2. 中国林业科学研究院生态保护与修复研究所,100093,北京
-
项目名称
- 中国电力工程顾问集团西北电力设计院有限公司科研项目“沙漠戈壁荒漠区太阳能电站生态治理技术研究“(XB1-HJ01-2022)
-
第一作者简介
- 尚小伟(1993—),男,硕士,工程师。主要研究方向:水土保持与沙漠化防治。E-mail:shangxiaowei@nwepdi.com
-
通信作者简介
- 张晓(1988—),女,博士,副研究员。主要研究方向:荒漠生态学。E-mail:zhangxiao978@caf.ac.cn
-
文章历史
-
收稿日期:2024-05-21
修回日期:2024-11-21
2. 中国林业科学研究院生态保护与修复研究所,100093,北京
2. Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 100093, Beijing, China
以化石燃料为主的能源供给导致气候变暖及一系列生态环境问题。太阳能作为一种可再生清洁能源,在全球能源转型和“碳达峰与碳中和”战略背景下,正在成为全球新能源开发利用的重点和热点。世界范围内光伏发电量正在迅速增加,截至2022年全球光伏累计装机量达
荒漠光伏电站建设不仅能提供清洁能源,还对改善区域生态环境发挥积极作用。据估算干旱沙地生态系统光伏电站的生态系统服务价值占电力供给价值的34.93%[3]。Liu等[4]在毛乌素沙地发现光伏电站通过改变地表微生境而显著促进当地植被恢复,运营期的光伏电站因其阻风固沙、遮荫增湿作用而有利于植被恢复、土壤改良和局地小气候改善[5]。荒漠区光伏电站建设能够发挥着调节气候、防风固沙、固碳释氧、养分循环及改善脆弱生境的生态系统服务功能[6]。因此,荒漠区光伏电站建设兼具能源供给与改善生态环境的作用,对脆弱区生态保护与修复有重大意义。
近年来,有关荒漠光伏电站建设对生态环境的影响研究集中于光伏电站内气候、土壤、植被与动物的变化[6−9],但研究较为分散,仍欠缺对光伏电站建设的生态环境效应的系统性认识,尤其是荒漠光伏电站建设对生态环境的影响机制。笔者通过系统梳理荒漠区集中式光伏电站对生态环境的影响,包括局地微气候、土壤特性、植被与生物多样性等,系统认识集中式光伏电站对荒漠气候生态的影响机制,并总结荒漠光伏电站的植被恢复模式,以期为今后我国荒漠区光伏电站建设和区域生态环境保护提供科学支撑。
1 气候效应 1.1 辐射及能量收支荒漠区集中式光伏电站建设使土地利用方式及下垫面性质发生变化,外加光伏发电本身的光电能量转换,共同导致辐射及能量收支的改变[7,10]。站内、站外的辐射通量监测与对比研究一致表明光伏电站内地表反照率下降、平均净辐射增加,光伏电站整体上表现为能量汇[8,11]。如杨丽薇等[12]在青海格尔木荒漠区发现光伏电站内地表反照率为0.19,远低于站外的0.26,站内平均净辐射明显高于站外,站内下垫面温度低于站外;岳生娟[7]也发现青海荒漠区光伏电站内地表反照率降低5% ~ 20%;美国红石光伏电站的研究结果同样表明站内净短波辐射增加、感热通量较周边区域明显增加[11]。相关研究还表明,荒漠区光伏电站内辐射的改变存在季节差异,如青海共和盆地光伏电站内地表反照率在暖季(4—9月)低于站外,但在冷季(10月—翌年3月)高于站外 [13]。
1.2 空气温度与相对湿度光伏板在工作期间除将光能转化为电能外,本身还会有部分转换为热能,加热邻近的空气而使其温度升高,即存在热岛效应[9,13−14]。受热岛效应影响,站内光伏板附近空气温度明显升高。赵鹏宇等[15]在乌兰布和沙漠发现,夏季晴天时光伏电站存在明显的增温降湿效应,站内1.0和2.5 m处气温比站外分别高0.3 ~ 1.53 ℃和0.44 ~ 1.34 ℃,空气相对湿度分别降低2.36%和1.85%;高晓清等[16]在青海格尔木发现光伏电站内2 m处空气温度大约升高0.29 ℃,但在10 m处站内的增温效应消失。这一结果与模型模拟的光伏电站热岛效应在5 ~ 18 m高度消散结果一致[17]。光伏电站对空气温湿度的影响存在季节与昼夜差异[18−19]。殷代英等[10]发现夜间光伏电站内气温明显低于站外,光伏电站使青海共和荒漠局地相对湿度增加3.93%;岳生娟[7]研究同样表明光伏电站在白天具有增温降湿效应,在夜间具有降温增湿效应,光伏电站冬季夜间的降温增湿效应分别达2.18 ℃和6.93%。
