-
项目名称
- 国家自然科学基金“喀斯特坡耕地浅层孔(裂)隙水文过程及土壤侵蚀过程响应机制”(41671275)
-
第一作者简介
- 杨懿(1996—),女,硕士研究生。主要研究方向:区域水土保持。E-mail:752459292@qq.com
-
通信作者简介
- 高华端(1965—),男,博士,教授。主要研究方向:区域水土保持。E-mail:gdghd110@163.com
-
文章历史
-
收稿日期:2020-08-20
修回日期:2021-02-21
土壤侵蚀是近年来人类社会面临的最严峻的全球性生态环境问题,已严重威胁到人类生存和土地可持续发展[1-2],体现为土地资源破坏、江河湖库淤积、洪涝干旱加剧等,对农业生产和环境都产生巨大的威胁[3-4]。坡耕地作为主要侵蚀地类[5],其水土流失严重、土层变薄、土壤肥力下降[6-7],同时由于其侵蚀产沙量相对较高,已经成为河流泥沙的主要策源地[8]。贵州省作为西南山地丘陵区最具代表性的省份之一,山地和丘陵面积高达92.5%[9],而不合理的开垦导致大量坡耕地出现[10],据资料显示,2014年贵州省坡耕地面积占全省耕地面积的82.9%[11],该区域坡耕地土壤侵蚀情况需密切关注;因此明晰坡耕地土壤侵蚀特征,对于区域水土流失治理具有重要意义[12]。
土壤可蚀性是评价土壤质量的指标之一,也是衡量土壤对侵蚀的敏感程度及土壤被外营力作用搬运和分散的难易程度的参数[13],国际上通常使用土壤可蚀性因子K值来衡量这一指标[14]。近年来,众多学者都对不同地区的土壤可蚀性进行不同层面的研究。研究结果表明植被类型[15]、气候[16]、种植模式[17]和冻融作用[18]等都对土壤可蚀性存在一定的影响。现有研究大多数从单一影响因素出发,缺乏人为因素和自然因素相结合的研究。而岩性作为影响土壤发育的重要自然因素,制约着土壤的理化性质[19],不同岩性发育形成的土壤在土层厚度[20]和土壤矿物学特征[21]上均有所差异,因而母岩的性质控制着土壤侵蚀的空间布局和发展程度[22];耕犁扰动则是影响土壤性质的主要人为因素,长期耕犁会改变土壤的理化性质,破坏土壤结构,造成土壤养分流失等[23-24]。
目前关于贵州省水土流失研究多集中于喀斯特地区,由碳酸盐岩发育形成的土壤上,但贵州地质情况复杂,还分布着很多非碳酸盐岩形成的土壤。同时关于岩性和耕犁对可蚀性影响的研究较少,特别是不同岩性区土壤由于耕犁扰动导致可蚀性差异变化尚未见报道;因此,本研究以贵州省贵阳市花溪区不同岩性发育形成的坡耕地为研究对象,通过研究不同岩性岩石发育形成的土壤在耕犁扰动下的土壤理化性质变化,进而分析岩性和耕犁扰动对坡耕地土壤可蚀性的影响,旨在为区域坡耕地水土流失治理、提高土壤抗侵蚀能力提供参考。
1 研究区概况研究区为贵州省贵阳市花溪区(E 106°27′~106°52′,N 26°11′~26°34′),平均海拔1 226 m,年均降雨量1 178.3 mm。全区地貌以山地和丘陵为主,以广泛出露的二叠系、三叠系石灰岩、白云岩、砂页岩及侏罗系紫色砂页岩为其主要特征,全区地带性土壤为黄壤,土壤类型主要为酸性黄壤土和石灰土,小部分紫色土和水稻土等[25]。
2 材料与方法 2.1 样地选取和样品采集根据研究区地层分布特征,选择由石灰岩、紫色砂岩和砂页岩发育形成的坡耕地为取样区域,其中石灰岩坡耕地位于花溪区小围寨,砂页岩坡耕地位于花溪区孟关乡上板村,紫色砂岩坡耕地位于花溪区孟关乡翁岩村。研究区坡耕地因常年耕作,土壤受到耕犁这一物理过程扰动影响,导致耕犁层和犁底层表现出土壤性质、颜色和土层硬度的差异;其中耕犁层表现出受耕犁扰动后的土壤性质,厚度通常介于20~40 cm之间,犁底层因未受耕犁扰动,表现出土壤原有性质,厚度不定;因此分别采集耕犁层和犁底层的土壤样品进行测定。
从2018年10月—2019年7月,共调查土壤剖面60个(石灰岩区、砂页岩区和紫色砂岩区坡耕地各20个),采集土壤样品120个(石灰岩区、砂页岩区和紫色砂岩区坡耕地的耕犁层和犁底层各采集20个)。样地海拔为1 047~1 198 m,样点均位于坡中下部位,样点坡度为8°~25°,坡向多为南坡、东坡和西南坡,所种植的作物均为当地的典型农作物,种植方式多为连作和轮作。
2.2 样品分析与指标计算土壤颗粒组成采用吸管法测定,采用美国制粒径分级标准;土壤有机质采用重铬酸钾外加热法测定,每个土壤样品的各项指标重复测定3次,最终取平均值记录结果。
土壤可蚀性因子K值计算采用Williams等在1990年建立的EPIC模型,该模型在土壤侵蚀预测模块中采用土壤有机碳和颗粒组成数据来估算土壤可蚀性因子K值[26]。K值单位为美国制单位(short tont·acre·h/(100 ft·acre·short ton·in)),为便于与同类研究对比,将其乘以0.131 7后转为国际制单位(t·hm2·h/(hm2·MJ·mm))。
2.3 数据处理采用Excel和SPSS 19.0对试验数据进行统计分析、显著性分析和相关性分析,用Sigmaplot软件绘制图形。
