覆盖;CK:对照。下同。 GX1:Natural restored Dicranopteris pedata coverage. GX2:Artificial restored grass coverage. GX3:Artificial restored coconut fiber blanket coverage. CK:Control check. The same below. 图 1 不同处理下土壤机械组成 Fig. 1 Soil mechanical composition under different treatments |
由图2可知,各处理土壤阳离子交换量(CEC)呈现自然恢复芒萁覆盖 > 人工恢复椰纤植生毯覆盖 > 人工恢复梯壁植草 > 梯壁裸露,与自然恢复芒萁覆盖相比,人工恢复梯壁植草、人工恢复椰纤植生毯覆盖、梯壁裸露土壤阳离子交换量分别降低29.59%、17.89%和34.40%。这可能是由于整地扰动,表层土壤被大量剥离,导致土壤阳离子交换量减少。与梯壁裸露处理相比,人工恢复椰纤植生毯覆盖和人工恢复梯壁植草土壤阳离子交换量分别增加25.17%和7.34%。
|
图 2 不同处理下土壤阳离子交换量 Fig. 2 Soil cation exchange under different treatments |
由表1可知,不同处理土壤养分含量都处于较低水平。与梯壁裸露相比,自然恢复芒萁覆盖、人工恢复梯壁植草和人工恢复椰纤植生毯覆盖土壤有机质质量分数分别提高11.45%、33.59%、325.95%;全氮质量分数分别提高200.00%、33.33%、300.00%;全磷质量分数分别提高30.00%、40.00%、50.00%;全钾质量分数分别提高149.63%、119.22%、222.01%;碱解氮质量分数分别提高−6.30%、12.60%、87.58%;速效磷质量分数分别提高591.07%、225.00%、239.29%;速效钾质量分数分别提高−76.80%、105.47%、−35.62%。土壤有机质、全氮、全磷、全钾和碱解氮质量分数以人工恢复椰纤植生毯覆盖最高,速效磷以自然恢复芒萁覆盖最高,速效钾以人工恢复梯壁植草最高。这说明植被覆盖措施对于改善土壤养分有显著的促进作用,植被恢复初期,人工恢复椰纤植生毯覆盖对梯壁土壤养分含量的提升效果最优。
| 表 1 不同处理下土壤养分质量分数 Tab. 1 Soil nutrient contents under different treatments |
由表2可知,各处理均以 > 0.25 mm水稳性团聚体为主,4种处理 > 0.25 mm水稳性团聚体质量分数介于59.71% ~ 82.57%,其中自然恢复芒萁覆盖和人工恢复椰纤植生毯覆盖处理 > 0.25 mm水稳性团聚体质量分数超过70%。与对照梯壁裸露相比,人工恢复梯壁植草 > 0.25 mm水稳性团聚体质量分数降低7.33%,人工恢复椰纤植生毯覆盖 > 0.25 mm水稳性团聚体质量分数增加18.47%。
| 表 2 不同处理下土壤团聚体稳定性及粒径分布 Tab. 2 Soil aggregate stability and particle size distribution under different treatments |
由图3可知,湿筛法测得4种处理土壤团聚体在不同粒径均有分布,植被覆盖措施对梯壁土壤团聚体粒径分布具有一定的影响。人工恢复梯壁植草、梯壁裸露以 < 0.25 mm粒径团聚体比例最大,自然恢复芒萁覆盖、人工恢复椰纤植生毯覆盖以 > 2 mm粒径的团聚体为主,随着水稳性团聚体粒级的增大,水稳性团聚体的质量分数逐渐增加。
|
图 3 不同处理下土壤团聚体质量分数 Fig. 3 Mass proportions of soil aggregates under different treatments |
土壤团聚体破坏率值由小到大分别为自然恢复芒萁覆盖(12.15%)、人工恢复梯壁植草(21.83%)、人工恢复椰纤植生毯覆盖(27.22%)、梯壁裸露(28.62%),自然恢复芒萁覆盖土壤团聚体破坏率最小。与梯壁裸露相比,人工恢复梯壁植草、人工恢复椰纤植生毯覆盖土壤团聚体破坏率分别降低4.89%、23.72%。
自然恢复芒萁覆盖、人工恢复椰纤植生毯覆盖和梯壁裸露对照土壤团聚体属于稳定团聚体,人工恢复梯壁植草土壤团聚体属于不稳定团聚体,土壤团聚体平均质量直径表现为自然恢复芒萁覆盖 > 人工恢复椰纤植生毯覆盖 > 梯壁裸露 > 人工恢复梯壁植草,说明与梯壁裸露相比,自然恢复芒萁覆盖和人工恢复椰纤植生毯覆盖能够提高土壤团聚体稳定性,而人工恢复梯壁植草在植被恢复初期降低土壤团聚体稳定性。
4 讨论土壤黏粒和粉粒等细颗粒反映土壤养分含量和保肥能力[15]。采用水平梯田整地后,土壤黏粒质量分数和阳离子交换量都呈现出自然恢复芒萁覆盖 > 人工恢复椰纤植生毯覆盖 > 人工恢复梯壁植草 > 梯壁裸露。经过1年的恢复后,人工恢复椰纤植生毯覆盖土壤黏粒质量分数比梯壁裸露增加92.28%。阳离子交换量直接反映土壤的保肥、供肥性能和缓冲能力[16]。在果园开发初期,梯壁采用椰纤植生毯覆盖能够快速增加植被覆盖,土壤黏粒质量分数显著上升,阳离子交换量增加,而植物残体经过微生物的降解作用,在梯壁表层形成腐殖质,它通过多价阳离子与矿物质土粒形成有机—矿质复合体,对阳离子交换量也有一定的贡献[17]。
根据全国第2次土壤普查养分分级标准[18],不同处理土壤有机质、全磷、全氮、碱解氮等含量均小于最低的6级标准。在果园整地梯壁恢复初期,人工恢复椰纤植生毯覆盖土壤养分含量显著高于其他处理,人工恢复椰纤植生毯覆盖达到较好的保水保墒作用,有效改善土壤微生物的活动环境,加速凋落物的分解,同时梯壁的快速覆盖降低径流对梯壁的冲刷,从而减少养分的流失;人工恢复梯壁植草植被生长较慢,未能有效覆盖梯壁,土壤有机质含量处于较低水平。这与伊兴凯等[19]研究人工恢复种植毛苕子未提高果园有机质含量的结论相似。由此可见,在果园建园初期,采用人工恢复椰纤植生毯覆盖快速提高梯壁植被覆盖度,是提升土壤总体养分含量的有效措施。