1.3 风与风沙流荒漠区集中式光伏电站通过改变风速、风向,影响地表风蚀状况、输沙率等,发挥其防风固沙效应[7,18−20]。殷代英等[10]发现光伏电站内风速减小53.92%,风向由东北风转为以东风为主,且风向更加单一;赵鹏宇[21]发现内蒙古乌兰布和沙漠光伏电站10 ~ 250 cm高度风速均明显低于电站外风速。相关研究还表明光伏电站的防风效果受位置影响,如内蒙古乌兰布和沙漠光伏电站内距地表10 cm高度防风效果最强,而在前檐和后檐均为200 cm高度处的防风效果最强[21]。
2 水文与土壤效应 2.1 水文效应集中式光伏电站也会影响荒漠系统的生态水文过程,光伏阵列因其对降水的截流和汇集而重新分配降水,导致光伏板间土壤水分增加、板下土壤水分降低;站内风速和温度的降低还导致蒸散发下降[22−24],进而使光伏电站内土壤含水量增加,促进植被生长。王颖等[25]基于遥感分析发现光伏电站内土壤水分明显升高;Marrou等[24]发现光伏板下太阳辐射降低30% ~ 50%,蒸散发降低10% ~ 30%。光伏电站对蒸散发的影响还与季节和土壤水分有关。相关研究表明在夏季灌溉期和秋季非灌溉期间,光伏电站内地表蒸散发分别降低81%和38%[26]。
2.2 土壤温湿度荒漠区光伏电站会降低表层土壤温度,增加表层土壤含水量,有利于地表植被的生长与恢复[27−28]。殷代英等[10]在青海共和荒漠区发现光伏电站内土壤温度明显低于站外,10、20和40 cm处平均土壤温度分别降低17.20%、16.75%和16.09%,表层土壤水分显著增加,10 cm处土壤湿度增加71.61%;毛乌素沙地研究同样表明光伏板下土壤温度比板间及站外低约3℃,站外土壤含水量始终低于板下和板间土壤含水量[4]。此外,光伏电站对土壤温度影响也存在季节与昼夜差异。高晓清等[29]在格尔木发现四季白天与冬季夜间,站内土壤温度低于站外,而在春、夏和秋季夜间,站内土壤温度高于站外。
2.3 土壤理化性质荒漠区光伏电站会改变表层土壤机械组成,使站内表层土壤颗粒变细,影响地表风蚀与输沙过程[30]。乌兰布和沙漠光伏电站中心区域土壤以细颗粒为主,由内向外呈现出先增粗后变细的趋势[15];党梦娇等[31]在库布其沙漠发现光伏板下土壤向细粒化发展,而板间则向粗粒化发展;陈曦等[32]在内蒙古乌海的研究表明光伏电站对土壤机械组成的影响与位置有关,板下及板后檐的土壤细粒含量增加、中粗䢂含量减小,而板前檐土壤则呈先粗粒化后细粒化的趋势。
荒漠区光伏电站对土壤养分的影响多是积极的,但具体影响与站内位置及植被类型有关[33−36]。王涛等[33]在陕西靖边的研究表明相比于站外,自然恢复的光伏电站内土壤有机质、速效磷和速效钾增加,土壤pH和电导率降低;青海共和塔拉滩的围封光伏电站内土壤有机质和全氮也分别升高83%和81.8%[34];周茂荣等[35]在甘肃6个光伏电站研究表明站内自然恢复区的土壤pH、全氮、全钾、有机质和有效磷的含量与站外差异不大,表层0 ~ 10 cm土壤水解性氮、速效钾的质量分数比站外分别高出42.91%和11.15%。此外,光伏电站内植被恢复措施会间接影响土壤养分。李文龙等[36]研究表明樟子松恢复样地底层土壤的全氮降低、表层土壤的全磷降低、全钾和有机质增加,苜蓿恢复样地的全氮增加、表层土壤全磷降低、全钾和有机质增加,天然草地的各层土壤养分均显著增加。
3 对植被及其碳汇功能的影响尽管光伏电站在建设期间会扰动地表、破坏土壤结皮与植被,导致水土流失、植被覆盖率降低等问题[7,31],但在其运行期间,会通过影响气候、生态水文与土壤等,增加表层土壤含水量,对区域植被恢复的影响多是积极正面的[35−38]。Luo等[39]基于遥感研究发现,我国西北大规模光伏电站建设明显增加归一化植被指数(NDVI);毛乌素沙地和青海共和光伏电站建设也显著提高站内植被覆盖度、物种多样性及生物量[4,33−34]。相关研究还表明,荒漠光伏电站内植被恢复状况与位置有关。毛乌素沙地光伏电站内未遮荫位置的物种多样性和地上生物量均高于遮荫位置[33];任乃芃等[40]也发现光伏板间的植物群落数量特征值和物种多样性高于板下;翟波等[41]发现光伏电站板下羊草群落的物种丰富度、多样性指数和高度、基径、生物量等生长指标均显著高于板前檐与板后檐;而张芝萍等[42]在河西走廊荒漠区的研究发现光伏电站内光伏板前檐、后檐的物种丰富度、多样性指数和生态优势度指数均高于板下和板间。
