文章快速检索     高级检索
  中国水土保持科学   2023, Vol. 21 Issue (2): 117-123.  DOI: 10.16843/j.sswc.2023.02.014
0

引用本文 

段剑, 王凌云, 王玲, 杨洁, 王剑, 汤崇军, 郑海金. 植物根孔构型与土壤优先流过程研究进展[J]. 中国水土保持科学, 2023, 21(2): 117-123. DOI: 10.16843/j.sswc.2023.02.014.
DUAN Jian, WANG Lingyun, WANG Ling, YANG Jie, WANG Jian, TANG Chongjun, ZHENG Haijin. A review of researches on plant root channel architecture and soil preferential flow process[J]. Science of Soil and Water Conservation, 2023, 21(2): 117-123. DOI: 10.16843/j.sswc.2023.02.014.

项目名称

国家自然科学基金"生草覆盖下根孔构型对果园优先流运动过程的影响机制"(42107378);江西省自然科学基金"鄱阳湖流域植被恢复根系结构与土壤分离能力协同演变规律"(20192BAB214008);江西省技术创新引导类计划项目"农事活动影响下红壤坡地水土流失防控关键技术与应用"(20212AEI91011);江西省水利科技项目"红壤坡耕地水肥协同提升的绿肥耕作技术研究"(202223YBKT12)

第一作者简介

段剑(1988-), 男, 博士, 工程师。主要研究方向: 土壤侵蚀与水土保持。E-mail: duanjian8807@163.com

通信作者简介

杨洁(1958-), 女, 博士, 教授级高级工程师。主要研究方向: 土壤侵蚀与水土保持。E-mail: zljyj@126.com

文章历史

收稿日期:2021-09-30
修回日期:2022-11-26
植物根孔构型与土壤优先流过程研究进展
段剑 1, 王凌云 1, 王玲 2, 杨洁 1, 王剑 2, 汤崇军 1, 郑海金 1     
1. 江西省水利科学院, 江西省土壤侵蚀与防治重点实验室, 330029, 南昌;
2. 华中农业大学资源与环境学院, 430070, 武汉
摘要:植物根孔增加大孔隙网络的密度和连通性,促进土壤优先流发生。然而根孔在土壤中分布的构型特征复杂,揭示根孔构型特征影响土壤优先流过程的内在机制,对水资源高效管理、降低地下水污染和滑坡、泥石流等灾害风险具有重要意义。因此,笔者通过Web of Science和中国知网等数据库,检索获取截至2020年的相关研究文献,主要综述根孔构型的影响因素、量化方法及其对土壤优先流影响的研究进展,发现植物种类、年限季节、土壤属性等均会改变根孔的构型特征,但各因素的作用机制仍不清楚;CT扫描成像技术是量化根孔构型特征的有效方法;通过大孔隙阻断方法,能实地量化土壤入渗过程中优先流过程和基质入渗过程;植物根孔有效改良土壤入渗性能,土壤优先流通量与根孔数量、直径、表面积和体积等二维参数呈正相关关系。今后应深入研究根孔发育机制及其构型特征。加强根孔构型对土壤优先流过程的影响及作用机制的研究,是深入揭示土壤优先流运动机理的重要方向。
关键词植物根孔    构型特征    土壤优先流    基质入渗    土壤入渗    土壤水分    
A review of researches on plant root channel architecture and soil preferential flow process
DUAN Jian 1, WANG Lingyun 1, WANG Ling 2, YANG Jie 1, WANG Jian 2, TANG Chongjun 1, ZHENG Haijin 1     
1. Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Jiangxi Academy of Water Science and Engineering, 330029, Nanchang, China;
2. College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, China
Abstract: [Background] Root channels formed by the alive roots and rotten roots play an important role in increasing preferential flow and altering hydrological processes such as soil infiltration. The root channel architecture characteristics are very complex and difficult to describe accurately and quantitatively. The influence mechanisms of root channels on preferential flow infiltration process are theoretically beneficial to water resources management, groundwater pollution, landslides and mudslides prevention. [Methods] In view of this research hotspot, numerous literature retrieval were carried out with "root channels" "architecture characteristics" "preferential flow" "matrix infiltration" "soil infiltration" and "soil moisture" as keywords in the Web of Science and China National Knowledge Infrastructure (CNKI) databases. These keywords appeared very frequently in relevant fields. Representative literatures were selected for analysis and integration in the previous studies by the end of 2020. The influencing factors, quantitative measurement methods of plant root channel architecture were in detailed described, and the influences of root channel architecture on soil preferential flow infiltration process were discussed. [Results] 1) The biological and abiotic factors, such as plant species, planting time, soil properties, and management measures significantly influence root channel architecture and the mechanism of each influencing factor are still unclear. In the past, due to technical methods and other limitations, soil macropores from different sources were often studied together during the study of preferential flow, without separately considering the characteristics of plant root channels and their importance. 2) In recent years, it has become a trend to use CT scanning imaging technology to obtain three-dimensional parameters of root channel architecture, which can characterize the network structure of large pores from different sources (biopores and non-biopores) as a whole. 3) Preferential flow and soil matrix infiltration are the two forms of soil water infiltration. During soil infiltration process, preferential flow must be accompanied by soil matrix infiltration. Previous quantitative research methods of preferential flow cannot quantitatively partition the temporal preferential flow and matrix infiltration, resulting in very little quantitative research of preferential flow infiltration process. However, the macropore connectivity blocking method provide a practical solution for quantitatively partition the temporal preferential flow and soil matrix infiltration. 4) Plant root system may improve soil infiltration properties by forming root channels through its own decay and decomposition. The values of root channel numbers, area, volume, and diameter are significantly and positively correlated with the soil infiltration rates and preferential flow flux. [Conclusions] Therefore, in the future, the three-dimensional quantitative index system for root channel architecture should be established to reveal development mechanism and architecture characteristics of plant root channel. More efforts should be focused on the influence mechanisms of root channel architecture on soil preferential flow infiltration process. It will be an important research direction to deeply reveal the mechanism of soil preferential flow movement and its contribution to water infiltration.
Keywords: plant root channel    architecture characteristics    soil preferential flow    matrix infiltration    soil infiltration    soil moisture    

