文章快速检索     高级检索
  中国水土保持科学   2022, Vol. 20 Issue (5): 56-65.  DOI: 10.16843/j.sswc.2022.05.008
0

引用本文 

王美娟, 段文标, 陈立新, 曲美学, 王亚飞, 杨永超, 潘磊, 石金永. 模拟氮磷沉降和凋落物处理对红松林土壤全氮和有机氮的影响[J]. 中国水土保持科学, 2022, 20(5): 56-65. DOI: 10.16843/j.sswc.2022.05.008.
WANG Meijuan, DUAN Wenbiao, CHEN Lixin, QU Meixue, WANG Yafei, YANG Yongchao, PAN Lei, SHI Jinyong. Effects of simulated nitrogen and phosphorus deposition and litter treatment on the soil total nitrogen and organic nitrogen in Pinus koraiensis forest[J]. Science of Soil and Water Conservation, 2022, 20(5): 56-65. DOI: 10.16843/j.sswc.2022.05.008.

项目名称

国家自然科学基金"阔叶红松林凋落物-氮磷沉降耦合输入对土壤团聚体碳氮激发效应及稳定性影响"(31770656),"阔叶红松混交林连根拔起倒木及其丘坑微立地特征对幼苗更新的影响"(31670627)

第一作者简介

王美娟(1997—), 女, 硕士研究生。主要研究方向: 水土保持与荒漠化防治。E-mail: 1581836049@qq.com

通信作者简介

段文标(1964—), 男, 教授, 博士生导师。主要研究方向: 水土保持, 森林气象学。E-mail: dwbiao88@163.com

文章历史

收稿日期:2021-04-27
修回日期:2022-02-14
模拟氮磷沉降和凋落物处理对红松林土壤全氮和有机氮的影响
王美娟 , 段文标 , 陈立新 , 曲美学 , 王亚飞 , 杨永超 , 潘磊 , 石金永     
东北林业大学林学院, 150040, 哈尔滨
摘要:为阐明模拟氮磷沉降和凋落物处理对红松人工林和阔叶红松林土壤全氮及水解性有机氮的影响,2018和2019年在黑龙江省伊春市带岭区凉水国家级自然保护区2种林型内,实施2种处理试验,其中前者以(NH42SO4和(NH42HPO4作为氮源和磷源进行模拟试验,设置4个水平,每个水平3个重复;后者凋落物处理设置3个水平,每个水平3个重复。采用方差分析法,揭示2种处理对土壤全氮和水解性有机氮的影响。结果表明:1)2种处理均对土壤全氮有显著影响,但对土壤水解性有机氮的影响因试验时间而异;2)土壤全氮与各种形态的水解性有机氮呈显著正相关;3)土壤全氮和水解性有机氮含量随试验持续而显著增加;4)对于土壤全氮及土壤水解性有机氮而言,阔叶红松林均高于红松人工林,2019年高于2018年。其中采样月份、林型、氮磷沉降和凋落物处理的交互作用对两者的影响更显著。不同氮磷沉降和凋落物处理下,2年间的土壤全氮、酸水解总氮、氨基酸态氮、氨态氮影响显著(P<0.05),土壤氨基糖态氮、酸解未知氮影响不显著(P>0.05)。
关键词红松人工林    阔叶红松林    氮磷沉降    凋落物    土壤水解性有机氮    土壤全氮    
Effects of simulated nitrogen and phosphorus deposition and litter treatment on the soil total nitrogen and organic nitrogen in Pinus koraiensis forest
WANG Meijuan , DUAN Wenbiao , CHEN Lixin , QU Meixue , WANG Yafei , YANG Yongchao , PAN Lei , SHI Jinyong     
School of Forestry, Northeast Forestry University, 150040, Harbin, China
Abstract: [Background] To elucidate the effects of simulated nitrogen and phosphorus deposition and litter treatments on soil total nitrogen and hydrolyzed organic nitrogen in Korean pine (Pinus koraiensis) plantations and broad-leaved Korean pine forests, these two treatments of experiments were conducted in 2018 and 2019 within the above two forest types in Liangshui National Nature Reserve, Dailing district, Yichun city, Heilongjiang province. The results may provide scientific basis and data support for predicting the effects of nitrogen and phosphorus deposition and litter change on soil fertility of Korean pine forest ecosystem in this region. [Methods] The simulated nitrogen and phosphorus deposition and litter treatment experiments were carried out. In the former, (NH4)2SO4 and (NH4)2HPO4 were used as nitrogen and phosphorus sources for the simulation test, 4 levels were set up, 3 repetitions were arranged for each level; in the latter, litter treatment was set to 3 levels with 3 replicates per level. Variance analysis was used to reveal the effects of two treatments on soil total nitrogen and hydrolyzed organic nitrogen. [Results] 1) Both treatments resulted in the significant effects on soil total nitrogen, but their effects on soil hydrolyzed organic nitrogen varied with experimental time. 2) There was a significantly positive correlation between soil total nitrogen and various forms of hydrolytic organic nitrogen. 3) Total nitrogen and hydrolyzed organic nitrogen in the soil increased significantly with the experimental duration. 4) As for soil total nitrogen and hydrolyzed organic nitrogen, they were higher in broad-leaved Korean pine forest than in Korean pine plantation, and higher in 2019 than in 2018. [Conclusions] Under different nitrogen and phosphorus deposition and litter treatments, the effects on soil total nitrogen, acid hydrolyzed total nitrogen, amino acid nitrogen and ammonia nitrogen were significant (P < 0.05), but effects on amino sugar nitrogen and acid hydrolyzed unknown nitrogen was insignificant (P > 0.05).
Keywords: Korean pine plantation    broad-leaved Korean pine forest    nitrogen and phosphorus deposition    litter    soil hydrolytic organic nitrogen    soil total nitrogen    