荒漠集中式光伏电站能促进植被恢复,增强生态系统固碳增汇功能。Xia 等[37]基于Landsat影像分析中国12大沙漠(沙地)光伏电站项目建设前后的植被变化,发现光伏电站使30%的区域变绿;Xia等[43]在青海共和光伏电站发现气候变化和光伏电站建设对植被增加的贡献率分别达56%和44%,电站内植被增加是电站外的1.4倍;李锦廷[44]基于碳通量模型发现青海共和光伏园总体表现为碳汇,但存在昼夜与季节差异,白天为碳汇,夜间为碳源。
4 对生态环境的影响机制集中式光伏电站对生态环境的影响过程可概述为由于其对太阳辐射的遮挡而引起的辐射及能量收支改变,并进一步引发的光伏电站内辐射、温度、风、降水、土壤理化性质、蒸散、植被及防风固沙与水土保持效应的系列变化[9,43],其作用机制见图1。
|
图 1 集中式光伏电站对气候生态的影响机制示意图 Fig. 1 Schematic diagram of the impact mechanism of centralized photovoltaic power stations on climate and ecology |
对能量传输与气候的影响:光伏电站建设改变辐射分量且受季节与昼夜影响,暖季电站内向上短波辐射和地表反照率降低、年均净辐射增加[11−12]。光伏电站对温度的影响能够从光伏组件改变辐射分量中解释,主要为:1)光伏组件吸收太阳短波辐射,导致其表面温度升高;2)由于光伏组件遮挡,白天地表对太阳短波辐射的吸收减少,导致地表温度降低;3)由于光伏组件对周围大气的加热作用,光伏组件附近气温升高;4)光伏组件的光电能量转换及其对地表长波辐射、长波反射辐射的阻挡导致局地高层大气温度降低;5)夜间光伏组件对地面长波辐射的阻挡使电站内近地表气温升高,电站发挥夜间保温效应[7,15−16,45]。集中式光伏电站对辐射及能量收支的改变导致局地热力层结构变化,显著影响风场[43],表现为:地表风速降低,大风发生频率降低以及风向的单一化[13],光伏电站的防风作用还与位置有关。
对水文循环的影响:光伏组件对降水的影响主要有两方面,一是其对降水的截流和汇集而导致降水再分配,降低光伏板下的土壤水分,增加了光伏板前檐及间隙的土壤水分;二是光伏面板的清洗弃水使光伏电站内水分输入增加[38,43]。受地表辐射与能量收支及降水分配改变的影响,土壤温湿度及理化性质发生改变,光伏板下表层土壤温度降低、土壤含水量增加[13]。由于光伏板下土壤水分输入与风速减小、温度降低,光伏电站内蒸散发减小[22−23]。
对植被的影响:光伏电站对太阳辐射和水文循环的影响使地表微气候发生有利于光伏板下灌草植被生长的变化,增强光伏电站的防风固沙与水土保持功能。
5 生态恢复模式荒漠区因太阳能与土地资源丰富,成为光伏基地建设与新能源发展的重要地区,但荒漠区生态本底脆弱,光伏电站施工期又会导致地表剧烈扰动,带来植被破坏、水土流失等重大的生态环境问题[5],因此光伏电站的生态修复是荒漠区大规模建设光伏电站、实现经济效益与生态效益共赢的关键议题,笔者重点关注和梳理荒漠区光伏电站的植被恢复模式。
水资源是制约荒漠区植被生长的关键因子,荒漠区不同地区植被恢复模式的划分也主要受到气候因子,尤其是降水的影响,可主要分为3种[46]:降雨量≥400 mm以封闭管理和自然恢复为主的植被恢复模式、降雨量在≥200 ~ 400 mm、风沙流活动较弱的以人工种植乡土植物种为主的植被恢复模式,以及降雨量< 200 mm、风沙流活动较强的以草方格、人工种植和滴灌技术相结合的植被恢复模式(图2,表1)。
|
