2. 武汉市农业技术推广中心,430014,武汉;
3. 华中农业大学水土保持研究中心,430070,武汉
中国水土保持科学 2024, Vol. 22 Issue (2): 159-166. DOI: 10.16843/j.sswc.2023041 |
土壤是人类赖以生存的基本自然资源,为人类可持续发展提供众多关键生态服务[1]。在气候变化和人类活动双重压力下,全球面临着广泛的土壤侵蚀加剧和功能退化问题[2]。植被恢复被认为是控制土壤侵蚀和修复土壤功能的重要措施[3-4]。然而,土壤侵蚀能显著胁迫植物的定植、存活、生长和演替,制约植被治理侵蚀和修复生态的效率[5-6]。近年来,有学者提出我国水土保持林草措施应以提升生态功能为导向,治理手段应从综合治理转向生态调控,并结合具体的生态问题和社会经济因素理论和方法作为指导[7-8]。为实现上述目标,管理者和工程师需要明确的生态学理论和方法作为指导[9]。
植物功能性状反映植物对环境变化的响应,同时强烈影响生态系统过程[10-11]。当前基于植物性状响应-影响的框架(a trait-based response-and-effects framework, TRE)是连接环境变化和指导生态修复的前沿工具及热点研究方向[12-14]。该框架由Suding等[12]在2008年提出,特点在于将性状对环境变化响应纳入性状对生态系统影响的分析,对于退化环境的修复具有强大的指导作用。在此基础上,Zirbel等[15]总结出基于TRE的生态修复框架(图 1),该框架中植被恢复水平和被修复样地立地条件共同组成环境条件,环境条件直接及通过植物性状间接影响生态系统功能。对于用于生态修复的植物性状而言,影响特订生态功能的性状(影响性状)需不受环境条件的制约,即该性状必须能在当前环境条件下正常存活、生长和发挥其功能[15]。该框架诞生以来,已迅速运用在矿山生态修复、退化土壤修复和农业生态系统服务管理等方面[16-18]。对于土壤侵蚀治理而言,侵蚀过程中径流等侵蚀营力干扰和侵蚀退化环境共同影响植物根系、叶片和冠层等性状;同时,这些性状又通过直接和间接作用影响侵蚀营力、土壤可蚀性和土壤有机质等性质,进而影响水土保持等众多土壤功能[19]。基于此,笔者通过文献综述方法,阐述植物功能性状对侵蚀胁迫的响应和对土壤功能的影响机制,提出基于植物性状以土壤保持为目标的生态修复框架,以期为提升我国水土保持林草措施提供参考。
|
a: 性状对环境条件的响应过程。b: 响应性状与影响性状之间可能的关系。c: 影响性状对生态系统功能产生影响的过程。d: 环境条件对生态系统功能的独立影响,不受功能性状调节。 a: The processes by which environmental conditions determine response traits. b: The possible relationship between response and effect traits. c: The process by which effect traits produce ecosystem traits. d: The independent effect of environmental conditions on ecosystem functions, not mediated by functional traits 图 1 基于性状响应—影响的生态修复框架[12] Fig. 1 A revised trait-based response-and-effects framework for ecological restoration[12] |
植物生长、发育和演替不同程度地受到侵蚀过程及其所塑造的土壤、地貌和景观等环境因素制约[20-21]。土壤侵蚀对植被的胁迫可总结为原位和异位影响(图 2):1)原位影响主要包含径流等侵蚀营力和泥沙搬运对种子和幼苗的物理扰动,及侵蚀引起的土地退化导致立地条件恶化和生境破碎;2)异位影响包含泥沙沉积对种子、幼苗和表层肥沃土壤的埋藏作用[2]。针对黄土丘陵区自然植被更新的限制因素,我国学者深入研究植被恢复对土壤侵蚀环境的响应机理,揭示径流等侵蚀扰动对种子和幼苗的影响[19, 22]。从植物功能性状视角来看,性状对环境变化的响应被认为是植物对环境胁迫适应的结果,体现环境对植物的可塑性[23]。已有研究表明,土壤和人为扰动主导小尺度上性状变异的大小和方向,例如具有养分吸收功能的细根性状随土壤养分含量降低而增加,而植被地上部分、枯落物和粗根则在资源丰富的环境中具有较高产量[23-24];Hao等[6]对丹江口库区不同侵蚀退化程度下对草地、灌木地和林地的研究发现,植物偏向采取高效投入—快速收益的光合产物分配模式以适应侵蚀退化土壤的贫瘠胁迫,具有养分吸收功能的细根总体上随侵蚀退化程度加剧而增加,而粗根则相反。综上所述,植物性状在不同侵蚀环境下具有变异性,但变异不是随机的而是受环境梯度影响,体现植物对侵蚀退化环境的适应性。
|
AWC: Available water content. SOM: Soil organic matter. 图 2 侵蚀对植被的原位影响和异位影响 Fig. 2 On-site and off-site effects of soil erosion on vegetation |
