2. 中国科学院大学,100049,北京;
3. 西安地球环境创新研究院,710061, 西安
中国水土保持科学 2024, Vol. 22 Issue (3): 64-71. DOI: 10.16843/j.sswc.2023017 |
黄土高原是世界上水土流失最为严重的区域之一,也是我国重要的旱作农业区[1]。黄土高原丘陵区沟壑纵横,其中坡耕地占耕地面积的76%,强降雨条件下引发的坡耕地水土流失同时会伴随严重的土壤氮磷流失。据统计,黄土高原每年土壤氮素流失154万t[2],而黄河泥沙多源于中游的黄土高原,治理黄土高原水土流失和环境污染刻不容缓。我国化肥用量约占全球的30%,其中,黄河流域化肥用量占全国30%以上[3]。第2次全国污染源普查公报显示,化学需氧量、总氮和总磷依然是我国主要的农业面源污染物。因此,黄土高原小流域氮磷污染治理是黄河流域生态安全的“牛鼻子”。
在耕地资源紧张、流域氮磷面源污染严重的背景下,以“治沟保生态、造地惠民生”为目标的治沟造地工程在延安多地示范[4]。在以往示范的基础上,陈怡平[5]在“十三五”国家重点研发项目支持下探索南沟模式,实现生态、经济和社会效益三者有机耦合,已发展为新时期黄土丘陵区小流域治理的新型模式[6],直接应用在新增耕地、水土保持和防治地质灾害[7-8]等方面,进而对面源污染起到源头和中途双重防治作用。耕地坡度改变是治沟造地工程的直观变化,与坡度随之改变的是径流量、泥沙和养分流失量[9]。生态拦截坝具有独特的植物—底泥—微生物系统,经植物吸收、泥沙拦截和微生物分解等理化作用,能够进一步在过程中降低地表径流所携带的氮、磷浓度[10]。然而目前针对治沟造地工程的相关研究主要集中在土壤改良[11]、水土保持和植被护坡等方面,对流域氮磷面源污染防治效果及机制方面的研究亟待深化。
“南沟模式”以及其他治沟造地工程能否有效降低水土流失,有效拦截小流域氮磷流失,并没有经过科学评估。为此,以延安市小流域为研究对象,研究坡耕地与新造地不同形态土壤氮磷质量分数的差异、生态拦截坝对不同形态氮磷的拦截效应、治沟造地对流域水体氮磷质量浓度的影响、治沟造地对流域氮磷流失的拦截量,旨在为小流域治理和黄河流域生态环境保护与高质量发展提供科技支撑。
1 研究区概况2013—2017年,治沟造地工程在延安开展,主要分布在耕地质量等级较低的宝塔区、延川县、子长县等,新造耕地3 086.7 hm2。延安市位于黄河中游,属黄土高原丘陵沟壑区,属于暖温带半湿润易旱气候,年均气温7.7~10.6 ℃,年均降水量500 mm左右,降水多集中夏季,且多暴雨,强度大,地貌以黄土高原、丘陵为主。顾屯流域位于陕西省延安市甘谷驿镇,有顾屯河和胜利河2条大支沟,其中顾屯河2013年实施治沟造地工程,胜利河流域保持自然状态。治沟造地工程实施前后直观变化如图 1所示。
|
图 1 治沟造地对氮磷的阻截示意图 Fig. 1 Diagram of the interception of N and P by reclamation project |
2021年5月,在治沟造地工程实施区与相邻坡耕地,按照5点取土混合方式,分别在0~10、10~20、20~40、40~60、60~80和80~100 cm 6层采集土壤样品,重复3次并混匀,4个项目,每个项目2个样地,新造地与相邻坡耕地,即8个样地,共采集48个混合土样,土壤去除杂物后,自然风干、研磨过筛备用。采样点情况见表 1。
| 表 1 采样点概况 Tab. 1 Sampling point profile |
2016年6月—2017年5月在延安市顾屯河流域(新造地流域)和胜利河流域(未治理流域)设置流量计连续监测流速,将流域上游至下游平分为6段取径流样品,每月取样1次并混匀,随后混合6、7、8、9月水样作为丰水期样品,混合剩余月份水样作为枯水期样品。混合12个月水样为全年水样,进行后续试验分析。流域降雨数据及水系采样分布图引自余云龙[12]研究。2022年5月(8、11、12、22和25号)降雨后,采集延安南沟生态拦截坝中水样,带回实验室作后续分析。
2.3 试验方法样品测试于2022年5—6月在中科院地球环境研究所生态环境实验室进行,土样全氮(total nitrogen,TN)用凯氏定氮法,土样全磷(total phosphorus,TP)用HClO4-H2SO4消化-流动分析仪测定,土样速效磷(available phosphorus,AP)采用NaHCO3浸提-钼蓝法测定,土样速效氮(available nitrogen,AN)采用碱性水解法测定。土壤氨氮(ammonia nitrogen,NH4+-N)用2M KCl提取-流动分析仪(SmartChem140,AMS Alliance,Guidonia,Italy)测定。水样总氮、总磷、硝氮和氨氮采用流动分析仪测定。
2.4 氮磷拦截量计算| $ T_{\mathrm{NP}}=10 V C_{\mathrm{NP}} / S{。} $ | (1) |
式中:TNP为径流氮磷总量,kg/km2;V为径流流量,m3;CNP为径流氮磷质量浓度,mg/L;S为小流域面积,顾屯河流域(造地流域)面积为24.3 km2,胜利河流域(未造地)为16.6 km2[12]。
| $ I=T_{\mathrm{b}}-T_{\mathrm{a}} 。$ | (2) |
式中:I为治沟造地对流域径流氮磷拦截量,kg/km2;Tb为未治理流域径流氮磷总量,kg/km2;Ta治沟造地流域径流氮磷总量,kg/km2。