有机氮能够很好地反映土壤氮素供应能力,土壤中95%以上的氮素以有机氮形式存在[1]。氮元素中存在于自然水溶液中的有机氮组分称为溶解性有机氮,而风干土中可被纯水或盐溶液浸提的部分被称为水溶性有机氮,二者是土壤水解性有机氮的主体部分,约占70%,因而是所有有机氮组分中比较活跃的组分之一[2]。土壤有机氮决定土壤的供氮能力,因而土壤有机氮直接或间接影响土壤氮素的有效性,在土壤氮循环中起重要作用[3]。土壤有机氮受多重因素影响:生物因素如植被类型、土壤微生物和土壤酶活性等;非生物因素包括气候环境、土壤母质、土壤养分、土壤理化性质和林分管理措施等[4]。水解性有机氮在酸、碱、酶等作用下易水解,是土壤氮素的重要组成部分[5],与土壤全氮相比,能更准确地反映土壤近期氮素的供应状况[6-7]。土壤酸解氨态氮是1种直接供作物吸收利用的有效氮[8],氨基酸态氮是土壤固定氮的重要储存库,主要作为作物生产过程中的过渡性氮素储存库[9]。氨基酸态氮和酸解氨态氮是土壤中容易矿化的有机氮的来源和库[10]。降雨量大能够降低酸解氨态氮含量,增加酸解氨基糖态氮含量[11]。土壤有机氮不仅可以维持土壤氮素肥力,而且对土壤氮素供应能力具有重要意义[12]

近年来,由于矿物、化肥等大量使用,大气中的含氮化合物含量剧增,导致氮沉降现象的加剧[13]。一定量的氮添加对森林植物生态系统具有一定的促进作用,而过量氮输入会导致生态系统达到“氮饱和”状态[14-15];因此,氮沉降增加会导致森林生态系统氮循环发生改变,从而影响生物多样性和生态系统稳定性[16-17]。一定量的磷添加,可以增强一些植物的抗病性,但由于作物仅消耗少部分磷肥,所以70%~90%的磷积累于土壤中[18]。过量的磷肥输入会被土壤中的铁、铝或钙固定而失效,从而造成磷损失[19]。随着氮沉降的持续增加,陆地生态系统中有效氮水平增加,会对生态系统各组分产生一系列的影响[20]。凋落物是植物养分归还土壤的主要形式,森林植物所吸收的90%以上的氮和磷来自养分归还[21-22],凋落物产量和分解速率对森林土壤肥力的维持及其生态恢复有着重要意义[23-24]。在氮磷沉降现象和凋落物方面,国内外学者做了许多相关研究[25-33];但是氮磷沉降和凋落物处理对红松原始林和红松人工林土壤有机氮的影响研究较少,且其对土壤水解性有机氮的影响仍不清楚。

笔者选择小兴安岭地区凉水国家级自然保护区南坡的红松人工林和阔叶红松林2种林型,通过模拟氮磷沉降和凋落物处理试验,分析2种处理下土壤全氮和水解性有机氮及其组分的变化,探究其对2种林型红松林土壤全氮和水解性有机氮的影响,为预测氮磷沉降和凋落物变化对该地区未来红松林生态系统土壤肥力的影响提供科学依据。

1 研究区概况

研究区位于黑龙江省伊春市带岭区凉水国家级自然保护区(E 128°53′20″,N 47°10′50″)。该地的山岭属于小兴安岭南端最大支脉达里带岭的南坡,本区最高峰位于区内北端的岭来东山,海拔707.3 m。平均海拔409 m,相对海拔80~300 m。该地区属于温带大陆性湿润季风气候,年平均气温-0.3 ℃,年平均最低气温-6.6 ℃,年平均最高气温7.5 ℃,年平均降水量676.0 mm,年平均无霜期100~120 d。地带性土壤类型为暗棕壤。该区夏季多受副热带变性海洋气团的影响,降水集中(其中6—8月占全年降水量的60%以上),气温较高。

通过踏查,筛选出红松人工林和阔叶红松林2种代表性的林型作为试验对象,在每种林型的典型地段,各选择3块(20 m×30 m)样地,在每个样地内随机设置12个2 m×2 m的小样方,每个小样方之间间隔2 m。2种林型共设置72个样方。