a:陕西神木大保当镇光伏电站(https://tianqi.moji.com/liveview/picture/79877520);b:青海省海南藏族自治州共和县塔拉滩光伏基地(https://www.forestry.gov.cn/c/www/hmgzdt/528936.jhtml);c:宁夏腾格里沙漠新能源基地一期草方格治沙演示区(https://baijiahao.baidu.com/s?id = 1769777503442983518&wfr = spider&for = pc)。 a: the photovoltaic power station in Dabaodang town of Shenmu country, Shaanxi; b: the Tara beach photovoltaic base in Gonghe country, Hainan Tibetan Autonomous Prefecture, Qinghai; c: the demonstration area of grass square desert control in Tengger desert new energy base phase 1 in Ningxia 图 2 荒漠区光伏电站3种植被恢复模式景观 Fig. 2 Landscape of three vegetation restoration modes of photovoltaic power stations in desert areas |
| 表 1 荒漠光伏电站的植被恢复模式及案例 Tab. 1 Vegetation restoration modes and cases of photovoltaic power stations in desert |
在水分条件较好、降雨量≥400 mm的区域,如毛乌素沙地的神木、靖边等地,适宜于封闭管理光伏电站、采取自然恢复的植被恢复模式,但自然恢复周期较长,也会适时采取人工种植的措施,如陕西神木大保当镇的光伏电站内人工种植景天三七(Sedum aizoon )和狼尾草(Pennisetum alopecuroides ),促进光伏电站外围与板下的植被恢复[47],赵晶等[48]也对这一植被恢复模式下光伏电站内不同位置的土壤稳定性进行研究,发现阵列间土壤抗蚀性强于前檐和后檐。在降雨量处于≥200 ~ 400 mm、风沙流活动较弱的区域,如青海共和塔拉滩、内蒙古自治区土默特左旗等地,采用站外建立风沙防护体系、内部人工种植乡土灌木或草本以及辅助灌溉的措施,对于建于采煤沉陷区及排土场区域的光伏电站内生态修复,则尽可能有效利用煤矿疏干水等矿区内水资源[46]。相关研究表明,人工种植具有短期植被修复的优势,以人工种植为主的植被修复模式在修复土壤、改善微气候与环境、防风固沙等方面均发挥积极作用[36,46]。在降雨量< 200 mm、风沙流活动较强的区域,如内蒙古自治区杭锦旗、宁夏中卫,需采用草方格、人工种植乡土植物种与滴灌技术相结合的植被恢复模式,贾瑞庭等[49]研究表明沙障措施的土壤结构性最优,崔永琴等[46]指出麦草方格对增加地表粗糙度、改善光伏电站内生态环境的重要作用,均表明植被修复模式3在这一区域的适用性。
在光伏电站生态恢复中,通过复合缓释肥与生物活性肥改良土壤、选育土著固碳增汇物种、研发生物活性调控剂以提升生态系统的固碳增汇功能[50],美国农业光伏电站内研究表明天然植被与人工修复的生态恢复模式显著提升光伏电站的生态系统服务,其花粉传播量、固土和保水能力分别增加3倍、0.95倍和0.19倍[51]。近年来,生态经济恢复模式受到更多关注,它兼顾生态效益与经济效益,我国也在“光伏+”模式方面开展一定的探索,如“光伏+种植”、“光伏+中药材”、“光伏+牧业”等。
6 结论与讨论在“双碳目标”与绿色能源转型的背景下,荒漠区正大力发展集中式光伏电站,相关研究均表明光伏电站建设在一定程度上改善荒漠区的生态环境、发挥较大的生态效益。笔者通过梳理相关文献与报道,基本厘清荒漠区光伏电站的气候生态影响、作用机制与植被恢复模式,今后还需重点开展以下几方面研究。一是荒漠光伏电站内能量与物质分配的时空异质性研究,光伏阵列的阻挡增加地表辐射与能量、水分与植被分布的异质性,需深入了解光伏电站内能量与物质分配规律,甚至发展相应的概念物理模型[38];二是荒漠光伏电站建设对生态系统功能影响机制的研究,包括调节气候、防风固沙、固碳释氧、养分循环、改善脆弱生态等[6],尤其是光伏电站对生态系统功能的潜在影响途径研究;三是荒漠光伏电站建设对动物、土壤生物群落及土壤动物的影响研究。
| [1] |
IRENA. Renewable energy statistics 2023[R]. Abu Dhabi:International Renewable Energy Agency,2023:48.