优先流在自然界土壤中普遍存在,是水分在土壤大孔隙中的运动形式。优先流能绕过大部分土壤基质,快速到达深层土壤,减少地表径流,提高深层土壤蓄水能力[1];优先流携带的化肥、农药等污染物向地下深处入渗,会降低肥料利用效率,加剧地下水污染风险[2]。优先流也会影响坡体稳定性,诱发降雨型滑坡、泥石流等地质灾害[3]

根据土壤大孔隙形成是否受生物作用,可分为生物性和非生物性孔隙[4]。植物根孔是生物性孔隙的重要类型,包括根系生长穿插挤压土壤形成的孔隙(活根孔)和根系死亡腐烂后形成的孔洞(死根孔)。植物根孔在土壤大孔隙中占有较高比例,在森林土壤中比例>35%[5],在旱地和水田犁底层土壤中分别占30.1%~50.8%和66.3%~74.1%[6]。与非生物性孔隙相比,根孔显著增加大孔隙网络密度和连通性,在促进土壤优先流发育方面起主导作用[7-8]。但以往受技术方法等限制,优先流研究经常将不同来源土壤大孔隙一起研究,没有考虑到根孔特点及其重要性。受植物类型、生长年限和外界环境等因素影响,根系在土壤中的空间分布迥异,形成根孔的构型特征(空间网络分布特征)复杂多样[9],改变优先流运动路径及其水流通量[10-11],导致土壤优先流过程更加复杂。因此,通过对植物根孔与土壤优先流的成果归纳分析,提出现有研究中存在的不足,展望未来根孔与土壤优先流的研究重点,为深入认识优先流的运动机理、水资源高效管理和地下水污染防控等方面提供参考。