在红松人工林内,主要树种为红松(Pinus koraiensis)。由于红松人工林是在原始阔叶红松林采伐迹地上营造的,且其周围均被原始阔叶红松林所环绕,因此,红松人工林内还伴生有少量阔叶树种的幼树,如黄檗(Phellodendron amurense)、白桦(Betula platyphylla)、色木槭(Acer mono)、青楷槭(Acer tegmentosum)、榆树(Ulmus pumila)、花楷槭(Acer ukurunduense)、枫桦(Betula costata)、稠李(Padus racemosa)。在阔叶红松林内,主要树种为红松,伴生树种为枫桦、色木槭、稠李、毛赤杨(Alnus sibirica)、臭冷杉(Abies nephrolepis)、紫椴(Tilia amurensis)、瘤枝卫矛(Euonymus verrucosus)。试验样地概况详见文献[30]。

2 研究方法 2.1 试验样地设置及样品处理 2.1.1 模拟氮磷沉降

根据当地夏季多年降雨记录及凉水国家级自然保护区自然氮、磷沉降量的测定值,同时依据自然氮磷沉降背景值,并参考国际上同类研究的处理方法[34-35],模拟氮磷沉降处理设置4个水平,施用量分别为:对照CK(氮0 g/m2、磷0 g/m2),低施用量L(氮5 g/m2、磷5 g/m2),中施用量M(氮15 g/m2、磷10 g/m2),高施用量H(氮30 g/m2、磷20 g/m2),氮磷均同时施加。在红松人工林和阔叶红松林2种林型的小样方内,2018和2019年每年的5—10月,每月进行1次模拟氮磷沉降施肥试验(以下简称为“氮磷沉降处理”),每年分6次施入。按照处理水平的要求,将(NH4)2HPO4与(NH4)2SO4溶解在2 L溪水中(由于对照喷洒的溪水为同期同批次,所以该处理的4个水平溪水内氮磷量均相同),用喷洒器均匀地喷洒在试验单元内。在对照试验单元内,喷施相同体积的同期同批次溪水。

2.1.2 凋落物处理

在每块样地内,随机设置12个小样方(2 m×2 m),其中,第1~4样方,设置为对照(保持原状凋落物);第5~8样方,去除地表凋落物,有序清除样方土壤表层上凋落物及可见腐殖质;第9~12样方,将第5~8样方去除的凋落物有序添加到第9~12样方内,均匀平铺到各样方原有凋落物上,该处理共设置3个水平(对照CK、去除RL和添加凋落物AL),每个水平各3个重复(样方)。每月定期清除新鲜凋落物,并在去除凋落物小样方上方0.5~0.8 m高处放置一个2 m×2 m尼龙网,以阻止凋落物掉入小样方内。

2.1.3 样品处理和测定

2018和2019年的5、8和10月在每个样方内,随机选取3个30 cm×30 cm的取样点,每个取样点采集0~20 cm土壤样品。剔除土壤中植物根系和大于2 mm的石块等,将土样放置于阴凉通风处自然风干后,研磨过0.25 mm筛,装入塑封袋中密封保存在实验室备用。土壤全氮采用半微量凯氏法[36]测定。土壤水解性有机氮用酸水解—蒸馏法[37]测定。

2.2 数据处理与统计分析

使用Excel 2010对数据进行统计分析,并计算土壤水解性有机氮含量。利用SPSS 23软件对土壤全氮和土壤水解性有机氮各指标进行单因素方差分析、多因素方差分析和差异显著性检验(LSD法,α=0.05)。采用Canoco 5.0对土壤全氮和土壤水解性有机氮进行冗余分析(RDA)。比较分析不同氮磷沉降处理和凋落物处理水平各个氮组分的质量分数及变化趋势。

3 结果与分析 3.1 对土壤全氮及水解性有机氮的影响

方差分析表明,氮磷沉降和凋落物处理对红松人工林和阔叶红松林2年间的土壤全氮、酸水解总氮、氨基酸态氮、氨态氮影响均显著(P<0.05),对土壤氨基糖态氮和酸解未知氮影响均不显著(P>0.05),阔叶红松林2018和2019年的土壤全氮、土壤水解性有机氮的含量均显著高于红松人工林。(图 1~4)