3 结果与分析 3.1 岩性对土壤颗粒组成和有机质质量分数的影响由3种岩石发育形成的土壤颗粒组成情况如图 1所示。可见,3个岩性区土壤砂粒比例依次表现为:紫色砂岩>砂页岩>石灰岩;粉粒比例依次表现为:紫色砂岩>砂页岩>石灰岩;黏粒比例依次表现为:石灰岩>砂页岩>紫色砂岩。紫色砂岩区土壤和砂页岩区土壤在3种粒径比例上均无明显差异,而石灰岩区土壤粉粒和黏粒比例显著高于紫色砂岩区和砂页岩区。
![]() |
不同小写字母表示相同指标不同岩性之间差异显著(P<0.05)。下同。 Different lowercase letters indicate the same index difference significant among different lithology(P < 0.05). The same below. 图 1 土壤颗粒组成分布特征 Fig. 1 Distribution characteristics of soil particle composition |
由表 1可知,研究区土壤有机质质量分数介于3.81~68.16 g/kg之间,其中紫色砂岩区、砂页岩区和石灰岩区土壤有机质质量分数均值分别为21.23、32.89和37.72 g/kg;3个岩性区土壤有机质质量分数均属于中等变异。经数据分析后得出,紫色砂岩区土壤有机质质量分数显著低于砂页岩区和石灰岩区,砂页岩区和石灰岩区无显著差异。
![]() |
表 1 不同岩性区有机质质量分数的描述性统计 Tab. 1 Descriptive statistics of organic matter contents in different lithologic regions |
表 2描述了不同岩性发育形成的土壤,耕犁层和犁底层的土壤颗粒组成特征,可知,紫色砂岩区和石灰岩区的耕犁层和犁底层土壤各粒级比例均无显著差异,但砂页岩区耕犁层土壤黏粒比例显著小于犁底层。石灰岩区耕犁层黏粒比例显著高于砂页岩和紫色砂岩,紫色砂岩和砂页岩耕犁层黏粒比例无显著差异,但3个岩性区犁底层土壤黏粒比例两两差异显著;3个岩性区耕犁层粉粒比例无显著差异,但砂页岩区犁底层粉粒比例显著低于石灰岩区。
![]() |
表 2 不同岩性区不同耕层的土壤颗粒组成特征 Tab. 2 Characteristics of soil particle composition in different plough layers in different lithologic regions |
由图 2可知,3个岩性区土壤有机质质量分数均表现出耕犁层显著大于犁底层。其中耕犁层表现出:砂页岩>石灰岩>紫色砂岩,而犁底层表现出:石灰岩>砂页岩>紫色砂岩;同时石灰岩区犁底层有机质质量分数显著高于其他2个岩性区,但耕犁层却表现出石灰岩和砂页岩区无显著差异,且显著高于紫色砂岩区。
![]() |
图 2 不同岩性区不同耕层的土壤有机质质量分数特征 Fig. 2 Characteristics of organic matter contents in different soil layers in different lithologic regions |
图 3是根据研究区土壤颗粒组成绘制的土壤质地三角图,可知,研究区土壤质地主要为壤土、黏壤、粉黏壤和粉黏土,其中紫色砂岩和砂页岩发育形成的土壤以砂粒和粉粒为主,因此多为黏壤和壤土,石灰岩则以粉粒和黏粒为主,所以多为粉黏土、黏土和粉黏壤。
![]() |
图 3 不同岩性区土壤质地三角图 Fig. 3 Triangle of soil texture in different lithologic regions |
研究区各土壤质地K值特征见表 3,可知研究区土壤一共分为8个类别,其K值大小依次表现为:粉壤>壤土>砂壤>粉黏壤>黏壤>粉黏土>砂黏壤>黏土,其中黏土K值显著低于其他土壤质地类型,粉壤K值显著高于其他土壤质地类型。
![]() |
表 3 不同土壤质地可蚀性因子特征 Tab. 3 Erodibility characteristics of different soil textures |
研究区K值描述性统计分析见表 4。由表可知,研究区K值变化范围介于0.041 9~0.059 3之间,3个岩性区K值大小依次表现为:紫色砂岩>砂页岩>石灰岩,其中最大值和最小值均出现在砂页岩区,同时砂页岩区的变异系数也是3个区中最大的,但3个岩性区土壤可蚀性因子K值变异系数均在10%以下,说明均只存在低等程度的变异性。
![]() |
表 4 不同岩性区的土壤可蚀性因子K值描述性统计分析 Tab. 4 Descriptive statistical analysis of soil erodibility K in different lithologic regions |
图 4可知,3个岩性区中,耕犁层土壤K值按大小变化依次表现为:砂页岩>紫色砂岩>石灰岩,犁底层依次表现为:紫色砂岩>砂页岩>石灰岩;其中紫色砂岩区和石灰岩区的耕犁层和犁底层土壤可蚀性因子K值未表现出明显差异,但砂页岩区的耕犁层K值显著高于犁底层。从犁底层来看,紫色砂岩区土壤可蚀性因子K值显著高于砂页岩区和石灰岩区,而砂页岩和石灰岩区则无显著差异,但从耕犁层来看,紫色砂岩区土壤可蚀性因子K值与砂页岩区无显著性差异,且和石灰岩区也无显著性差异,但砂页岩区K值显著高于石灰岩区。