1 根孔构型 1.1 影响因素

植物种类:不同植物种类的根系特征和空间分布差异明显,形成的根孔大小、数量、弯曲度等构型特征迥异[9]。通常须根系植物的根孔直径较小,主要在表层土壤(0~30 cm),直根系植物的根孔直径更大、分布更深[12]。多年生草本的根孔密度、直径和网络复杂度要高于一年生草本[13]。与草本植物相比,乔木和灌木根系生长腐烂形成的根孔更大更深[14]

季节年限:随着种植年限增加,根系死亡腐烂形成的根孔数量增加,尤其是生长周期短、腐烂速度快的细根,同时新生根系数量也在增加,向土壤深层下扎时,倾向于占据已有大孔隙,导致根孔构型特征易随季节和种植年限发生变化[15]。如免耕农地休耕2年后,直径为2~5 mm中等根孔密度增加14%,>5 mm大根孔密度减少5%[16]。根孔直径与地上生物量、冠层直径、主根直径、侧根直径和数量等生长指标呈显著相关关系[10]

土壤属性:根孔在土壤中具有高度变异性,即使同一植物的根孔特征,也在很大程度上取决土壤环境状况[17]。在干旱土壤中,由于土壤水分限制,根系倾向于向下生长,形成以垂直型为主的根孔系统;在水分充足土壤中,水分不是限制因素,植物侧根及次生根相对较多,甚至存在发达地下根状茎,形成以水平型为主的根孔系统[18]。土壤质地、孔隙度、养分等,均会改变根系在土壤中的分布状况,导致根孔构型特征变化[19]

耕作措施:与林地和草地相比,耕作频繁的耕层土壤中根孔数量明显降低。这是由于前茬作物收获后留下的根孔,被人为耕作措施所破坏。与传统耕作措施相比,免耕较好地保留作物根系形成的根孔,提高耕作层土壤孔隙度,有效缓解土壤压实作用[20-21]。有学者提出,在冬季采用深根系作物覆盖,通过根系生长腐烂形成大量根孔,达到生物耕作的目的[22]

其他因素:在降雨或灌溉条件下,土壤在干湿交替作用下土壤孔隙会发生收缩和膨胀[23],影响根孔的构型特征。土壤大型动物,如蚂蚁、白蚁和蚯蚓等,存在于大多数陆地生态环境中,通过捕食和挖洞等行为,也会改变根孔构型特征[24]

总体看来,目前关于根孔构型的影响因素研究较为薄弱,各影响因素对根孔构型特征的作用机制仍不清楚。定量区分植物活根孔和死根孔的研究较少,尤其在植物生长过程中,活根孔和死根孔在土壤中的时空变化规律研究鲜见。

1.2 定量测定方法

由耕作、冻融或干湿交替等因素形成的非生物性孔隙数量较多,通常呈不规则形状,且随土壤含水率变化极大;而根孔数量相对较少,单个孔隙体积更大、连通性更高,呈长柱状[25-26]

1) 直接测量法:采用白色水泥、熟石膏、液体乳胶、硬化树脂等物质填充土壤大孔隙,通过对固化填充物质(硬化流体)的直接观测,来描述土壤剖面的大孔隙分布特征[27],测量计算根孔大小、长度、数量、体积等二维参数。

2) 土壤剖面剖切法:采用亮蓝等有色染色剂灌入土壤,然后将染色区域的土壤沿水平和垂直方向,开挖不同层次的水平和垂直剖面。根据土壤剖面的染色范围与根孔的形态特征,测量土壤剖面中的根孔数量、直径和长度,最后估算根孔的表面积和体积[10]

3) CT扫描成像法:根据不同来源孔隙的体积差异,采用体积阈值去除一定大小的非生物性孔隙,获取根孔构型特征[28],是一种简单有效的方法,但无法排除大而不规则的非生物性孔隙。Zhang等[6]在体积阈值法的基础上,引入孔隙长度与有效半径的比值等参数,区分植物根孔与非生物性孔隙,发现根孔在预测土壤入渗及优先流运动等方面更有效。