|
| [2] |
国家能源局. 2023年一季度光伏发电建设运行情况[EB/OL]. 北京:国家能源局,2023. (2023-05-05). www.nea.gov.cn/2023-05/05/c_1310716141.htm. National Energy Administration. Construction and operation of photovoltaic power generation in the first quarter of 2023[EB/OL]. Beijing:National Energy Administration,2023. (2023-05-05). www.nea.gov.cn/2023-05/05/c_1310716141.htm. |
| [3] |
LIU Yu, ZHANG Ruiqi, MA Xiaorong, et al. Combined ecological and economic benefits of the solar photovoltaic industry in arid sandy ecosystems[J]. Journal of Cleaner Production, 2020, 262: 121376. DOI:10.1016/j.jclepro.2020.121376 |
| [4] |
LIU Yu, ZHANG Ruiqi, HUANG Ze, et al. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem[J]. Land Degradation & Development, 2019, 30(18): 2177. |
| [5] |
光伏电站建设对沙区生态环境的影响[J]. 水土保持通报, 2019, 39(1): 191. WANG Zhenyi, WANG Ji, GAO Yong, et al. Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Bulletin of Soil and Water Conservation, 2019, 39(1): 191. |
| [6] |
光伏电站建设对陆地生态环境的影响: 研究进展与展望[J]. 环境科学, 2024, 45(1): 239. TIAN Zhengqing, ZHANG Yong, LIU Xiang, et al. Effects of photovoltaic power station construction on terrestrial environment: Retrospect and prospect[J]. Environmental Science, 2024, 45(1): 239. |
| [7] |
岳生娟. 青海荒漠区大规模光伏开发生态环境效应研究[D]. 西安:西安理工大学,2022:113. YUE Shengjuan. Research on eco-environmental effects of large-scale photovoltaic development in Qinghai desert area[D]. Xi'an:Xi'an University of Technology,2022:113. |
| [8] |
光伏电站对局地气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(6): 593. CUI Yang, CHEN Zhenghong. Research progresses of the impacts of photovoltaic power plants on local climate[J]. Climate Change Research, 2018, 14(6): 593. |
| [9] |
光伏电站对生态环境气候的影响综述[J]. 高原气象, 2021, 40(3): 702. LI Peidu, GAO Xiaoqing. The impact of photovoltaic power plants on ecological environment and climate: a literature review[J]. Plateau Meteorology, 2021, 40(3): 702. DOI:10.7522/j.issn.1000-0534.2020.00020 |
| [10] |
大型光伏电站对共和盆地荒漠区微气候的影响[J]. 水土保持通报, 2017, 37(3): 15. YIN Daiying, MA Lu, QU Jianjun, et al. Effect of large photovoltaic power station on microclimate of desert region in Gonghe Basin[J]. Bulletin of Soil and Water Conservation, 2017, 37(3): 15. |
| [11] |
BROADBENT A M, KRAYENHOFF E S, GEORGESCU M, et al. The observed effects of utility-scale photovoltaics on near-surface air temperature and energy balance[J]. Journal of Applied Meteorology and Climatology, 2019, 58(5): 989. DOI:10.1175/JAMC-D-18-0271.1 |
| [12] |
光伏电站对格尔木荒漠地区太阳辐射场的影响研究[J]. 太阳能学报, 2015, 36(9): 2160. YANG Liwei, GAO Xiaoqing, LÜ Fang, et al. Study on the impact of large solar farm on radiation field in desert areas of Golmud[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2160. DOI:10.3969/j.issn.0254-0096.2015.09.019 |
| [13] |
CHANG Rui, SHEN Yanbo, LUO Yong, et al. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China[J]. Renewable Energy, 2018, 118: 131. DOI:10.1016/j.renene.2017.11.007 |
| [14] |
WU Wei, YUE Shengjuan, ZHOU Xiaode, et al. Observational study on the impact of large-scale photovoltaic development in deserts on local air temperature and humidity[J]. Sustainability, 2020, 12(8): 3403. DOI:10.3390/su12083403 |
| [15] |