在SPSS 22.0软件进行数据描述性统计及正态检验,采用Duncan-T3检验新造地和坡耕地不同土层土样氮磷质量分数及未造地流域与新造地流域水样氮磷质量浓度差异显著性,折线图和柱状图在Origin 2020软件中绘制,表格在Excel软件中绘制。
3 结果与分析 3.1 坡耕地与新造地土壤中不同形态氮磷质量分数差异土壤TN、AN和NH4+-N质量分数在垂直分布上均表现为随土层深度的增加而下降,耕作层0~10 cm土壤AN和NH4+-N质量分数高于10~20 cm,其中坡耕地0~10 cm土层TN、AN和NH4+-N质量分数分别是10~20 cm土层的1.50、1.83和1.52倍,新造地0~10 cm土层TN、AN和NH4+-N质量分数分别是10~20 cm土层的1.02、1.31和1.33倍(图 2a、2c和2e)。非耕作层60 cm下各土层土壤TN、AN和NH4+-N质量分数差异不显著(P < 0.05)(图 2b、2e和2f)。与新造地相比,坡耕地耕作层土壤TN、AN和NH4+-N质量分数均显著下降(P < 0.05),其中0~10 cm土层降幅依次是26.7%、12.4%和19.2%,10~20 cm土层降幅依次是49.9%、37.0%和29.3% (图 2a、2c和2e)。坡耕地非耕作层土壤TN、AN和NH4+-N质量分数也呈现不同程度的下降幅度,降幅随土层加深而逐渐减小(图 2b、2d和2f)。
|
A和B表示新造耕地与坡耕地同一土层深度之间显著性差异,a、b、c和d表示坡耕地或者新造耕地不同土层深度之间显著性差异。下同。 A and B indicate significant differences between the same soil depth of newly-created farmland (NF) and sloping farmland (SF), and a, b, c and d indicate significant differences between different soil depth of SF or NF. The same below. 图 2 新造耕地与坡耕地耕作层与非耕作层土壤氮质量分数变化趋势 Fig. 2 Variations of soil N content in the cultivated and non-cultivated soil layer of NF and SF |
土壤TP和AP质量分数随土层深度加深而下降,耕作层0~10 cm土壤TP和AP质量分数高于10~20 cm处,其中坡耕地0~10 cm土层TP和AP质量分数分别是10~20 cm土层的1.04和1.09倍,新造地0~10 cm土层TP和AP质量分数分别是10~20 cm土层的1.05和1.62倍(图 3a和3c)。非耕作层60 cm下各土层土壤TP和AP质量分数差异不显著(P < 0.05(图 3b和3d)。与新造地相比,坡耕地耕作层土壤TP和AP质量分数均显著下降(P < 0.05),其中0~10 cm土层降幅依次是14.5%和49.1%,10~20 cm土层降幅依次是13.6%和24.6%(图 3a和3c)。坡耕地非耕作层土壤AP质量分数显著低于新造地,二者TP质量分数差异不显著(P < 0.05)(图 3b和3d)。
|
图 3 新造耕地与坡耕地耕作层与非耕作层土壤磷素质量分数变化趋势 Fig. 3 Variations of soil P content in the cultivated and non-cultivated soil layer of NF and SF |
流域联级库塘的水体氮磷质量浓度呈逐级递减趋势,且各级之间差异显著(P < 0.05)。二级库塘对水体TN、TP、NO3--N和NH4+-N质量浓度的削减率分别为29.1%、68.8%、66.9%和34.7%,三级库塘对其削减率分别为21.5%、83.4%、73.3%和18.6%,联级总削减率分别为44.3%、94.8%、91.2%和46.9%(图 4)。
|
*表示二者之间在0.05水平上差异显著。一级、二级和三级分别指分布在治理末端河道上中下游的联级生态拦截坝。 *indicates that the difference between the two is significant at the 0.05 level. The level 1, 2, 3 in the figure refer to the cascade ecological interception dams distributed in the upstream, midstream, and downstream of the treated end ditch, respectively. 图 4 生态拦截坝对径流水体氮磷质量浓度的削减效应 Fig. 4 Reduction effects of ecological interception dams on the N and P concentration in runoff |
小流域水体总磷、总氮、氨氮和硝氮质量分数变化规律都表现为枯水期>全年期>丰水期。与未治理流域相比,治沟造地流域对流域水体氮磷都有不同程度的拦截率。丰水期和全年期治沟造地工程对小流域氮磷的拦截率大小排序为总磷>总氮>氨氮>硝氮,枯水期排序为总磷>总氮>硝氮>氨氮(图 5)。
|