4) 模型模拟:通过野外试验观测数据,建立根孔的数学或机理模型,来预测根孔大小、数量、连通性、弯曲度等参数。目前对于根孔的数学模型仍以传递函数模型、二域模型为主。但由于根孔的研究方法不成熟,以及在土壤中分布的复杂性,导致模型预测精度较差[4]

总体看来,直接测量法操作简单直观,成本较低,但获得的根孔数据往往包含一部分非生物性孔隙,准确性相对较低;土壤剖面剖切法操作简单,考虑到根孔与非根孔的形态差异,但仅能获取根孔二维参数,无法定量描述根孔在土壤中的空间分布特征;CT扫描能有效获取根孔的三维参数,但仍需建立完善通用的根孔构型量化指标体系,增加不同研究结果的可比性;模型模拟仍需大量野外实测数据来提高模型精度。

2 土壤优先流过程

土壤水分入渗包括优先流和基质入渗2种运动形式。基质入渗是水分通过土体缓慢渗透的过程,仅受土壤基质的毛细作用控制[29]。优先流是一种快速非平衡的水分运动,能快速到达深层土壤。优先流过程,即优先流速率随入渗时间的动态变化过程[30]。与基质入渗相比,优先流水流通量与运动速率呈数量级式增长,在土壤水分入渗中占主导地位[30-31];因此,定量区分土壤入渗过程中的优先流与基质入渗,对准确预测降雨产流、水分运动及深层土壤水分补给等具有重要意义。

国内外学者在土壤优先流的量化方面,取得重要进展,通过染色示踪、微张力测量、非侵入式影像获取(CT扫描、核磁共振、探地雷达等)和数值模拟等方法[32],系统研究优先流运动路径、穿透曲线以及优先流在总入渗量中的比例及贡献[33-34],构建土壤优先流的数学模型[35];但以往土壤优先流的量化方法,均不能定量解析出优先流通量随入渗时间的变化,导致土壤优先流过程的定量研究极少。

土壤优先流的发生与否与地表大孔隙的连通性密切相关。无大孔隙土壤的湿润锋运移情况与C—C(大孔隙与上下边界均不连通)和C—O(大孔隙仅与下边界连通)的土壤一致,且在C—C和C—O土壤中均未发现优先流路径[36-37]。说明如果大孔隙与地表不连接或者被遮盖,则土壤优先流不会发生,孔隙上部土层与基质入渗区域具有相同的入渗特征。基于以上研究成果,国内外学者通过在地表覆盖不同的材料,比如饱和导水率较大的松散沙层,来阻断土壤大孔隙与地表的连通。在初始较短的时间内入渗率由沙层控制,当湿润锋达到土壤基质后,入渗过程由饱和导水率较低的土壤基质控制,此时测得结果为基质入渗过程,且在土壤剖面中未发现优先流的运动路径[38-39]。在相同土地利用下,小尺度范围内土壤结构的空间异质性较小,相邻位置的土壤基质入渗过程基本一致[39]。因此,选择立地条件一致的相邻地块,设置2组双环入渗试验,分别测量土壤总入渗与基质入渗过程,即可获取土壤优先流速率随入渗时间的变化过程,进而定量研究土壤优先流过程[31, 40]

3 根孔构型对土壤优先流过程的影响

植物根系,尤其死亡腐烂的根系,可为土壤入渗提供优先流通道[11]。通常来说,活根和腐根均能增加土壤有机质含量和孔隙度,改善土壤结构;但腐烂的根系比活根更容易形成一个大而连续的孔隙网络,改善土壤入渗过程[10, 15]。有根系通道的土壤剖面上的优先流比没有根系通道的更明显[41]。研究植物根孔对土壤优先流的影响,对于陆地生态系统(尤其是干旱半干旱区)土壤入渗及深层土壤水分补给具有重要意义。