乌兰布和沙漠东北缘光伏电站表层土壤颗粒空间异质特征[J]. 内蒙古林业科技, 2016, 42(2): 11. ZHAO Pengyu, GAO Yong, DANG Xiaohong, et al. Spatial heterogeneity of surface soil particles in photovoltaic power station in Northeast Wulanbuhe desert[J]. Journal of Inner Mongolia Forestry Science & Technology, 2016, 42(2): 11. DOI:10.3969/j.issn.1007-4066.2016.02.003 |
| [16] |
光伏电站对格尔木荒漠地区空气温湿度影响的观测研究[J]. 太阳能学报, 2016, 37(11): 2909. GAO Xiaoqing, YANG Liwei, LÜ Fang, et al. Observational study on the impact of the large solar farm on air temperature and humidity in desert areas of Golmud[J]. Acta Energiae Solaris Sinica, 2016, 37(11): 2909. |
| [17] |
FTHENAKIS V,YU Yuanhao. Analysis of the potential for a heat island effect in large solar farms[C]//Proceedings of the 2013 IEEE 39th photovoltaic specialists conference. Tampa:IEEE,2013:3362.
|
| [18] |
卢霞. 荒漠戈壁区光伏电站建设的环境效应分析:以酒泉市东洞滩百万千瓦光伏示范基地为例[D]. 兰州:兰州大学,2013:37. LU Xia. The environmental effect analysis of PV power plant construction in desert Gobbi: Take Dongdongtan million kilowatt solar power demonstration base,Jiuquan city as an example[D]. Lanzhou:Lanzhou University,2013:37. |
| [19] |
CHANG Zhaofeng, LIU Shizeng, ZHU Shujuan, et al. Ecological functions of PV power plants in the desert and Gobi[J]. Journal of Resources and Ecology, 2016, 7(2): 130. DOI:10.5814/j.issn.1674-764x.2016.02.008 |
| [20] |
YANG Liwei, GAO Xiaoqing, LÜ Fang, et al. Study on the local climatic effects of large photovoltaic solar farms in desert areas[J]. Solar Energy, 2017, 144: 244. DOI:10.1016/j.solener.2017.01.015 |
| [21] |
赵鹏宇. 光伏电板对地表土壤颗粒及小气候的影响:以磴口县光伏电站为例[D]. 呼和浩特:内蒙古农业大学,2016:25. ZHAO Pengyu. Effect of photovoltaic panels on the surface of soil particles and microclimate: Taking Dengkou photovoltaic power station as an example[D]. Huhhot:Inner Mongolia Agricultural University,2016:25. |
| [22] |
内蒙古典型草原区光伏电板降水再分配与土壤水分蒸散分异规律[J]. 中国农业大学学报, 2020, 25(9): 144. ZHAI Bo, DANG Xiaohong, CHEN Xi, et al. Difference regularity of precipitation redistribution and soil water evapotranspiration in photovoltaic panels in typical steppe areas of Inner Mongolia[J]. Journal of China Agricultural University, 2020, 25(9): 144. DOI:10.11841/j.issn.1007-4333.2020.09.15 |
| [23] |
内蒙古中部草原区光伏电站对土壤水分及其脉冲响应的作用机制[J]. 太阳能学报, 2022, 43(6): 49. ZHAI Bo, GAO Yong, DANG Xiaohong, et al. Mechanism of photovoltaic power station on soil moisture and its impulse response in grassland region of central inner Mongolia[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 49. |
| [24] |
MARROU H, DUFOUR L, WERY J. How does a shelter of solar panels influence water flows in a soil-crop system?[J]. European Journal of Agronomy, 2013, 50: 38. DOI:10.1016/j.eja.2013.05.004 |
| [25] |
光伏阵列对土壤水分的影响研究[J]. 太阳能, 2021(7): 53. WANG Ying, LI Guoqing, ZHOU Jie, et al. Research on influence of PV array on soil moisture[J]. Solar Energy, 2021(7): 53. |
| [26] |
JAHANFAR A, DRAKE J, SLEEP B, et al. Evaluating the shading effect of photovoltaic panels on green roof discharge reduction and plant growth[J]. Journal of Hydrology, 2019, 568: 919. DOI:10.1016/j.jhydrol.2018.11.019 |
| [27] |
YUE Shengjuan, GUO Mengjing, ZOU Penghui, et al. Effects of photovoltaic panels on soil temperature and moisture in desert areas[J]. Environmental Science and Pollution Research, 2021, 28(14): 17506. DOI:10.1007/s11356-020-11742-8 |