图中77%等表示不同时期治沟造地工程对流域水体氮磷质量浓度的削减率。 The percentages such as 77% in the figure indicate the reduction rates of nitrogen and phosphorus concentration in the watershed during different period of gully reclamation project. 图 5 顾屯河流域(治理后)与胜利河流域(治理前)氮磷质量浓度差异 Fig. 5 Differences in N and P concentration between Gutun River watershed (after reclamation) and Shengli River watershed (before reclamation) |
小流域丰水期产流量高于枯水期,与降雨量变化规律吻合(图 6和7)。经治沟造地工程治理后流域产流量大幅下降,其中枯水期治理后流域基本不产流,期间未治理流域产流量是治理后流域产流量的85倍(图 6)。经计算,治沟造地对流域氮磷的拦截量最大为总氮,其次为硝氮,对总磷的拦截量最小(表 2)。
|
图 6 治理与未治理小流域径流量差异 Fig. 6 Runoff difference between reclaimed and un-reclained small watersheds |
|
图 7 监测期流域降雨与径流分布情况 Fig. 7 Distribution of rainfall and runoff in the monitoring period |
| 表 2 治沟造地对流域氮磷流失的拦截量 Tab. 2 Interception amounts of N and P loss in watershed by gully reclamation project |
近年来化肥环境负效应逐渐增加[13],在强降水过程中,化学肥料通过地表径流、泥沙裹挟和地下渗透等进入邻近流域水体,导致水体氮磷农业面源污染问题日益突出[14]。研究发现种植多年的新造地耕作层土壤氮磷质量分数高于坡耕地(图 2和图 3),这一差异是因为达到产流标准的降雨下坡耕地氮磷部分随径流泥沙流失、而新造地氮磷均随雨水就地入渗未损失[8]。研究区耕地为旱地,旱地种植作物主要为玉米(Zea mays)、马铃薯(Solanum tuberosum)等浅根作物,此外,坡耕地耕作层易受生产活动的影响,土壤疏松多孔,容易遭受雨水冲刷,且施加的肥料主要存储在耕作层,所以坡耕地耕作层氮质量分数下渗率低于平整的新造地。而新造地磷质量分数下渗率不高于坡耕地,可能原因是坡耕地土壤磷的饱和吸附度较高, 耕层土壤中磷素移动性比新造地强[15]。
4.2 生态拦截坝对小流域氮磷面源污染的削减效果生态拦截系统是控制农业面源污染物的重要技术手段,可通过减缓流速和促进颗粒物质沉降有效阻断径流中的N、P等污染物进入流域[16],研究表明生态拦截沟渠可对农田径流中TN和TP的去除效果达到48.1%和40.2%[17]。本研究中联级生态拦截坝对水体中总氮、总磷、硝氮和氨氮质量浓度总削减率分别达到44.3%、94.8%、91.2%和46.9%(图 4),生态拦截坝对总磷的拦截率较高,可能与总磷固定性强,随泥沙一并被拦截附着在底泥,而对总氮的拦截率相对较低,可能与该区域氮循环过程中的大气干湿氮沉降相关[18]。生态拦截坝对硝氮的拦截率远大于氨氮,可以由水生生态系统中的氨再生功能解释,水体中的各种有机和无机氮被吸收后可通过水体内循环途径转化成NH4+-N[19]。
4.3 治沟造地工程对小流域氮磷面源污染的综合治理效应径流和泥沙是农业氮磷流失的重要载体,水土流失特别是泥沙流失是黄土区土壤氮磷流失的重要原因。在非大暴雨极端天气下,治理后流域基本不产流,本研究中枯水期产流量趋近于0,与前人研究[9]一致。径流减小,流域水流量随之减小,相比丰水期,流域氮磷污染物的稀释程度低,所以枯水期水体氮磷质量分数高于丰水期(图 5),刘济[20]也发现枯水季径流氮磷浓度要显著高于雨季。与未治理流域相比,治理后流域对总磷的拦截率最高,这是由于颗粒态磷是磷素流失的主要形态[20],而治沟造地工程可以有效拦截随侵蚀泥沙携带的颗粒态磷,与前文中坡耕地磷质量分数下渗率高机理一致。然而,从氮磷拦截量来看,治沟造地对总氮和硝氮的输出量拦截最大,主要是由流域氮磷浓度差异引起的,径流相同的情况下,污染物浓度越大,总量就越大。
5 结论治沟造地工程对小流域农业面源污染综合治理效果显著,归因于治沟造地工程不仅从源头上通过地形改变削减径流,利于肥料就地入渗。未治理流域产流量是治理后流域产流量的29倍。新造地耕作层土壤氮磷质量分数高于坡耕地,还在过程中借助生态拦截坝对氮磷污染物稀释自净,生态拦截坝对水体中总氮、总磷、硝氮和氨氮质量浓度总削减率分别达到44.3%、94.8%、91.2%和46.9%。
| [1] |
彭遥, 周蓓蓓, 陈晓鹏, 等. 间歇性降雨对黄土坡地水土养分流失的影响[J]. 水土保持学报, 2018, 32(3): 54. PENG Yao, ZHOU Beibei, CHEN Xiaopeng, et al. Study on mechanism of soil, water and nutrient loss on loess slope under interval rain events[J]. Journal of Soil and Water Conservation, 2018, 32(3): 54. |
| [2] |