根孔构型是影响土壤优先流发育程度的关键因素。植物根孔的存在显著增加大孔隙网络的密度和连通性,有利于土壤优先流的发生[10, 14]。与土壤大孔隙相比较,植物根孔影响土壤优先流的定量研究相对较少,主要集中在探讨根孔直径、面积等二维参数与土壤入渗性能、优先流总量的定量关系等方面。

在天然降雨或人工灌溉条件下,深厚且连通的根孔构型,有利于水分深层入渗,增加深层土壤的蓄水能力[26]。随着根孔平均直径和面积增加,土壤入渗初始速率和稳定速率显著增加;与须根系禾本科植物相比较,直根系豆科植物根系分布更深,形成大而深的稳定根孔,有利于土壤优先流发育[10]。与细根相比较,粗根形成的根孔在土壤优先流过程中扮演着更为重要角色[42]。也有研究发现,禾本科植物大量须根生长和丰富的根茎,一定程度上会堵塞土壤孔隙,阻碍土壤优先流运动,降低土壤入渗速率[43]。大孔隙连通性、弯曲度、水力半径、分支角度等,与土壤入渗性能有显著相关性,是预测土壤优先流的重要参数[10, 44]

随着根系腐烂时间的增加,土壤入渗速率(如初始入渗速率、稳定入渗速率等)增加。与裸地相比,1~4、5~8和9~12年腐烂的根系增加的土壤蓄水量分别为37.12%、217.52%和259.85%[45]。这和土壤入渗速率与根系直径、腐烂根系面积呈显著正相关有关[10]。Devitt等[46]也指出,灌木根孔通道对土壤入渗能力的影响,随着植物根系直径的增大而增强。

总体看来,植物根孔在土壤入渗和优先流过程中重要作用得到共识,但目前相关研究主要集中根孔对土壤入渗过程的影响方面,关于植物根孔对土壤优先流过程的影响研究相对较少,根孔特征参数与土壤优先流的定量关系也不明确。

4 研究展望

植物根孔在自然界土壤中普遍存在,是影响土壤水文过程的关键因素。已有工作围绕植物根孔的影响因素及其定量化,以及根孔对土壤入渗的影响等进行大量研究,取得了一系列重要成果。但由于根孔在土壤中空间分布及优先流运动过程的复杂性,相关科学问题仍需系统深入研究,主要集中在以下方面。

1) 系统研究不同环境条件下植物根孔的发育机制及其构型特征。以往对于根孔构型的研究多为比较不同植物种类(尤其是草本)之间的根孔特征差异,今后应结合植物学和土壤学等相关学科理论,深入研究根孔在土壤中的发育机制及其构型特征变化,加强多因素(植被、土壤、人类活动等)综合作用下根孔构型定量研究。

2) 建立完善通用的根孔构型量化指标体系,增加不同研究结果之间的可比性。以往根孔的定量研究,更多参考借鉴土壤大孔隙的研究方法和思路,应进一步加强根孔构型特征(尤其是三维特征)的定量方法研究,提高根孔研究结果的准确性。

3) 深入开展土壤优先流过程的定量研究。土壤优先流在水分入渗过程中占主导地位,同时土壤优先流的发生发展是一个动态的变化过程。以往受研究技术方法等限制,间接获取优先流总量在水分入渗中的比例。今后应加强土壤优先流通量随水分入渗时间的动态变化研究,深入揭示土壤优先流的运动机制。

4) 加强根孔构型对土壤优先流过程的影响及作用机制研究。目前难以区分根孔与其他大孔隙类型对土壤优先流运动过程的相对贡献,根孔构型特征对土壤优先流运动过程的作用机制也不明晰。这些问题有助于深入揭示土壤水分入渗的内在机理,为水资源高效管理与利用、降低地下水污染风险和保护水土资源等方面提供科学依据。