植物群落能塑造和影响生态系统功能,近些年有研究指出植物功能性状而非物种决定生态系统的功能和过程,因而应从性状的视角理解植被对生态系统的影响[14, 25]。已有研究表明,诸如物质生产、水分储存和过滤、养分存储和循环、栖息地维护和物理稳定等众多土壤功能可以通过与植物性状相关联的一系列土壤生物化学或物理结构性质来表达,而这些土壤性质往往被少数简单易测的植物性状控制[23, 26]。例如,Celentano等[27]在巴西亚马逊退化森林生态系统中研究发现,树木高度和断面面积及草本生物量3个性状的退化可解释土壤孔隙、含水量、有机碳和养分等的变化,进而导致水土保持和生命支持等生态系统服务功能的退化;Lohbeck等[28]通过连接植被覆盖度和地上生物量等简单性状与土壤有机碳及侵蚀的关系,指导东非退化农业土壤的修复;Gould等[29]在德国Jena生物多样性长期观测实验基地对草地群落的研究发现,根长、根重、根径和比根长等根系形态性状解释植物多样性影响土壤团聚体稳定性、入渗和抗剪等一系列与土壤功能相关土壤性质的变化。
1.3 基于性状响应—影响的生态修复框架基于性状响应—影响的框架认为生态系统直接受生物和非生物环境因素控制,植被和环境及其反馈过程能共同塑造新的生态系统[11]。基于此,Zirbel等[15]总结出基于性状响应—影响的生态修复框架(图 1),该框架中植被恢复的管理水平和被修复的立地条件共同组成环境条件,环境条件直接或通过植物性状间接影响生态系统功能。对于筛选用于生态修复的植物性状而言,具有特定生态功能影响的性状(影响性状)不受环境条件的制约,即响应性状和影响性状发生重叠时,响应性状必须能在当前环境条件下正常存活、生长和发挥其功能。例如Navarro-Cano等[17]在为修复尾矿筛选合适保育植物中发现,先锋物种虽然能在贫瘠土壤上迅速生长,但其不能促进其他植物生长和改善土壤条件,因而强调保育植物需同时满足能在极端环境压力下正常生存并且需具备修复土壤功能作用,并以此总结出适合尾矿修复的性状:较大植株形态和较长生命史等对生态系统功能促进作用大的性状,C4植物、主根与侧根比及叶片碳氮比低进而能在极端环境下生存性强的性状。
2 基于植物性状的土壤侵蚀退化修复框架笔者阐述植物功能性状对侵蚀退化胁迫的响应,分析植物性状对一系列与土壤功能紧密联系的土壤性质影响,验证基于性状响应—影响的生态修复框架中2个关键理论:1)植物性状存在较大的种内和种间变异,但变异不是随机的而是受环境梯度影响,体现植物对侵蚀退化环境的适应性;2)植物性状显著影响土壤生态过程。综上,笔者提出一种以水土保持服务为目标的基于植物性状的生态修复框架(图 3),该框架包含修复场地中胁迫因子和群落种间相互作用的识别,性状对上述胁迫因子和相互作用的响应,及性状对侵蚀营力和土壤可蚀性的影响3方面。
|
SOM: Soil organic matter. AS: Aggregate stability. 图 3 基于植物性状响应—影响的土壤侵蚀退化修复框架 Fig. 3 A trait-based response-and-effect framework for ecological restoration of eroded land |
识别修复场地的侵蚀胁迫因子和群落种间相互作用关系是性状筛选的关键。图 3中,浅蓝色菱形框表示筛选性状的步骤,其中的“/”表示筛选的性状需不受侵蚀环境因子(或植物种间相互作用)的胁迫,“+”表示筛选的性状需对侵蚀环境胁迫(或植物种间相互作用)具有抗性,“/”和“+”同时被箭头包涵时表示筛选的性状需不受影响(“/”)或具有抗性(“+”)。这一步的目的是保证植物在修复场地中的存活和生长进而保证其能发挥正常功能。表 1列举出常见侵蚀胁迫及抗胁迫性状:例如干旱是侵蚀造成常见的胁迫之一,植物抵抗干旱胁迫需要高幼苗存活率,高水分利用效率,长的生命史和低蒸腾面积等,相关性状特征可为大型植株,细根发达,深根系及叶片角质层厚等[30-33];人工林或种植园植被类型单一容易引起林下侵蚀,而能在林下正常存活的植物的叶片需要具有耐阴等性状,并且植物种间不存在异株克生的化感作用,此外林下植株应尽量矮小以减少溅蚀发生[34-35]。
| 表 1 抗侵蚀胁迫相关植物性状特征及举例 Tab. 1 Characteristics and examples of plant trait related to anti-erosion stress |
选择对侵蚀营力和土壤可蚀性具有影响的性状进行组合是利用植被实现水土保持服务的关键。图 3中,“+”表示选择能增加土壤入渗、地表覆盖、土壤有机质、团聚体稳定性和黏聚力等控制侵蚀相关的植物性状。这一步目的是组合具有水土保持相关功能(如土壤保持、水文调节和碳存储等)性状以实现最终的目标服务。例如Hao等连接植物功能性状与土壤侵蚀的系列研究[6, 36-38]中发现高植物覆盖度、高枯落量、高细根长密度和高根际微生物等均显著促进土壤有机质、团聚体稳定性和降低土壤可蚀性,可以选择组合具有上述性状的植物构建群落从而实现土壤保持的生态修复目标。
3 讨论笔者基于功能生态学、植物生态学和土壤侵蚀相关学科前沿进展,借鉴恢复生态学领域实践经验,提出基于性状响应—影响的土壤侵蚀退化修复框架。然而,实际操作中筛选不受侵蚀环境(或植物种间相互作用)胁迫或对侵蚀环境胁迫(或植物种间相互作用)具有抗性,同时又能影响土壤保持功能的性状具有一定挑战。已有的植被恢复策略选择往往依据专家经验,而本研究提出的生态修复框架不仅对专家友好,更衔接了众多生态学原理的应用。值得期待的是,随着功能生态学的迅速发展,已有大量研究报道植物的形态、生理、生化和解剖结构等性状特征及其对生物和非生物环境变化的响应,并且国际上已建立开放的性状数据库帮助研究者查询上述信息(TRY plant trait database,http://www.try-db.org)[46]。此外,Perez等[47]建立了用于控制土壤侵蚀和浅层滑坡的植物物种开放数据库(stability database,http://publish.plantnet-project.org/project/stability_en),这为研究者和工程师选择目标植物性状提供了更广泛和灵活的物种来源。但是,植物对环境的响应和植物对生态过程的影响均是极其复杂的过程,目前相关的认识仍较为有限。此外,一些研究还发现部分植物性状和生态理论预测的生境存在广泛的不匹配现象[48]。这说明无论采用专家经验或现有生态理论分析的方法来筛选性状都可能存在考虑不周的情况。因此,在开展大规模植被恢复前,有必要在修复场地内布设小型试验验证所选植物群落的存活能力。