PKP为红松人工林,BLPKF为阔叶红松林,CK为氮磷沉降处理中的对照,L为低浓度氮磷,M为中浓度氮磷,H为高浓度氮磷,STN为土壤全氮。不同小写字母表示同一处理下年份之间的差异显著(P<0.05)。下同。 PKP refers to Korean pine plantation, BLPKF refers to broad-leaved Korean pine plantation, CK is the control of nitrogen and phosphorus deposition treatment, L is low concentration of nitrogen and phosphorus, M is medium concentration of nitrogen and phosphorus, H is high concentration of nitrogen and phosphorus, and STN is soil total nitrogen. Different lowercase letters indicate significant difference between years under the same treatment (P < 0.05).The same below. 图 1 氮磷沉降处理下红松人工林(PKP)和阔叶红松林(BLPKF)2年土壤全氮的变化 Fig. 1 Changes of soil total nitrogen (STN) between two years in Pinus koraiensis plantation (PKP) and broadleaved Pinus koraiensis forest (BLPKP) under nitrogen and phosphorus deposition
THAN为土壤酸水解总氮,AAN为土壤氨基酸态氮,HAN为氨态氮,ASN为氨基糖态氮,HUN为酸解未知氮。下同。 THAN is total soil acid hydrolyzed nitrogen, AAN is soil amino acid nitrogen, HAN is soil ammonia nitrogen, ASN is amino sugar nitrogen, and HUN is acid hydrolyzed unknown nitrogen.The same below. 图 2 氮磷沉降处理下红松人工林和阔叶红松林2年土壤水解性有机氮的变化 Fig. 2 Changes of hydrolyzed organic nitrogen between two years in the soils of PKP and BLPKP under nitrogen and phosphorus deposition
O为原状凋落物,RL为去除凋落物,AL为添加凋落物。下同。 O refers to undisturbed litter, RL refers to removal of litter, and AL refers to addition of litter. The same below. 图 3 凋落物处理下红松人工林和阔叶红松林2年土壤全氮的变化 Fig. 3 Changes of soil total nitrogen between two years in PKP and BLPKP under litter treatment
图 4 凋落物处理下红松人工林和阔叶红松林2年土壤水解性有机氮的变化 Fig. 4 Changes of hydrolyzed organic nitrogen between two years in the soils of PKP and BLPKP under litter treatment

图 1图 2可知,在红松人工林中,不同氮磷沉降处理(即:CK、L、M和H)下,2019年土壤全氮和水解性有机氮的质量分数均高于2018年,土壤全氮质量分数2019年较2018年分别增加27.4%、51.9%、58.5%、63.8%;土壤水解性有机氮分别增加37.4%、34.3%、37.4%、38.3%;在阔叶红松林中,土壤全氮质量分数2019年较2018年分别增加63%、92.6%、38.3%、25.4%;土壤水解性有机氮质量分数分别增加39.5%、43.1%、31.6%、34.3%。

图 3图 4可知,在红松人工林中,不同凋落物处理(对照、去除凋落物和添加凋落物)下,2019年土壤全氮和水解性有机氮的质量分数均高于2018年,土壤全氮质量分数2019年较2018年分别增加47.8%、62.3%、39.7%;土壤水解性有机氮质量分数分别增加41.8%、42.4%、24.4%;在阔叶红松林中,土壤全氮质量分数2019年较2018年分别增加57.9%、58.1%、49.2%;土壤水解性有机氮质量分数分别增加了34.3%、47.1%、39.2%。

3.2 采样月份、林型、氮磷沉降和凋落物处理对土壤全氮及水解性有机氮的影响

多因素方差分析表明,2018年采样月份、林型、氮磷沉降和凋落物处理的交互作用对土壤全氮和土壤酸水解总氮影响均显著(P<0.05);采样月份、氮磷沉降和凋落物处理的交互作用对土壤全氮、酸水解总氮、氨态氮均有显著影响(P<0.05);林型对土壤全氮、酸水解总氮、氨态氮影响均显著;采样月份和林型的交互作用对土壤氨基酸态氮影响显著(P<0.05)(图 5);凋落物处理对土壤全氮、酸水解总氮、氨基酸态氮影响均显著(P<0.05);采样月份对土壤全氮、酸水解总氮、氨基酸态氮影响均显著(P<0.05);氮磷沉降处理对土壤全氮和酸水解总氮影响显著(P<0.05)。

A为红松人工林,W为阔叶红松林。 A refers to Pinus koraiensis plantation, W to broad-leaved Pinus koraiensis forest. 图 5 不同处理下土壤测定指标RDA排序 Fig. 5 RDA ranking of soil determination indexes under different treatments

2019年采样月份、林型、氮磷沉降和凋落物处理的交互作用对土壤氨基糖态氮影响显著(P<0.05);采样月份和凋落物处理的交互作用对土壤氨基酸态氮影响显著(P<0.05),采样月份对土壤全氮、氨基糖态氮、酸解未知氮影响均显著(P<0.05);林型对土壤全氮影响显著(P<0.05)。

3.3 采样月份、林型、氮磷沉降和凋落物处理下土壤全氮和水解性有机氮的冗余分析

图 5可知:土壤全氮与酸水解总氮、氨基酸态氮、氨态氮、氨基糖态氮、酸解未知氮呈显著正相关关系,相关性排序为:氨基酸态氮>氨态氮>酸水解总氮>酸解未知氮>氨基糖态氮,土壤水解性有机氮各组分含量高低依次为:酸水解总氮>氨基酸态氮>氨态氮>氨基糖态氮>酸解未知氮,而10月对土壤全氮及水解性有机氮各组分的影响最大,5月份最小。

4 讨论

笔者发现,2018年和2019年,在2种林型红松林中,土壤水解性有机氮各组分质量分数大小依次为:氨基酸态氮>氨态氮>酸解未知氮>氨基糖态氮。采样月份、林型、氮磷沉降和凋落物处理的交互作用对土壤全氮和土壤酸水解总氮有显著影响。