| [28] |
等. 光伏阵列的微气候特征及其对站区植物生长特性的影响[J]. 生态学杂志, 2021, 40(10): 3078. ZHU Shaokang, WANG Shan, ZHANG Juntao, et al. Microclimate characteristics of photovoltaic arrays and their effects on plant growth in a solar power station area[J]. Chinese Journal of Ecology, 2021, 40(10): 3078. |
| [29] |
光伏电站对格尔木荒漠地区土壤温度的影响研究[J]. 太阳能学报, 2016, 37(6): 1439. GAO Xiaoqing, YANG Liwei, LÜ Fang, et al. Effect of PV farm on soil temperature in Golmud desert area[J]. Acta Energiae Solaris Sinica, 2016, 37(6): 1439. DOI:10.3969/j.issn.0254-0096.2016.06.012 |
| [30] |
库布齐沙漠200MWp太阳能基地内光伏板下表层土壤粒度特征研究[J]. 内蒙古林业科技, 2019, 45(2): 22. YUN Jingduo, CUI Xiangxin, MENG Zhongju, et al. Study on particle size characteristics of surface soil under photovoltaic panel in Kubuqi desert[J]. Journal of Inner Mongolia Forestry Science & Technology, 2019, 45(2): 22. DOI:10.3969/j.issn.1007-4066.2019.02.005 |
| [31] |
库布齐沙漠南缘光伏电站内表层沉积物粒度特征[J]. 土壤通报, 2019, 50(2): 260. DANG Mengjiao, MENG Zhongju, SIQING Bilige, et al. Particle characteristics of surface sediment in the photovoltaic power station in the south margin of the Kubuqi desert[J]. Chinese Journal of Soil Science, 2019, 50(2): 260. |
| [32] |
沙区光伏电场的风沙流输移特征[J]. 干旱区研究, 2019, 36(3): 684. CHEN Xi, GAO Yong, ZHAI Bo, et al. Transport of wind-drift sand in photovoltaic electric field in sand area[J]. Arid Zone Research, 2019, 36(3): 684. |
| [33] |
光伏电站建设对土壤和植被的影响[J]. 水土保持研究, 2016, 23(3): 90. WANG Tao, WANG Dexiang, GUO Tingdong, et al. The impact of photovoltaic power construction on soil and vegetation[J]. Research of Soil and Water Conservation, 2016, 23(3): 90. |
| [34] |
光伏电厂干扰下高寒荒漠草原区植被和土壤变化特征[J]. 水土保持学报, 2016, 30(6): 325. LI Shaohua, GAO Qi, WANG Xuequan, et al. Characteristics of vegetation and soil property changes by photovoltaic plant interference in Alpine desert steppe[J]. Journal of Soil and Water Conservation, 2016, 30(6): 325. |
| [35] |
光伏电站工程对土壤与植被的影响: 以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学, 2019, 17(2): 132. ZHOU Maorong, WANG Xijun. Influence of photovoltaic power station engineering on soil and vegetation: Taking the Gobi desert area in the Hexi corridor of Gansu as an example[J]. Science of Soil and Water Conservation, 2019, 17(2): 132. |
| [36] |
植被恢复模式对光伏阵列间土壤养分的影响[J]. 山西农业大学学报(自然科学版), 2020, 40(5): 16. LI Wenlong, LIU Meiying, ZHANG Youxin, et al. Effects of types of vegetation restoration on the soil nutrients between photovoltaic arrays[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(5): 16. |
| [37] |
XIA Zilong, LI Yingjie, ZHANG Wei, et al. Solar photovoltaic program helps turn deserts green in China: Evidence from satellite monitoring[J]. Journal of Environmental Management, 2022, 324: 116338. DOI:10.1016/j.jenvman.2022.116338 |
| [38] |
干旱、半干旱区光伏发电设施的生态−水文效应研究评述[J]. 高原气象, 2021, 40(3): 690. WU Chuandong, SU Zebing, LIU Hu, et al. Eco-hydrological effects of photovoltaic power generation facilities on dryland ecosystems: A review[J]. Plateau Meteorology, 2021, 40(3): 690. DOI:10.7522/j.issn.1000-0534.2020.00065 |
| [39] |
LUO Lihui, ZHUANG Yanli, LIU Hu, et al. Environmental impacts of photovoltaic power plants in Northwest China[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103120. DOI:10.1016/j.seta.2023.103120 |