4 结论1) 土壤侵蚀对植被的胁迫可总结为原位和异位影响,原位影响主要包含径流等侵蚀营力和泥沙搬运对种子和幼苗的物理扰动,及侵蚀引起的土地退化导致立地条件恶化和生境破碎;异位影响包含泥沙沉积对种子和幼苗的埋藏作用,及泥沙沉积对表层肥沃土壤的埋藏。
2) 通过综述植物功能性状对侵蚀胁迫的响应和对土壤功能的影响机制,验证基于性状响应—影响的生态修复框架在土壤侵蚀治理中应用的2个关键理论:植物性状存在较大的种内和种间变异,体现植物对侵蚀退化环境的适应性;植物性状显著影响土壤生态过程。
3) 提出基于植物性状响应—影响的土壤侵蚀退化修复框架。该框架特点在于将植物性状对环境变化响应纳入性状对生态系统影响的分析,即根据要恢复的水土保持服务目标(如土壤保持、水文调节和碳存储等)选择具有影响上述功能的特定植物性状,并明确修复场地的土壤侵蚀退化胁迫因子和物种间相互作用,选择不受侵蚀(或物种间相互作用)胁迫或具有抗逆性的性状进行植物配置。
| [1] |
F AO. Status of the world's soil resources[M]. Rome: FAO, 2015: 8.
|
| [2] |
LAL R. Soil degradation by erosion[J]. Land Degradation & Development, 2001(12): 519. |
| [3] |
VANNOPPEN W, VANMAERCKE M, DE B S, et al. A review of the mechanical effects of plant roots on concentrated flow erosion rates[J]. Earth-Science Review, 2015, 150: 666. DOI:10.1016/j.earscirev.2015.08.011 |
| [4] |
REY F, BIFULCO C, BISCHETTI G B, et al. Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration[J]. Science of the Total Environment, 2019, 648: 1210. DOI:10.1016/j.scitotenv.2018.08.217 |
| [5] |
KOU Meng, JIAO Juying, YIN Qiulong, et al. Successional trajectory over 10 years of vegetation restoration of abandoned slope croplands in the hill-gully region of the Loess Plateau[J]. Land Degradation & Development, 2015, 27: 1. |
| [6] |
HAO Haoxin, CHENG Liang, GUO Zhonglu, et al. Plant community characteristics and functional traits as drivers of soil erodibility mitigation along a land degradation gradient[J]. Land Degradation & Development, 2020, 31: 1851. |
| [7] |
高吉喜, 杨兆平. 生态功能恢复: 中国生态恢复的目标与方向[J]. 生态与农村环境学报, 2015, 31(1): 1. GAO Jixi, YANG Zhaoping. Restoration of ecological functions: Goal and orientation of ecological restoration in China[J]. Journal of Ecology and Rural Environment, 2015, 31(1): 1. |
| [8] |
史志华, 王玲, 刘前进, 等. 土壤侵蚀: 从综合治理到生态调控[J]. 中国科学院院刊, 2018, 33(2): 198. SHI Zhihua, WANG Ling, LIU Qianjin, et al. Soil erosion: From comprehensive control to ecological regulation[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 198. |
| [9] |
BURYLO M, DUTOIT T, REY F. Species traits as practical tools for ecological restoration of marly eroded lands[J]. Restoration Ecology, 2014, 22: 633. DOI:10.1111/rec.12113 |
| [10] |