凋落物输入和养分归还对土壤养分含量的影响一直受到森林生态学家的关注[38-39]。而凋落物分解和氮磷沉降能促进土壤呼吸,增加土壤肥力[40]。凋落物去除能显著降低3种天然林土层的土壤氮素含量,显著增加土壤氮素的淋溶损失量[41]。笔者发现,凋落物去除时,土壤全氮及水解性有机氮质量分数降低。在施氮初期可以促进凋落物的分解,但随试验进行,微生物更倾向于利用有机氮,所以凋落物分解速率减慢,土壤对氮沉降的响应也降低[42],原因可能是由于随着试验的进行,微生物活性增加,氮素矿化加剧,所以氮含量没有显著变化;有研究表明,氮沉降对不同林型不同土层土壤全氮含量无显著影响[43]。而本文中林型和采样月份对土壤全氮质量分数影响显著,2019年土壤全氮质量分数高于2018年,阔叶红松林高于红松人工林。也有研究表明,土壤全氮及水解性有机氮对氮沉降的响应一般与森林氮素状况有关。一般来说,土壤氮矿化速率在前期会随施氮量的增加而增加,但随时间的延长,当森林达到氮饱和时则开始下降[44]。肖银龙等[45]发现华西雨屏区苦竹林,在施氮1年后土壤的全氮含量显著增加。土壤全氮含量增加可能与植物生长期枯落物归还及其分解后增加土壤氮素含量有关。由于红松人工林种植时间短,林分结构单一,土壤全氮来源受到限制,阔叶红松林物种多样、土壤中根系较多、土壤微生物种类丰富等因素的共同作用下对氮磷湿沉降处理应对机制迅速反应[46],因此,阔叶红松林土壤全氮及水解性有机氮含量高于红松人工林。

5 结论

氮磷沉降和凋落物的添加能在短时间内增加土壤全氮及水解性有机氮的含量。在试验初期,采样月份、林型、氮磷沉降和凋落物处理的交互作用对土壤全氮和酸水解总氮影响均显著;但随着试验的进行,以上4个因素的交互作用仅对土壤氨基糖态氮影响显著;阔叶红松林的土壤全氮及水解性有机氮的含量均高于红松人工林;氮磷沉降和凋落物添加能显著增加红松林土壤水解性有机氮含量。不同氮磷沉降处理和凋落物处理下,2年间的土壤全氮、酸水解总氮、氨基酸态氮、氨态氮影响显著(P<0.05),土壤氨基糖态氮、酸解未知氮影响不显著(P>0.05)。研究结果能为预测氮磷沉降和凋落物变化对该地区未来红松林生态系统土壤肥力的影响提供科学依据和数据支撑。