5 参考文献
[1]
朱钊岑, 刘冰, 刘婵, 等. 荒漠绿洲湿地土壤优先流与水分入渗特征[J]. 生态学报, 2020, 40(12): 3979.
ZHU Zhaocen, LIU Bing, LIU Chan, et al. Characteristics of preferential flow and water infiltration in desert oasis wetland[J]. Acta Ecologica Sinica, 2020, 40(12): 3979.
[2]
牛健植, 余新晓. 优先流问题研究及其科学意义[J]. 中国水土保持科学, 2005, 3(3): 110.
NIU Jianzhi, YU Xinxiao. Preferential flow and its scientific significance[J]. Science of Soil and Water Conservation, 2005, 3(3): 110. DOI:10.3969/j.issn.1672-3007.2005.03.022
[3]
FOX G, WILSON G. The role of subsurface flow in hillslope and stream bank erosion: A review[J]. Soil Science Society of America Journal, 2010, 74: 717. DOI:10.2136/sssaj2009.0319
[4]
刘芳, 李贵宝, 王殿武, 等. 植物根孔研究进展[J]. 水土保持学报, 2004, 18(2): 178.
LIU Fang, LI Guibao, WANG Dianwu, et al. Review of study on root channels[J]. Journal of Soil and Water Conservation, 2004, 18(2): 178.
[5]
张勇勇, 富利, 赵文智, 等. 荒漠绿洲土壤优先流研究进展[J]. 中国沙漠, 2017, 37(6): 1189.
ZHANG Yongyong, FU Li, ZHAO Wenzhi, et al. A review of researches on preferential flow in desert-oasis region[J]. Journal of Desert Research, 2017, 37(6): 1189.
[6]
ZHANG Zhongbin, LIU Kailou, ZHOU Hu, et al. Three dimensional characteristics of biopores and non-biopores in the subsoil respond differently to land use and fertilization[J]. Plant and Soil, 2018, 428: 453. DOI:10.1007/s11104-018-3689-3
[7]
NAVEED M, MOLDRUP P, SCHAAP M, et al. Prediction of biopore-and matrix-dominated flow from X-ray CT-derived macropore network characteristics[J]. Hydrology and Earth System Science, 2016, 20: 4017. DOI:10.5194/hess-20-4017-2016
[8]
KOSETEL J, LARSBO M. Imaging and quantification of preferential solute transport in soil macropores[J]. Water Resource and Research, 2014, 50: 4357. DOI:10.1002/2014WR015351
[9]
BODNER G, LEITNER D, KAUL H. Coarse and fine root plants affect pore size distributions differently[J]. Plant and Soil, 2014, 380(1/2): 133.
[10]
WU Gaolin, LIU Yu, YANG Zheng, et al. Root channels to indicate the increase in soil matrix water inflltration capacity of arid reclaimed mine soils[J]. Journal of Hydrology, 2017, 546: 133. DOI:10.1016/j.jhydrol.2016.12.047
[11]
LIU Yu, GUO Lei, HUANG Ze, et al. Root morphological characteristics and soil water inflltration capacity in semi-arid artiflcial grassland soils[J]. Agricultural Water Management, 2020, 235: 106153. DOI:10.1016/j.agwat.2020.106153
[12]
MATERECHERA S, ALSTON A, KIRBY J, et al. Influence of root diameter on the penetration of seminal roots into a compacted subsoil[J]. Plant Soil, 1992, 144: 297. DOI:10.1007/BF00012888
[13]
KAUTZ T, STUMM C, KOSTERS R, et al. Effects of perennial fodder crops on soil structure in agricultural headlands[J]. Journal of Plant Nutrition and Soil Science, 2010, 173: 490. DOI:10.1002/jpln.200900216
[14]
NESPOULOUS J, MERINO-MARTIN L, MONNIER Y, et al. Tropical forest structure and understorey determine subsurface flow through biopores formed by plant roots[J]. Catena, 2019, 181: 104061. DOI:10.1016/j.catena.2019.05.007
[15]
HUANG Ze, SUN Lei, LIU Yu, et al. Alfalfa planting significantly improved alpine soil water infiltrability in the Qinghai-Tibetan Plateau[J]. Agriculture, Ecosystems and Environment, 2019, 285: 106606. DOI:10.1016/j.agee.2019.106606