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325. LIU Xiaojuan, MA Keping. Plant functional traits-concepts, application and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325. |
| [11] |
BRUELHEIDE H, DENGLER J, PURSCHKE O, et al. Global trait-environment relationships of plant communities[J]. Nature Ecology & Evolution, 2018, 2: 1906. |
| [12] |
SUDING K N, LAVOREL S, CHAPIN F S, et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants[J]. Global Change Biology, 2008, 14(5): 1125. |
| [13] |
PORELA A P, DURANCE I, VIEIRA C, et al. Response-effect trait overlap and correlation in riparian plant communities suggests sensitivity of ecosystem functioning and services to environmental change[J]. Science of the Total Environment, 2023, 860: 160549. |
| [14] |
FAUCON M P, HOUBEN D, LAMBERS H. Plant functional traits: Soil and ecosystem services[J]. Trends in Plant Science, 2017, 22: 385. |
| [15] |
ZIRBEL C R, BASSETT T, GRMAN E, et al. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration[J]. Journal of Applied Ecology, 2017, 54: 1070. |
| [16] |
DAMOUR G, NAVAS M L, GARNIER E. A revised trait-based framework for agroecosystems including decision rules[J]. Journal of Applied Ecology, 2018, 55: 12. |
| [17] |
NAVARRO-CANO J A, VERDU M, GOBERNA M. Trait-based selection of nurse plants to restore ecosystem functions in mine tailings[J]. Journal of Applied Ecology, 2018, 55: 1195. |
| [18] |
WERDEN L K, ALVARADO P, ZARGES S, et al. Using soil amendments and plant functional traits to select native tropical dry forest species for the restoration of degraded Vertisols[J]. Journal of Applied Ecology, 2018, 55: 1019. |
| [19] |
寇萌, 焦菊英, 伊秋龙. 黄土丘陵沟壑区潜在抗侵蚀植物分析[J]. 生态学报, 2017, 37(5): 1561. KOU Meng, JIAO Juying, YIN Qiulong. Potential erosion-resistant species analysis in the hill-gully region of the Loess Plateau[J]. Acta Ecologica Sinica, 2017, 37(5): 1561. |
| [20] |
GUERREO-CAMPO J, MONTSERRAT-MARTI G. Comparison of floristic changes on vegetation affected by different levels of soil erosion in Miocene clays and Eocene marls from northeast Spain[J]. Plant Ecology, 2004, 173: 83. |
| [21] |
MILODOWSKI D T, MUDD S M, MITCHARD E T A. Erosion rates as a potential bottom-up control of forest structural characteristics in the Sierra Nevada Mountains[J]. Ecology, 2015, 96: 31. |
| [22] |
焦菊英. 黄土丘陵沟壑区种子库研究[M]. 北京: 科学出版社, 2015: 132. JIAO Juying. Research on soil seed bank in Loess hilly-gully region[M]. Beijing: Science Press, 2015: 132. |
| [23] |