土壤团聚体与降雨入渗、土壤侵蚀关系密切[20],可以通过 > 0.25 mm水稳性团聚体质量分数、团聚体破坏率和团聚体平均质量直径等指标来判断团聚体水稳性[21]。自然恢复芒萁覆盖和人工恢复椰纤植生毯覆盖有利于土壤形成水稳性大团聚体,> 0.25 mm水稳性团聚体含量超过70%,说明土壤结构良好[22−23]。与梯壁裸露相比,人工恢复梯壁植草 > 0.25 mm水稳性团聚体质量分数降低7.33%。一般情况下,土壤团聚体平均质量直径越大或土壤团聚体破坏率越小,结构越好。自然恢复芒萁覆盖的土壤团聚体平均质量直径最大,人工恢复椰纤植生毯覆盖比梯壁裸露土壤团聚体平均质量直径提高62.16%。采用自然恢复芒萁覆盖、人工恢复椰纤植生毯覆盖能够显著降低土壤团聚体破坏率,与对照人工恢复梯壁裸露相比,土壤团聚体破坏率分别降低34.38%、23.72%。在果园整地初期,人工恢复椰纤植生毯覆盖避免人工管护导致的土壤扰动,同时增加土壤胶结物质的数量,显著提升土壤团聚体稳定性[24−26]。而人工恢复梯壁植草在建园初期,由于人为扰动较大,且草本植物生长较慢,降雨直接冲刷梯壁,破坏土体的稳定性。因此,采用梯壁植草覆盖应辅以其他措施。
5 结论本研究发现,与裸露处理相比,自然恢复芒萁覆盖、人工恢复梯壁植草和人工恢复椰纤植生毯覆盖均能改善梯壁土壤理化性质,但改善效果不同。与其他覆盖处理相比,自然恢复芒萁覆盖对土壤黏粒质量分数、阳离子交换量和 > 0.25 mm水稳性团聚体质量分数的提升效果最优。果园整地初期,梯壁植草不能显著改善土壤理化性质,而椰纤植生毯覆盖能够在短期内快速提升梯壁土壤养分含量,改善土壤结构,是一种有效的水土保持措施,可以在南方红壤丘陵区果园水土流失防治和植被恢复中推广应用。本研究重点讨论植被覆盖措施对果园梯壁土壤理化性质的影响,研究结果可为南方红壤丘陵区果园梯壁植被恢复方式的选择提供科学依据。本研究由于观测周期较短,不能反映植被覆盖措施对果园梯壁土壤理化性质的长期影响。如果能够在本研究的基础上进一步结合土壤理化性质与果园产量相关的试验内容,并开展长期定位试验,相信能够有更深一步的发现。
| [1] |
“崩岗”概念及其英文译法探析[J]. 中国水土保持科学, 2020, 18(5): 136. ZHANG Wanlu, YUAN Zaijian, LI Dingqiang, et al. Discussion of the "Benggang" concept and its English translation[J]. Science of Soil and Water Conservation, 2020, 18(5): 136. |
| [2] |
崩岗系统化学计量特征及其生态指示意义[J]. 中国水土保持科学, 2019, 17(3): 75. LIANG Meixia, CHEN Zhibiao, CHEN Zhiqiang, et al. Stoichiometric characteristics and its ecological implication in Benggang system[J]. Science of Soil and Water Conservation, 2019, 17(3): 75. |
| [3] |
LIU Weiping, SONG Xinqiang, LUO Jia, et al. The processes and mechanisms of collapsing erosion for granite residual soil in southern China[J]. Journal of Soils and Sediments, 2020, 20(2): 992. DOI:10.1007/s11368-019-02467-4 |
| [4] |
我国南方崩岗侵蚀现状调查[J]. 人民长江, 2009, 40(8): 66. FENG Minghan, LIAO Chunyan, LI Shuangxi, et al. Investigation on status of hill collapsing and soil erosion in southern China[J]. Yangtze River, 2009, 40(8): 66. |
| [5] |
发展崩岗经济变崩岗治理为崩岗资源化利用[J]. 中国水土保持科学, 2021, 19(4): 114. ZHENG Mingguo, LIAO Yishan, ZHANG Lisheng, et al. Developing the Benggang economics to transform the Benggang-erosion control to the Benggang utilization as resources[J]. Science of Soil and Water Conservation, 2021, 19(4): 114. |
| [6] |
江西省兴国县崩岗侵蚀劣地治理规划[J]. 亚热带水土保持, 2018, 30(3): 50. PAN Feng, XIE Songhua, YU Ronggang. Control plan for landslides and erosion in Xingguo county, Jiangxi[J]. Subtropical Soil and Water Conservation, 2018, 30(3): 50. DOI:10.3969/j.issn.1002-2651.2018.03.012 |
| [7] |