寇全安. 黄土高原农村产业结构战略性调整[D]. 陕西 杨凌: 西北农林科技大学, 2002: 36. KOU Quan'an. Strategic adjustment of rural industrial structure on the Loess Plateau[D]. Yangling, Shaanxi: Northwest Agricultural and Forestry University, 2002: 36. |
| [3] |
JU Xiaotang, GU Baojing, WU Yiyun, et al. Reducing China's fertilizer use by increasing farm size[J]. Global Environmental Change, 2016, 41: 26. DOI:10.1016/j.gloenvcha.2016.08.005 |
| [4] |
贺春雄. 延安治沟造地工程的现状、特点及作用[J]. 地球环境学报, 2015, 6(4): 255. HE Chunxiong. The situation, characteristics and effect of the gully reclamation project in Yan'an[J]. Journal of Earth Environment, 2015, 6(4): 255. |
| [5] |
陈怡平. 延安"乡村振兴南沟模式"的内涵与启示[J]. 地球环境学报, 2022, 13(6): 641. CHEN Yiping. Connotation and enlightenment of "Nangou rural vitalization model" in Yan'an City[J]. Journal of Earth Environment, 2022, 13(6): 641. |
| [6] |
朱蒋洁, 曾艳, 陈敬安, 等. 我国农业面源污染治理技术研究进展[J]. 四川环境, 2014, 33(3): 153. ZHU Jiangjie, ZENG Yan, CHEN Jing'an, et al. Review of agricultural non-point source pollution control technology[J]. Sichuan Environment, 2014, 33(3): 153. |
| [7] |
LIU Qiang, WANG Yuanqiang, ZHANG Jing, et al. Filling gullies to create farmland on the Loess Plateau[J]. Environmental Science & Technology, 2013, 47(14): 7589. |
| [8] |
LONG Shaobo, GAO Jian'en, SHAO Hui, et al. Evaluation of the impact of the gully land consolidation project on runoff under extreme rainfall[J]. Land Degradation & Development, 2022, 33(15): 2663. |
| [9] |
WANG Guoqiang, WU Binbin, ZHANG Lei, et al. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall[J]. Journal of Hydrology, 2014, 514: 180. DOI:10.1016/j.jhydrol.2014.04.028 |
| [10] |
张树楠, 肖润林, 刘锋, 等. 生态沟渠对氮、磷污染物的拦截效应[J]. 环境科学, 2015, 36(12): 4516. ZHANG Shunan, XIAO Runlin, LIU Feng, et al. Interception effect of vegetated drainage ditch on nitrogen and phosphorus from drainage ditches[J]. Environmental Science, 2015, 36(12): 4516. |
| [11] |
MA Jifu, CHEN Yiping, WANG Hongjie, et al. Newly created farmland should be artificially ameliorated to sustain agricultural production on the Loess Plateau[J]. Land Degradation and Development, 2020, 31: 2565. DOI:10.1002/ldr.3618 |
| [12] |
余云龙. 治沟造地对陕北黄土丘陵小流域氮循环的影响及内在机制[D]. 北京: 中国科学院大学, 2019: 22. YU Yunlong. Effects of gully land consolidation on nitrogen cycle in loess-hilly watershed of northern Shaanxi Loess Plateau and its controlling mechanisms[D]. Beijing: University of Chinese Academy of Sciences, 2019: 22. |