6 参考文献
[1]
王爽. 基于15N稀释法的森林草原交错带两种植被类型土壤氮转化特征研究[D]. 沈阳: 沈阳农业大学, 2019: 5.
WANG Shuang. Study on soil nitrogen transformation characteristics of two vegetation types in forest-steppe ecotone based on 15N dilution method[D]. Shenyang: Shenyang Agricultural University, 2019: 5.
[2]
丁咸庆. 亚热带典型森林土壤有机氮、可溶性和溶解性有机氮(SON/DON)特征研究[D]. 长沙: 中南林业科技大学, 2016: 2.
DING Xianqing. Characteristics of soil organic nitrogen, soluble organic nitrogen and dissolved organic nitrogen (SON/DON) in typical subtropical forest[D]. Changsha: Central South University of Forestry & Technology, 2016: 2.
[3]
孙天聪, 李世清, 邵明安, 等. 半湿润农田生态系统长期施肥对土壤团聚体中有机氮组分的影响[J]. 应用生态学报, 2007, 18(10): 2233.
SUN Tiancong, LI shiqing, SHAO Ming'an, et al. Effects of long-term fertilization on distribution of organic nitrogen components in soil aggregates in sub-humid agroecosystem[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2233. DOI:10.13287/j.1001-9332.2007.0364
[4]
鲁顺保, 周小奇, 芮亦超, 等. 森林类型对土壤有机质、微生物生物量及酶活性的影响[J]. 应用生态学报, 2011, 22(10): 2567.
LU Shunbao, ZHOU Xiaoqi, RUI Yichao, et al. Effects of forest type on soil organic matter, microbial biomass, and enzyme activities[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2567. DOI:10.13287/j.1001-9332.2011.0364
[5]
BLACK C A. Methods of soil analysis: Part 2 chemical and microbiological properties[M]. American Society of Agronomy, Soil Science Society of America, 1965: 68.
[6]
BAO S D. Soil agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 25.
[7]
张旭峰. 长期施肥对土壤有机氮组分的影响及其与氮指标的关系[J]. 农民致富之友, 2018, 62(4): 65.
ZHANG Xufeng. Effects of long-term fertilization on soil organic nitrogen and its relationship with nitrogen indices[J]. Friends of Farmers Getting Rich, 2018, 62(4): 65. DOI:10.3969/j.issn.1003-1650.2018.04.065
[8]
吴汉卿, 张玉龙, 张玉玲, 等. 土壤有机氮组分研究进展[J]. 土壤通报, 2018, 49(5): 1240.
WU Hanqing, ZHANG Yulong, ZHANG Yuling, et al. Soil organic nitrogen fractions: A review[J]. Chinese Journal of Soil Science, 2018, 49(5): 1240. DOI:10.19336/j.cnki.trtb.2018.05.35
[9]
LV Huijie, HE Hongbo, ZHAO Jinsong, et al. Dynamics of fertilizer-derived organic nitrogen fractions in an arable soil during a growing season[J]. Plant and Soil, 2013, 373(1/2): 595.
[10]
NANCY R W, KNUT K, RICHARD D B. Soil amino acid composition across a boreal forest successional sequence[J]. Soil Biology and Biochemistry, 2009, 41(6): 1210. DOI:10.1016/j.soilbio.2009.03.001
[11]
JI Huitian, KAI Wei, LEO M, et al. Effects of elevated nitrogen and precipitation on soil organic nitrogen fractions and nitrogen-mineralizing enzymes in semi-arid steppe and abandoned cropland[J]. Plant and Soil, 2017, 417(1): 217.
[12]
巨晓棠, 刘学军, 张福锁. 长期施肥对土壤有机氮组成的影响[J]. 中国农业科学, 2004, 31(1): 87.
JU Xiaotang, LIU Xuejun, ZHANG Fusuo. Effects of long-term fertilization on soil organic nitrogen fractions[J]. Scientia Agricultura Sinica, 2004, 31(1): 87. DOI:10.3321/j.issn:0578-1752.2004.01.014
[13]
JAMES N G, ALAN R T, JAN W E, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889. DOI:10.1126/science.1136674
[14]
刘文静, 康荣华, 张婷, 等. 我国西南地区氮饱和马尾松林土壤和植物15N自然丰度对长期氮施加的响应[J]. 环境科学, 2015, 36(8): 2981.
LIU Wenjing, KANG Ronghua, ZHANG Ting, et al. Response of soil and plant 15N natural abundance to long-term n addition in an N-saturated Pinus massoniana forest in Southwest China[J]. Environmental Science, 2015, 36(8): 2981.
[15]
刘文静. 大气氮沉降在氮饱和马尾松林的去向和影响研究[D]. 北京: 清华大学, 2015: 83.
LIU Wenjing. Study on the fate and effect of atmospheric nitrogen deposition on N-saturated masson pine-dominated forest[D]. Beijing: Tsinghua University, 2015: 83.
[16]
徐丽, 何念鹏. 中国森林生态系统氮储量分配特征及其影响因素[J]. 中国科学: 地球科学, 2020, 50(10): 1374.
XU Li, HE Nianpeng. Nitrogen storage and allocation in China's forest ecosystems[J]. Scientia Sinica (Terrae), 2020, 50(10): 1374.
[17]
高冬冬, 丹利, 范广洲, 等. 中国植被碳通量与氮沉降通量百年尺度时空变化及其与气候的关系[J]. 中国科学: 地球科学, 2010, 50(5): 693.
GAO Dongdong, DAN Li, FAN Guangzhou, et al. Centennial temporal and spatial variations of vegetation carbon flux and nitrogen deposition flux in China and their relationship with climate[J]. Scientia Sinica (Terrae), 2010, 50(5): 693.
[18]
鲁如坤, 时正元, 顾益初. 土壤积累态磷研究Ⅱ. 磷肥的表观积累利用率[J]. 土壤, 1995, 27(6): 286.
LU Rukun, SHI Zhengyuan, GU Yichu. Study on soil phosphorus accumulation Ⅱ. Apparent accumulation and utilization rate of phosphorus fertilizer[J]. Soils, 1995, 27(6): 286.
[19]