BUTTERFIELD B J, SUDING K N. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape[J]. Journal of Ecology, 2013, 101: 9. |
| [24] |
USHIO M, FUJIKI Y, HIDAKA A, et al. Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests[J]. Functional Ecology, 2015, 29: 1235. |
| [25] |
RILLIG M C, AGUILAR-TRIGUEROS C A, JOANA B, et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation[J]. New Phytologist, 2014, 205: 1385. |
| [26] |
RABOT E, WIESMEIER M, SCHLUTER S, et al. Soil structure as an indicator of soil functions: A review[J]. Geoderma, 2018, 314: 122. |
| [27] |
CELENTANO D, ROUSSEAU G X, ENGEL V L, et al. Degradation of riparian forest affects soil properties and ecosystem services provision in eastern amazon of Brazil: Degradation of soil ecosystem services in eastern amazon[J]. Land Degradation & Development, 2016, 28: 482. |
| [28] |
LOHBECK M, WINOWIECKI L, AYNEKULU E, et al. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa[J]. Journal of Applied Ecology, 2018, 55: 59. |
| [29] |
GOULD I J, QUINTON J N, WEIGELT A, et al. Plant diversity and root traits benefit physical properties key to soil function in grasslands[J]. Ecological Letter, 2016, 19: 1140. |
| [30] |
PLANTE P M, RIVEST D, VEZINA A, et al. Root distribution of different mature tree species growing on contrasting textured soils in temperate windbreaks[J]. Plant and Soil, 2014, 380: 429. |
| [31] |
ZHOU Yi, LAMBRIDES C J, FUKAI S. Drought resistance and soil water extraction of a perennial C4 grass: Contributions of root and rhizome traits[J]. Functional Plant Biology, 2014, 41: 505. |
| [32] |
ZHANG Bingwei, CADOTTE M W, CHEN Shiping, et al. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation[J]. Ecology, 2019, 100(11): e02828. |
| [33] |
李瑞雪, 孙任杰, 汪泰初, 等. 植物抗旱性鉴定评价方法及抗旱机制研究进展[J]. 生物技术通报, 2017, 33(7): 40. LI Ruixue, SUN Renjie, WANG Taichu, et al. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants[J]. Biotechnology Bulletin, 2017, 33(7): 40. |
| [34] |
LACOMBE G, VALENTIN C, SOUNYAFONG P, et al. Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in northern Laos[J]. Science of the Total Environment, 2018, 616: 1330. |
| [35] |
袁再健, 马东方, 聂小东, 等. 南方红壤丘陵区林下水土流失防治研究进展[J]. 土壤学报, 2020, 57(1): 12. YUAN Zaijian, MA Dongfang, NIE Xiaodong, et al. Progress in research on prevention and control of soil erosion under forest in red soil hilly region of south China[J]. Acta Pedologica Sinica, 2020, 57(1): 12. |
| [36] |