[16]
HAN E, KAUTZ T, PERKONS U, et al. Quantification of soil biopore density after perennial fodder cropping[J]. Plant and Soil, 2015, 394: 73. DOI:10.1007/s11104-015-2488-3
[17]
KAUTZ T. Research on subsoil biopores and their functions in organically managed soils: A review[J]. Renewable Agriculture and Food Systems, 2015, 30(4): 318. DOI:10.1017/S1742170513000549
[18]
王大力, 尹澄清. 植物根孔在土壤生态系统中的功能[J]. 生态学报, 2000, 20(5): 869.
WANG Dali, YIN Chengqing. Functions of root channels in the soil system[J]. Acta Ecologica Sinica, 2000, 20(5): 869. DOI:10.3321/j.issn:1000-0933.2000.05.025
[19]
VANNOPPEN W, VANMAERCKE M, DE BAETS S, et al. A review of the mechanical effects of plant roots on concentrated flow erosion rates[J]. Earth-Science Review, 2015, 150: 666. DOI:10.1016/j.earscirev.2015.08.011
[20]
CHEN Guihua, WEIL R R. Penetration of cover crop roots through compacted soils[J]. Plant and Soil, 2010, 331: 31. DOI:10.1007/s11104-009-0223-7
[21]
陈晓冰, 严磊, 李振东, 等. 耕作方式对岩溶区甘蔗地土壤优先流特征的影响[J]. 土壤, 2019, 51(4): 786.
CHEN Xiaobing, YAN Lei, LI Zhendong, et al. Tillage pattern effects on characteristics of soil preferential flow in sugarcane fields in the karst region[J]. Soil, 2019, 51(4): 786.
[22]
ZHANG Zhongbin, PENG Xinhua. Bio-tillage: A new perspective for sustainable agriculture[J]. Soil and Tillage Research, 2021, 206: 104884.
[23]
QI Wei, ZHANG Zhanyu, WANG Ce, et al. Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods[J]. Geoderma, 2020, 358: 113978. DOI:10.1016/j.geoderma.2019.113978
[24]
MA Li, SHAO Ming'an, FAN Jun, et al. Effects of earthworm (Metaphire guillelmi) density on soil macropore and soil water content in typical Anthrosol soil[J]. Agriculture, Ecosystems and Environment, 2021, 311: 107338. DOI:10.1016/j.agee.2021.107338
[25]
LEUE M, UTEAU-PUSCHMANN D, PETH S, et al. Separation of soil macropore types in three-dimensional x-ray computed tomography images based on pore geometry characteristics[J]. Vadose Zone Journal, 2019, 18: 180170.
[26]
PAGENKEMPER S, PETH S, PUSCHMANN D, et al. Effects of root-induced biopores on pore space architecture investigated with industrial X-ray computed tomography[M]. Madison, Wisconsin, United States: SSSA Special Publication, 2013: 67.
[27]
STEWART R D, ABOU NAJM M R. Field measurements of soil cracks[J]. Soil Science Society of America, 2017, 2: 1.
[28]
BOTTINELLI N, ZHOU Hu, CAPOWIEZ Y, et al. Earthworm burrowing activity of two non-Lumbricidae earthworm species incubated in soils with contrasting organic carbon content (vertisol vs. Ultisol)[J]. Biology and Fertility of Soils, 2017, 53: 951. DOI:10.1007/s00374-017-1235-8
[29]
ZHANG Jing, LEI Tingwu, QU Liqin, et al. Method to measure soil matrix inflltration in forest soil[J]. Journal of Hydrology, 2017, 552: 241. DOI:10.1016/j.jhydrol.2017.06.032
[30]
GAO Man, LI Hongyi, LIU Dengfeng, et al. Identifying the dominant controls on macropore flow velocity in soils: A meta-analysis[J]. Journal of Hydrology, 2018, 567: 590. DOI:10.1016/j.jhydrol.2018.10.044
[31]
ZHANG Jing, LEI Tingwu, QU Liqin, et al. Method to quantitatively partition the temporal preferential flow and matrix infiltration in forest soil[J]. Geoderma, 2019, 347: 150. DOI:10.1016/j.geoderma.2019.03.026