| [13] |
麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究[J]. 植物营养与肥料学报, 2018, 24(4): 1113. MA Kun, DIAO Gang. Research on the contribution rate of fertilizer to grain yield in China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1113. |
| [14] |
张维理, 武淑霞, 冀宏杰, 等. 中国农业面源污染形势估计及控制对策Ⅰ: 21世纪初期中国农业面源污染的形势估计[J]. 中国农业科学, 2004, 37(7): 10. ZHANG Weili, WU Shuxia, JI Hongjie, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies Ⅰ: Estimation of agricultural non-point source pollution in China in early 21 century[J]. Scientia Agricultura Sinica, 2004, 37(7): 10. |
| [15] |
郭胜利, 张树兰, 党廷辉, 等. 褐土区农田土壤氮磷淋溶特征及其管理措施[J]. 中国生态农业学报(中英文), 2021, 29(1): 163. GUO Shengli, ZHANG Shulan, DANG Tinghui, et al. Effects of field management practices on nitrogen and phosphate leaching in the cinnamon soil area of China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 163. |
| [16] |
杨林章, 冯彦房, 施卫明, 等. 我国农业面源污染治理技术研究进展[J]. 中国生态农业学报, 2013, 21(1): 96. YANG Linzhang, FENG Yanfang, SHI Weiming, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 96. |
| [17] |
杨林章, 周小平, 王建国, 等. 用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J]. 生态学杂志, 2005, 24(11): 1371. YANG Linzhang, ZHOU Xiaoping, WANG Jianguo, et al. Ecological ditch system with interception function and its effects on controlling farmland non-point pollution[J]. Chinese Journal of Ecology, 2005, 24(11): 1371. |
| [18] |
徐冯迪, 高扬, 董文渊, 等. 我国南方红壤区氮磷湿沉降对森林流域氮磷输出及水质的影响[J]. 生态学报, 2016, 36(20): 6409. XU Fengdi, GAO Yang, DONG Wenyuan, et al. Impact of atmospheric nitrogen and phosphorus wet deposition on nitrogen and phosphorus export and associatedwater quality: A case study of forest watershed in the red soil area, southern China[J]. Acta Ecologica Sinica, 2016, 36(20): 6409. |
| [19] |
周涛, 李正魁, 冯露露. 氨氮和硝氮在太湖水华自维持中的不同作用[J]. 中国环境科学, 2013, 33(2): 305. ZHOU Tao, LI Zhengkui, FENG Lulu. The different roles of ammonium and nitrate in the bloom self-maintenance of Lake Taihu[J]. China Environmental Science, 2013, 33(2): 305. |
| [20] |
刘济. 农业流域氮磷流失尺度效应与环境安全阈值的形成机制[D]. 北京: 中国科学院大学, 2020: 71. LIU Ji. Scale effect of nitrogen and phosphorus loss in agricultural watershed and the formation mechanism of environmental safety threshold[D]. Beijing: University of Chinese Academy of Sciences, 2020: 71. |