| [40] |
光伏电板对草甸草原植物群落特征及物种多样性的影响[J]. 生态学杂志, 2024, 43(3): 766. REN Naipeng, LI Yikun, ZHU Boquan, et al. Effects of photovoltaic panels on plant community characteristics and species diversity in meadow steppe[J]. Chinese Journal of Ecology, 2024, 43(3): 766. |
| [41] |
光伏电板对羊草群落特征及多样性的影响[J]. 生态学杂志, 2018, 37(8): 2237. ZHAI Bo, GAO Yong, DANG Xiaohong, et al. Effects of photovoltaic panels on the characteristics and diversity of Leymus chinensis community[J]. Chinese Journal of Ecology, 2018, 37(8): 2237. |
| [42] |
河西走廊荒漠区光伏电站植物群落物种多样性研究[J]. 西北林学院学报, 2020, 35(2): 190. ZHANG Zhiping, SHANG Wen, WANG Qi, et al. Biodiversity of herbaceous species under large photovoltaic (PV) power stations in desert region of Hexi corridor[J]. Journal of Northwest Forestry University, 2020, 35(2): 190. DOI:10.3969/j.issn.1001-7461.2020.02.28 |
| [43] |
XIA Zilong, LI Yingjie, ZHANG Wei, et al. Quantitatively distinguishing the impact of solar photovoltaics programs on vegetation in dryland using satellite imagery[J]. Land Degradation & Development, 2023, 34(14): 4373. |
| [44] |
李锦廷. 基于SSA-SVR模型的大型光伏开发影响下碳通量变化特征及预测研究[D]. 西安:西安理工大学,2023:71. LI Jinting. Research on characteristics and forecasting of carbon flux variation under the influence of large-scale photovoltaic development based on SSA-SVR model[D]. Xi'an:Xi'an University of Technology, 2023:71. |
| [45] |
大规模光伏开发对局地气候生态影响研究[J]. 太阳能学报, 2023, 44(8): 253. ZHENG Junqing, LUO Yong, CHANG Rui, et al. Study on impact of large-scaled photovoltaic development on local climate and ecosystem[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 253. |
| [46] |
西北地区光伏电站植被恢复模式研究综述[J]. 水土保持通报, 2017, 37(3): 200. CUI Yongqin, FENG Qi, SUN Jiahuan, et al. A review of revegetation patterns of photovoltaic plant in Northwest China[J]. Bulletin of Soil and Water Conservation, 2017, 37(3): 200. |
| [47] |
毛乌素沙地光伏电站3种植物措施生长发育状况及其生态功能比较[J]. 水土保持研究, 2018, 25(2): 235. YUAN Senpeng, ZHANG Zhenshi, DANG Tinghui, et al. Comparative study of growth status of three plant measures and its ecological functions in photovoltaic power station of Mu Us sandy land[J]. Research of Soil and Water Conservation, 2018, 25(2): 235. |
| [48] |
植被恢复后光伏电站内土壤团聚体分布特征和稳定性研究[J]. 干旱区资源与环境, 2021, 35(11): 172. ZHAO Jing, GUAN Shiyu, ZHANG Youxin, et al. Distribution characteristics and stability changes of soil aggregates in photovoltaic power stations after vegetation restoration[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 172. |
| [49] |
植物措施对沙漠光伏电站土壤的改良效应[J]. 中国农业科技导报, 2023, 25(10): 182. JIA Ruiting, YUAN Limin, MENG Zhongju. Effects of plant measures on soil improvement of desert photovoltaic power station[J]. Journal of Agricultural Science and Technology, 2023, 25(10): 182. |
| [50] |
面向“双碳”目标的脆弱区域生态光伏模式研究[J]. 太阳能学报, 2022, 43(7): 56. SUI Xin, WEI Yi, LUO Xiaolin, et al. Emergence of a new pattern of ecological solar photovoltaics (ECO-PV) in ecologically fragile areas driven by carbon peak and neutrality targets in China[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 56. |
| [51] |
WALSTON L J, LI Yudi, HARTMANN H M, et al. Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States[J]. Ecosystem Services, 2021, 47: 101227. DOI:10.1016/j.ecoser.2020.101227 |
2025, Vol. 23 