崩岗治理技术措施研究进展与展望[J]. 水土保持通报, 2018, 38(6): 248. HUANG Bin, LI Dingqiang, YUAN Zaijian, et al. Progress and prospect of research on collapsing gully control techniques[J]. Bulletin of Soil and Water Conservation, 2018, 38(6): 248. |
| [8] |
崩岗泥砂流流体和流动特性及其输沙研究: 以广东德庆县径深崩岗为例[J]. 山地学报, 2022, 40(6): 859. YUE Meng, LIU Xilin. Hydrodynamic properties of Benggang-related mud-sand flow and sediment yield: A case study of Jingshen mud-sand flow at Deqing county of Guangdong, China[J]. Mountain Research, 2022, 40(6): 859. |
| [9] |
清耕对赤红壤果园坡面土壤侵蚀特征的影响[J]. 水土保持研究, 2022, 29(3): 12. WANG Jianhua, QIU Fan, XIE Fuqian, et al. Effects of cleaning tillage on soil erosion characteristics of lateritic red soil on slope in orchard[J]. Research of Soil and Water Conservation, 2022, 29(3): 12. |
| [10] |
覆盖处理对媚丽葡萄果实品质及土壤理化指标的影响[J]. 西北农林科技大学学报(自然科学版), 2022, 50(3): 107. DUAN Xinyao, GAO Feifei, HAN Xing, et al. Effects of mulching treatments on fruit quality of Vitis vinifera cv. Meili and physical and chemical indicators of topsoil[J]. Journal of Northwest A& F University (Natural Science Edition), 2022, 50(3): 107. |
| [11] |
道路边坡植物碎屑材料与植生毯水土保持效果对比[J]. 公路交通科技, 2022, 39(S2): 396. NI Dong, WANG Jian, WANG Xiao, et al. Comparison of soil and water conservation effects between plant debris material and vegetative blanket on road slope[J]. Journal of Highway and Transportation Research and Development, 2022, 39(S2): 396. |
| [12] |
永定河典型生态护岸措施下坡面产流产沙试验研究[J]. 水土保持学报, 2020, 34(5): 14. ZHENG Xuehui, CHENG Jinhua, QI Shenglin, et al. Study on runoff and sediment yield on the slope with typical ecological riverbank protection measures in the Yongding River[J]. Journal of Soil and Water Conservation, 2020, 34(5): 14. |
| [13] |
鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:30. BAO Shidan. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press,2000:30. |
| [14] |
黄昌勇,徐建明. 土壤学[M]. 3版. 北京:中国农业出版社,2010:103. HUANG Changyong,XU Jianming. Agrology[M]. 3rd ed. Beijing:China Agriculture Press,2010:103. |
| [15] |
黄土残塬沟壑区苹果园土壤的持水特征[J]. 中国水土保持科学, 2019, 17(6): 27. WANG Mengmeng, LI Gangtie, DANG Hongzhong, et al. Water-holding characteristics of apple orchards in the gully area of the Loess Plateau[J]. Science of Soil and Water Conservation, 2019, 17(6): 27. |
| [16] |
2种人工林对土壤碳氮磷化学计量特征及阳离子交换量的影响[J]. 中南林业科技大学学报, 2023, 43(6): 168. YU Yaohong, LIU Yue, GU Xiaojuan, et al. Effects of two plantations on soil carbon, nitrogen, phosphorus stoichiometry and cation exchange capacity[J]. Journal of Central South University of Forestry & Technology, 2023, 43(6): 168. |
| [17] |