李洁, 薛立. 氮磷沉降对森林土壤生化特性影响研究进展[J]. 世界林业研究, 2017, 30(2): 14.
LI Jie, XUE Li. Research progress in the effect of nitrogen and phosphorus deposition on biochemical characteristics of forest soil[J]. World Forestry Research, 2017, 30(2): 14.
[20]
曹彦卓, 王汝振, 张玉革, 等. 氮沉降对草地土壤及团聚体元素有效性的影响[J]. 生态学杂志, 2019, 38(8): 2531.
CAO Yanzhuo, WANG Ruzhen, ZHANG Yuge, et al. Effects of nitrogen deposition on elemental availability in bulk soils and soil aggregates of grasslands[J]. Chinese Journal of Ecology, 2019, 38(8): 2531. DOI:10.13292/j.1000-4890.201908.012
[21]
赵晓雅, 关梦冉, 孙孟瑶, 等. 氮磷添加对亚热带常绿阔叶林凋落物产量及其养分含量的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 55.
ZHAO Xiaoya, GUAN Mengran, SUN Mengyao, et al. Effects of nitrogen and phosphorus additions on litterfall production and nutrient dynamics in evergreen broad-leaved forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(6): 55.
[22]
向元彬, 黄从德, 胡庭兴, 等. 不同密度巨桉人工林凋落物分解过程中基质质量的变化[J]. 西北农林科技大学学报(自然科学版), 2015, 43(4): 65.
XIANG Yuanbin, HUANG Congde, HU Tingxing, et al. Changes in masses of substrates during litter decomposition in Eucalyptus grandis plantations with different densities[J]. Journal of Northwest A & F University, (Natural Science Edition), 2015, 43(4): 65.
[23]
MUSHET David M, ALEXANDER Laurie C, BENNETT Micah, et al. Differing modes of biotic connectivity within freshwater ecosystem mosaics[J]. Journal of the American Water Resources Association, 2019, 55(2): 307. DOI:10.1111/1752-1688.12683
[24]
ZHOU Guoyi, GUAN Lili, WEI Xiaohua, et al. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China[J]. Plant Ecology, 2007, 188(1): 77.
[25]
冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583.
FENG Jiguang, ZHU Biao. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems[J]. Chinese Journal of Plant Ecology, 2020, 44(6): 583.
[26]
李娜, 赵传燕, 郝虎, 等. 不同海拔条件下祁连山青海云杉林叶凋落物分解过程及养分的动态变化[J]. 生态学报, 2021, 41(11): 4493.
LI Na, ZHAO Chuanyan, HAO Hu, et al. Decomposition and its nutrients dynamic of Qinghai spruce leaf litter elevation gradient in Qilian Mountains[J]. Acta Ecologica Sinica, 2021, 41(11): 4493.
[27]
LI Yang, HOU Longyu, SONG Bing, et al. Effects of increased nitrogen and phosphorus deposition on offspring performance of two dominant species in a temperate steppe ecosystem[J]. Scientific Reports, 2017, 7(1): 40951.
[28]
SHEN Ying, TIAN Dashuan, HOU Jihua, et al. Forest soil acidification consistently reduces litter decomposition irrespective of nutrient availability and litter type[J]. Functional Ecology, 2021, 35(12): 2753.
[29]
KANE J M, KREYE J K, BARAJAS-RAMIREZ R, et al. Litter trait driven dampening of flammability following deciduous forest community shifts in eastern North America[J]. Forest Ecology and Management, 2021(489): 119100.
[30]
李常准, 陈立新, 段文标, 等. 凋落物处理对不同林型土壤有机碳全氮全磷的影响[J]. 中国水土保持科学, 2020, 18(1): 100.
LI Changzhun, CHEN Lixin, DUAN Wenbiao, et al. Effects of litter treatment on soil organic carbon, total nitrogen and total phosphorus in different forest types[J]. Science of Soil and Water Conservation, 2020, 18(1): 100.
[31]
郭绮雯, 段文标, 陈立新, 等. 模拟凋落物添加与氮磷沉降对红松凋落物生态化学计量特征的影响[J]. 植物营养与肥料学报, 2021, 27(7): 1222.
Guo Qiwen, DUAN Wenbiao, Chen Lixin, et al. Effects of simulated litter addition, and nitrogen and phosphorus deposition on ecological stoichiometry of Pinus koraiensis litter[J]. Journal of Plant Nutrition and Fertilizes, 2021, 27(7): 1222.
[32]
ANWAAR H, CHEN Lixin, MUHAMMAD A J, et al. Changes in soil-phosphorus fractions by nitrogen and phosphorus fertilization in korean pine plantation and its natural forest[J]. Forests, 2022, 13(4): 527.
[33]
MUHAMMAD A J, ANWAAR H, DUAN Wenbiao, et al. Effect of simulated combined n and p on soil acidity within soil aggregates in natural and planted Korean pine forest in Northeast China[J]. Forests, 2022, 13(4): 529.
[34]
GUNDERSEN P, EMMETT B A, KJØNAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data[J]. Forest Ecology and Management, 1998, 101(1): 37.
[35]
RICHARD D B, LAUREN D, ALAIN F P, et al. Litter input controls on soil carbon in a temperate deciduous forest[J]. Soil Science Society of America Journal, 2014, 78(S1): S66.
[36]
中国标准出版社. 中国林业标准汇编(营造林卷)[M]. 北京: 中国标准出版社, 1998: 89.
Standards Press of China. Compilation of Chinese forestry standards (Afforestation Volume)[M]. Beijing: Standards Press of China, 1998: 89.
[37]