[32]
ALLAIRE S, ROULIER S, CESSNA A. Quantifying preferential flow in soils: A review of different techniques[J]. Journal of Hydrology, 2009, 378: 179. DOI:10.1016/j.jhydrol.2009.08.013
[33]
石辉, 陈凤琴, 刘世荣. 岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J]. 生态学报, 2005, 25(3): 507.
SHI Hui, CHEN Fengqin, LIU Shirong. Macropores properties of forest soil and its influence on water effluent in the upper reaches of Minjiang River[J]. Acta Ecologica Sinica, 2005, 25(3): 507. DOI:10.3321/j.issn:1000-0933.2005.03.018
[34]
刘目兴, 杜文正. 山地土壤优先流路径的染色示范研究[J]. 土壤学报, 2013, 50(5): 871.
LIU Muxing, DU Wenzheng. To investigate soil preferential flow paths in mountain area using dye tracer[J]. Acta Pedologica Sinica, 2013, 50(5): 871.
[35]
XU Xuexuan, KALHORO S, CHEN Wenyuan, et al. The evaluation/application of Hydrus-2D model for simulating macro-pores flow in loess soil[J]. International Soil and Water Conservation Research, 2017, 5(3): 196.
[36]
ALLAIRE-LEUNG S, GUPTA S, MONCRIEF J. Water and solute movement in soil as influenced by macropore characteristics 1. Macropore continuity[J]. Journal of Contaminant Hydrology, 2000, 41: 283.
[37]
ALLAIRE S, GUPTA S, NIEBER J, et al. Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions[J]. Journal of Contaminant Hydrology, 2002, 58: 299.
[38]
SANDERS E, NAJM M, MOHTAR R, et al. Field method for separating the contribution of surface-connected preferential flow pathways from flow through the soil matrix[J]. Water Resources Research, 2012, 48(4): 1427.
[39]
DAS GUPTA S, MOHANTY B, KOHNE J. Soil hydraulic conductivities and their spatial and temporal variations in a vertisol[J]. Soil Science Society of America Journal, 2006, 70(6): 1872.
[40]
陶婷婷, 陈晓燕, 黄永超, 等. 重庆沙溪庙组紫色土土壤基质和优先流入渗的定量测算[J]. 中国水土保持科学, 2019, 17(6): 41.
TAO Tingting, CHEN Xiaoyan, HUANG Yongchao, et al. Quantitative measurement and calculation of soil matrix and preferential infiltration in Shaximiao purple soil, Chongqing[J]. Science of Soil and Water Conservation, 2019, 17(6): 41.
[41]
BENEGAS L, ILSTEDT U, ROUPSARD O, et al. Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in central America[J]. Agriculture, Ecosystems & Environment, 2014, 183: 185.
[42]
LIU Yu, GUO Lei, HUANG Ze, et al. Root morphological characteristics and soil water inflltration capacity in semi-arid artiflcial grassland soils[J]. Agricultural Water Management, 2020, 235: 106153.
[43]
ARCHER N, QUINTON J, HESS T. Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in Southeast Spain[J]. Journal of Arid Environment, 2002, 52: 535.
[44]
LARSBO M, KOESTEL J, JARVIS N. Relations between macropore network characteristics and the degree of preferential solute transport[J]. Hydrology and Earth System Science, 2014, 18: 5255.
[45]
WU Gaolin, CUI Zeng, HUANG Ze. Contribution of root decay process on soil infiltration capacity and soil water replenishment of planted forestland in semi-arid regions[J]. Geoderma, 2021, 404: 115289.
[46]
DEVITT D, SMITH S. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem[J]. Journal of Arid Environments, 2002, 50: 99.