HAO Haoxin, QIN Jiahui, SUN Zhaoxiang, et al. Erosion-reducing effects of plant roots during concentrated flow under contrasting textured soils[J]. Catena, 2021, 203: 105378. |
| [37] |
HAO Haoxin, WEI Yujie, GUO Zhonglu, et al. Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils[J]. Soil & Tillage Research, 2020, 198: 104542. |
| [38] |
HAO Haoxin, DI Hanyue, JIAO Xiong, et al. Fine roots benefit soil physical properties key to mitigate soil detachment capacity following the restoration of eroded land[J]. Plant and Soil, 2020, 446: 487. |
| [39] |
ROUMENT C, BIROUSTE M, PICON-COCHARD C, et al. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy[J]. New Phytologist, 2016, 210: 815. |
| [40] |
DU Baoguo, PANG Junzhu, HU Bin, et al. N2-fixing black locust intercropping improves ecosystem nutrition at the vulnerable semi-arid Loess Plateau region, China[J]. Science of the Total Environment, 2019, 688: 333. |
| [41] |
ALAMEDA D, VILLAR R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions[J]. Environmental and Experimental Botany, 2012, 79: 49. |
| [42] |
STOKES A, MINE F X, MAO Z, et al. Multi-stemming and mechanical traits ensure persistence of subalpine woody plants exposed to a disturbance gradient[J]. Journal of Vegetation Science, 2012, 23: 325. |
| [43] |
BURYLO M, REY F, ROUMET C, et al. Linking plant morphological traits to uprooting resistance in eroded marly lands (southern Alps, France)[J]. Plant and Soil, 2009, 324(1): 31. |
| [44] |
WANG Dongli, JIAO Juying, LEI Dong, et al. Effects of seed morphology on seed removal and plant distribution in the Chinese hill-gully Loess Plateau region[J]. Catena, 2013, 104: 144. |
| [45] |
王东丽, 焦菊英, 王宁, 等. 黄土丘陵沟壑区不同侵蚀微环境对植物更新的影响[J]. 干旱区研究, 2017, 34(5): 1141. WANG Dongli, JIAO Juying, WANG Ning, et al. Effects of different erosion microenvironments on plant regeneration in a loess hilly-gully region[J]. Arid Zone Research, 2017, 34(5): 1141. |
| [46] |
KATTGE J, BÖNISCH G, DÍAZ S, et al. TRY plant trait database-enhanced coverage and open access[J]. Global Change Biology, 2020, 26(1): 119. |
| [47] |
PEREZ J, SALAZAR R C, STOKES A. An open access database of plant species useful for controlling soil erosion and substrate mass movement[J]. Ecological Engineering, 2017, 99: 530. |
| [48] |
BOHNER T, DIEZ J. Extensive mismatches between species distributions and performance and their relationship to functional traits[J]. Ecological Letter, 2020, 23(1): 33. |