刘延美, 刘小虎. 土壤酸水解氨基酸和氨基糖态氮测定方法的比较研究[J]. 吉林农业科学, 2010, 35(2): 19.
LIU Yanmei, LIU Xiaohu. Comparison of methods for determining the content of hydrolyzed amino sugar-N and amino acid-N in Soil[J]. Journal of Jilin Agricultural Science, 2010, 35(2): 19.
[38]
林雨萱, 哀建国, 宋新章, 等. 模拟氮沉降和磷添加对杉木林土壤呼吸的影响[J]. 浙江农林大学学报, 2021, 38(3): 494.
LIN Yuxuan, AI Jianguo, SONG Xinzhang, et al. Effects of simulated nitrogen deposition and phosphorus addition on soil respiration in Chinese fir forest[J]. Journal of Zhejiang A&F University, 2021, 38(3): 494.
[39]
祝乐. 秦岭天然林凋落物对土壤氮素分布特征的影响[D]. 陕西杨凌: 西北农林科技大学, 2020: 34.
ZHU Le. Effects of litter on soil nitrogen distribution in Qinling Natural Forest[D]. Yangling, Shaanxi: Northwest A & F University, 2020: 34.
[40]
FREY S D, ELLIOTT E T, PAUSTIAN K, et al. Fungal translation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem[J]. Soil Biology & Biochemistry, 2000, 32(5): 689.
[41]
张莉, 吕广林, 朱洪如, 等. 邓恩按幼龄林土壤有机质和全氮含量对模拟氮沉降的响应[J]. 林业勘察设计, 2011(1): 63.
ZHANG Li, LV Guanglin, ZHU Hongru, et al. Response of soil organic matter and total nitrogen content to simulated nitrogen deposition in Dunn young forest[J]. Forestry Prospect and Design, 2011(1): 63.
[42]
郝建朝, 吴沿友, 连宾, 等. 土壤多酚氧化酶性质研究及意义[J]. 土壌通报, 2006, 37(3): 470.
HAO Jianchao, WU Yanyou, LIAN Bin, et al. Properties of polyphenol oxidase in soil and its significance[J]. Chinese Journal of Soil Science, 2006, 37(3): 470.
[43]
徐雷. 氮沉降对杉木人工林土壤理化性质和酶活性的影响[D]. 福州: 福建农林大学, 2007: 47.
XU Lei. Impacts of nitrogen deposition on physical-chemical properties and enzyme activities of soil in Chinese-fir plantation forest[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007: 47.
[44]
沈芳芳. 模拟氮沉降对杉木人工林土壤有机碳库的影响[D]. 南昌: 江西农业大学, 2011: 19.
SHEN Fangfang. Impacts of simulated nitrogen deposition on organic carbon pool in Chinese fir plantation[D]. Nanchang: Jiangxi Agricultural University, 2011: 19.
[45]
肖银龙, 涂利华, 胡庭兴, 等. 模拟氮沉降对华西雨屏区苦竹林凋落物养分输入量的早期影响[J]. 生态学报, 2013, 33(23): 7355.
XIAO Yinglong, TU Lihua, HU Tingxing, et al. Early effects of simulated nitrogen deposition on annual nutrient input from litterfall in a Pleioblastus amarus plantation in rainy area of west China[J]. Acta Ecologica Sinica, 2013, 33(23): 7355.
[46]
赖梦莹. 氮添加对典型阔叶红松林林下植物多样性的影响[D]. 哈尔滨: 东北林业大学, 2018: 28.
LAI Mengying. Effects of N addition on plant diversity in a typical mixed broad-leaved Korean pine forest[D]. Harbin: Northeast Forestry University, 2018: 28.
PKP为红松人工林,BLPKF为阔叶红松林,CK为氮磷沉降处理中的对照,L为低浓度氮磷,M为中浓度氮磷,H为高浓度氮磷,STN为土壤全氮。不同小写字母表示同一处理下年份之间的差异显著(P<0.05)。下同。 PKP refers to Korean pine plantation, BLPKF refers to broad-leaved Korean pine plantation, CK is the control of nitrogen and phosphorus deposition treatment, L is low concentration of nitrogen and phosphorus, M is medium concentration of nitrogen and phosphorus, H is high concentration of nitrogen and phosphorus, and STN is soil total nitrogen. Different lowercase letters indicate significant difference between years under the same treatment (P < 0.05).The same below. 图 1 氮磷沉降处理下红松人工林(PKP)和阔叶红松林(BLPKF)2年土壤全氮的变化 Fig. 1 Changes of soil total nitrogen (STN) between two years in Pinus koraiensis plantation (PKP) and broadleaved Pinus koraiensis forest (BLPKP) under nitrogen and phosphorus deposition
THAN为土壤酸水解总氮,AAN为土壤氨基酸态氮,HAN为氨态氮,ASN为氨基糖态氮,HUN为酸解未知氮。下同。 THAN is total soil acid hydrolyzed nitrogen, AAN is soil amino acid nitrogen, HAN is soil ammonia nitrogen, ASN is amino sugar nitrogen, and HUN is acid hydrolyzed unknown nitrogen.The same below. 图 2 氮磷沉降处理下红松人工林和阔叶红松林2年土壤水解性有机氮的变化 Fig. 2 Changes of hydrolyzed organic nitrogen between two years in the soils of PKP and BLPKP under nitrogen and phosphorus deposition
O为原状凋落物,RL为去除凋落物,AL为添加凋落物。下同。 O refers to undisturbed litter, RL refers to removal of litter, and AL refers to addition of litter. The same below. 图 3 凋落物处理下红松人工林和阔叶红松林2年土壤全氮的变化 Fig. 3 Changes of soil total nitrogen between two years in PKP and BLPKP under litter treatment
图 4 凋落物处理下红松人工林和阔叶红松林2年土壤水解性有机氮的变化 Fig. 4 Changes of hydrolyzed organic nitrogen between two years in the soils of PKP and BLPKP under litter treatment
A为红松人工林,W为阔叶红松林。 A refers to Pinus koraiensis plantation, W to broad-leaved Pinus koraiensis forest. 图 5 不同处理下土壤测定指标RDA排序 Fig. 5 RDA ranking of soil determination indexes under different treatments
模拟氮磷沉降和凋落物处理对红松林土壤全氮和有机氮的影响
王美娟 , 段文标 , 陈立新 , 曲美学 , 王亚飞 , 杨永超 , 潘磊 , 石金永