![]() |
图 4 不同岩性不同耕层的土壤可蚀性因子K值分布特征 Fig. 4 Distribution characteristics of soil erodibility K value of different lithology and different soil layer |
本研究区中,土壤共分为8种质地类型,而土壤质地是土壤的一种十分稳定的自然属性,可以反映母质来源及成土过程某些特征,因此3种岩性区的土壤质地类型存在差异。研究结果表明,基于EPIC模型下,研究区8种土壤质地中,黏土可蚀性最小,粉壤可蚀性最大,且黏粒比例越高的土壤可蚀性越小,因为黏粒具有强吸附力,土壤胶结作用较强,因此抗侵蚀能力较强。
研究区中由紫色砂岩发育形成的坡耕地土壤K值最大,最易被侵蚀,砂页岩发育形成的坡耕地土壤次之,石灰岩发育形成的坡耕地土壤可蚀性最弱。是由于紫色砂岩是岩石经风化、剥蚀、搬运在盆地中堆积形成的陆相碎屑沉积岩,其中含大量难以风化的石英颗粒,发育形成的土壤砂粒比例高,黏粒比例较少,因此多为壤土和黏壤,所以抗蚀能力弱;石灰岩主要是在浅海的环境条件下,由化学沉积作用和生物化学沉积形成的,以方解石为主的碳酸盐类岩石,石灰岩发育的土壤黏粒比例高,土壤黏重,多为粉黏土、粉黏壤和黏土,因此抗蚀性相对较强 ;砂页岩是在静水的环境中,泥沙经过长时间沉积的黏土岩类砂质页岩,发育形成的土壤各粒级颗粒分布情况与紫色砂岩相似,多为黏壤和壤土[27-28]。因此不同岩性发育形成的坡耕地土壤由于成土过程差异可能导致土壤理化性质差异,土壤可蚀性作为土壤固有属性之一也受到岩性影响。
此外,研究结果表明,砂页岩发育形成的坡耕地土壤耕犁层和犁底层K值存在显著差异;紫色砂岩区犁底层和砂页岩区及石灰岩区犁底层土壤K值均存在显著差异,但耕犁层却表现出无显著差异;砂页岩区和石灰岩区犁底层土壤K值未表现出显著差异,但耕犁层却出现显著差异。这些结果均可以说明耕犁扰动对于土壤的影响是明显存在的,一方面耕犁层长期受到耕犁扰动,导致同一岩性发育形成的耕犁层和犁底层土壤可蚀性因子K值出现显著差异,另一方面由于耕犁扰动,耕犁层土壤养分、细粒流失,导致土壤性质发生改变,使得由不同岩性发育形成的土壤原本无显著差异,经过耕犁扰动以后出现显著差异,或者原本存在显著差异的土壤经过耕犁扰动后反而无显著差异2种情况出现。已有研究表明耕地的土壤侵蚀是所有地类中最剧烈的[29],所以可以认为耕犁扰动对坡耕地土壤侵蚀存在影响;已有研究表明耕犁扰动会通过影响土壤含水量[30]、土壤内聚力[31]、土壤紧实度、土壤密度及抗剪强度[32]等来影响土壤侵蚀的强度和程度。总的来说,耕犁扰动对土壤性质的改变是确定的,但耕犁扰动和土壤侵蚀之间怎样相互作用还有待进一步研究。
5 结论研究区土壤可蚀性因子介于0.041 9~0.059 3之间。其中粉壤最易被侵蚀,黏土抗蚀性最强;而3种岩性区中,石灰岩发育形成的坡耕地土壤抗蚀能力较强;紫色砂岩发育形成的坡耕地土壤抗蚀能力较弱;从犁底层来看,可蚀性因子K值大小依次表现为:紫色砂岩>砂页岩>石灰岩,但从耕犁层来看,依次表现为:砂页岩>紫色砂岩>石灰岩,说明耕犁扰动对坡耕地土壤可蚀性因子存在一定的影响,而砂页岩区表现尤为明显。
[1] |
AMUNDSON R, BERHE A A, HOPMANS J W, et al. Soil and human security in the 21st century[J]. Science, 2015, 348(6235): 1261071. DOI:10.1126/science.1261071 |
[2] |
杨志成, 张卓栋, 张科利, 等. 基于普查样点的贵州省耕地土壤侵蚀空间分布[J]. 中国水土保持科学, 2020, 18(2): 62. YANG Zhicheng, ZHANG Zhuodong, ZHANG Keli, et al. Spatial distribution of cropland soil erosion in Guizhou province based on sample data of the first national water census[J]. Science of Soil and Water Conservation, 2020, 18(2): 62. |
[3] |
张恩伟, 彭双云, 冯华梅. 基于GIS和RUSLE的滇池流域土壤侵蚀敏感性评价及其空间格局演变[J]. 水土保持学报, 2020, 34(2): 115. ZHANG Enwei, PENG Shuangyun, FENG Huamei. Sensitivity assessment of soil erosion and its spatial pattern evolution in Dianchi Lake Basin based on GIS and RUSLE[J]. Journal of Soil and Water Conservation, 2020, 34(2): 115. |