花岗岩侵蚀劣地不同种植年限果园土壤团聚体的稳定性[J]. 水土保持通报, 2021, 41(4): 69. LIN Zhe, HUANG Zhigang, DENG Yusong, et al. Stability of soil aggregate in orchards with different planting years in granite eroded poor area[J]. Bulletin of Soil and Water Conservation, 2021, 41(4): 69. |
| [18] |
全国土壤普查办公室. 中国土壤普查技术[M]. 北京:农业出版社,1992:111. China Soil Survey Office. Soil census techniques in China[M]. Beijing:Agricultural Press,1992:111. |
| [19] |
不同覆盖方式对砀山酥梨园土养分及果实品质的影响[J]. 西北农林科技大学学报(自然科学版), 2012, 40(10): 161. YI Xingkai, ZHANG Jinyun, GAO Zhenghui, et al. Effect of different covering ways on the soil nutrition and fruit quality in Dangshansu pear garden[J]. Journal of Northwest A& F University (Natural Science Edition), 2012, 40(10): 161. |
| [20] |
连续种植不同绿肥作物的土壤团聚体稳定性及可蚀性特征[J]. 水土保持研究, 2019, 26(2): 9. ZHANG Qin, YU Enjiang, LIN Haibo, et al. Stability and erodibility of aggregate affected by different continuous green manure cultivations[J]. Research of Soil and Water Conservation, 2019, 26(2): 9. |
| [21] |
林带对黑土坡耕地土壤团聚体组成及稳定性的影响[J]. 东北林业大学学报, 2022, 50(3): 93. TAN Kailiang, SU Yuanhang, LIU Binhui, et al. Influence of shelterbelt on soil aggregate composition and stability of slope farmland in black soil[J]. Journal of Northeast Forestry University, 2022, 50(3): 93. |
| [22] |
NDZELU S B, DOU Sen, ZHANG Xiaowei. Corn straw return can increase labile soil organic carbon fractions and improve water-stable aggregates in Haplic Cambisol[J]. Journal of Arid Land, 2020, 12(6): 1018. DOI:10.1007/s40333-020-0024-7 |
| [23] |
滇中亚高山林地土壤团聚体结构及其对优先路径的影响[J]. 林业科学研究, 2022, 35(6): 23. LU Huaxing, ZHAO Yangyi, DUAN Xu, et al. Soil aggregate structure of subalpine woodland and its influence on priority path in central Yunnan[J]. Forest Research, 2022, 35(6): 23. |
| [24] |
生草栽培对果园土壤团聚体及其有机碳分布的影响[J]. 热带亚热带植物学报, 2012, 20(4): 349. WANG Yixiang, WENG Boqi, HUANG Yibin, et al. Effects of sod cultivation in orchard on distributions of soil aggregates and soil organic carbon of aggregates[J]. Journal of Tropical and Subtropical Botany, 2012, 20(4): 349. |
| [25] |
南丰蜜橘果园生草栽培对土壤团聚体和有机碳特征及果实品质的影响[J]. 园艺学报, 2020, 47(10): 1905. FU Xueqin, YANG Xingpeng, CHEN Dengyun, et al. Effects of sod culture on soil aggregates, organic carbon characteristic and fruit quality of nanfeng tangerine orchard[J]. Acta Horticulturae Sinica, 2020, 47(10): 1905. |
| [26] |
不同覆盖模式对樱桃园土壤团聚体及碳氮的影响[J]. 水土保持研究, 2022, 29(1): 44. HUANG Shengjie, CHEN Junpu, CHEN Tao, et al. Effects of different coverage modes on aggregates and carbon and nitrogen of soil in cherry orchard[J]. Research of Soil and Water Conservation, 2022, 29(1): 44. |