[4] |
汪言在, 董一帆, 苏正安. 基于土地利用与植被恢复情景的土壤侵蚀演变特征[J]. 自然资源学报, 2020, 35(6): 1369. WANG Yanzai, DONG Yifan, SU Zheng'an. Assessment of soil erosion change under land use and reforestation scenarios[J]. Journal of Natural Resources, 2020, 35(6): 1369. |
[5] |
李桂芳, 杨任翔, 谢福倩, 等. 不同土地利用方式下赤红壤坡面土壤侵蚀特征[J]. 水土保持学报, 2020, 34(2): 101. LI Guifang, YANG Renxiang, XIE Fuqian, et al. Slope soil wrosion characteristic of Lateritic Red Soil under different land use types[J]. Journal of Soil and Water Conservation, 2020, 34(2): 101. |
[6] |
WANG Shanshan, SUN Baoyang, LI Chaodong, et al. Runoff and soil erosion on slope cropland: A review[J]. Journal of Resources and Ecology, 2018, 9(5): 461. DOI:10.5814/j.issn.1674-764x.2018.05.002 |
[7] |
彭旭东, 戴全厚, 袁应飞, 等. 喀斯特坡耕地裸坡侵蚀性降雨产流试验研究[J]. 应用基础与工程科学学报, 2019, 27(6): 1211. PENG Xudong, DAI Quanhou, YUAN Yingfei, et al. Experimental study on runoff yield in erosive rainfalls on bare slope farmland in Karst regions[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1211. |
[8] |
张旭贤, 高华端, 孙利军, 等. 贵州不同碳酸盐岩坡耕地土壤侵蚀特征研究[J]. 中国水土保持, 2013(9): 42. ZHANG Xuxian, GAO Huaduan, SUN Lijun, et al. Erosion characteristics of cultivated slope land soils developed from different carbonates in Guizhou province[J]. Soil and Water Conservation in China, 2013(9): 42. DOI:10.3969/j.issn.1000-0941.2013.09.017 |
[9] |
祖健, 张蚌蚌, 孔祥斌. 西南山地丘陵区耕地细碎化特征及其利用效率——以贵州省草海村为例[J]. 中国农业大学学报, 2016, 21(1): 104. ZU Jian, ZHANG Bangbang, KONG Xiangbin, et al. Characteristic of cultivated land fragmentation and land use efficiency in southwest mountainous region: A case study of Caohai village in Guizhou province[J]. Journal of China Agricultural University, 2016, 21(1): 104. |
[10] |
杨宇琼, 戴全厚, 李昌兰, 等. 模拟降雨条件下喀斯特坡耕地氮磷元素地下漏失特征[J]. 中国水土保持科学, 2018, 16(3): 59. YANG Yuqiong, DAI Quanhou, LI Changlan, et al. Underground leakage characteristics of nitrogen and phosphorus in Karst slope farmland under simulated rainfall[J]. Science of Soil and Water Conservation, 2018, 16(3): 59. |
[11] |
严友进, 戴全厚, 伏文兵, 等. 喀斯特坡地土壤地下侵蚀模拟试验研究[J]. 水土保持学报, 2015, 29(6): 7. YAN Youjin, DAI Quanhou, FU Wenbing, et al. Experimental study on simulation of underground soil erosion in Karst slope[J]. Journal of Soil and Water Conservation, 2015, 29(6): 7. |
[12] |
魏慧, 赵文武, 王晶. 土壤可蚀性研究述评[J]. 应用生态学报, 2017, 28(8): 2749. WEI Hui, ZHAO Wenwu, WANG Jing. Research progress on soil erodibility[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2749. |
[13] |
YANG Xihua, GRAY J, CHAPAMN G, et al. Digital mapping of soil erodibility for water erosion in New South Wales, Australia[J]. Soil Research, 2017, 56(2): 158. |
[14] |
梁音, 史学正. 长江以南东部丘陵山区土壤可蚀性K值研究[J]. 水土保持研究, 1999, 6(2): 48. LIANG Yin, SHI Xuezheng. Soil erodible K in east hillyfields of the southern Yangtze River[J]. Research of Soil and Water Conservation, 1999, 6(2): 48. |
[15] |
张鹏, 姚甜甜, 喻武, 等. 雅江流域干热河谷不同植被类型对土壤可蚀性的影响[J]. 西南林业大学学报(自然科学), 2019, 39(4): 9. ZHANG Peng, YAO Tiantian, YU Wu, et al. Effects of different vegetation types on soil erosivity in dry and hot valley of Yajiang River basin[J]. Journal of Southwest Forestry University(Natural Sciences), 2019, 39(4): 9. |
[16] |
乔锋, 王明刚, 李晶, 等. 色季拉山垂直气候带土壤可蚀性研究[J]. 西南林业大学学报: 自然科学, 2018, 38(6): 122. QIAO Feng, WANG Minggang, LI Jing, et al. Soil erodibility of typical climate types in Shergyla Mountain[J]. Journal of Southwest Forestry University, 2018, 38(6): 122. |
[17] |
陶俊, 何丙辉, 徐小军, 等. 不同复合种植模式对土壤可蚀性K值与侵蚀量的影响研究[J]. 水土保持通报, 2013, 33(3): 38. TAO Jun, HE Binghui, XU Xiaojun, et al. Effects of different types of multiple cropping on soil erodibility and erosion amount[J]. Bulletin of Soil and Water Conservation, 2013, 33(3): 38. |
[18] |
WANG Lei, ZUO Xiaofeng, ZHENG Fenli, et al. The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region[J]. Catena, 2020, 193(5): 104615. |
[19] |
白云星, 周运超, 周鑫伟, 等. 喀斯特土壤与喀斯特区域土壤关系的探讨: 以贵州省普定县后寨河小流域为例[J]. 土壤, 2020, 52(2): 414. BAI Yunxing, ZHOU Yunchao, ZHOU Xinwei, et al. Differentiating Karst soil and soil in Karst region: A case study of Houzhai river watershed in Puding county of Guizhou province[J]. Soils, 2020, 52(2): 414. |
[20] |
邹军, 喻理飞, 李媛媛, 等. 喀斯特区不同岩性发育的土壤上植物-枯落物-土壤系统δ13C值变化特征[J]. 水土保持学报, 2020, 34(1): 186. ZOU Jun, YU Lifei, LI Yuanyuan, et al. Changes in δ13C value of plant-litter-soil system in soils developed from different lithologies in Karst area[J]. Journal of Soil and Water Conservation, 2020, 34(1): 186. |
[21] |
YANG Songyu, CAMMERAAT E, JANSEN B, et al. Soil organic carbon stocks controlled by lithology and soil depth in a Peruvian alpine grassland of the Andes[J]. Catena, 2018(171): 11. |
[22] |
赖发叶. 试论母岩岩性与土壤侵蚀的关系[J]. 中国水土保持, 1989, 10(7): 41. LAI Faye. On the relationship between lithology of parent rock and soil erosion[J]. Soil and Water Conservation in China, 1989, 10(7): 41. |
[23] |
李江涛, 钟晓兰, 赵其国. 耕犁和施肥扰动下土壤团聚体稳定性影响因素研究[J]. 生态环境学报, 2009, 18(6): 2354. LI Jiangtao, ZHONG Xiaolan, ZHAO Qiguo. Influence factors of soil aggregate sta bility under disturbing of cultivatior and fertilization[J]. Ecology and Environmental Sciences, 2009, 18(6): 2354. DOI:10.3969/j.issn.1674-5906.2009.06.064 |
[24] |
刘霞娇, 段亚峰, 叶莹莹, 等. 耕作扰动对喀斯特土壤可溶性有机质及其组分迁移淋失的影响[J]. 生态学报, 2018, 38(19): 6981. LIU Xiajiao, DUAN Yafeng, YE Yingying, et al. The impacts of tillage on soil soluble organic matter and its movement and leaching in karst area[J]. Acta Ecologica Sinica, 2018, 38(19): 6981. |
[25] |
张玉彪, 李阳兵, 安裕伦, 等. 花溪区土地利用变化研究[J]. 地球与环境, 2010, 38(4): 476. ZHANG Yubiao, LI Yangbing, AN Yulun, et al. Research on the dynamic changes of land use in Huaxi district, Guiyang[J]. Earth and Environment, 2010, 38(4): 476. |
[26] |
SHARPLY A N, WILLIAMS J R. EPIC-erosion/productivity impact calculator: 1. Model documentation[R]. US Department of Agriculture Technical, Technical Bulletin Number 1768, 1990: 26.
|
[27] |
赵洋毅. 黔中植被和岩性对土壤抗蚀抗冲性的影响[D]. 贵阳: 贵州大学, 2008: 39. ZHAO Yangyi. Impact on soil anti-erosion and soil anti-scour by vegetation and lithological character in the center area of Guizhou[D]. Guiyang: Guizhou University, 2008: 39. |
[28] |
高华端, 刘应明. 贵州省地面组成物质对土壤机械组成的影响[J]. 中国水土保持科学, 2009, 7(6): 58. GAO Huaduan, LIU Yingming. Impact of ground substance on mechanical composition of soil in Guizhou province[J]. Science of Scil and Water Conservation, 2009, 7(6): 58. DOI:10.3969/j.issn.1672-3007.2009.06.010 |
[29] |
罗红, 马友鑫, 吴家福, 等. 黔西北喀斯特区域土地利用/覆盖变化对土壤侵蚀的影响[J]. 水土保持通报, 2012, 32(4): 16. LUO Hong, MA Youxin, WU Jiafu, et al. Effects of land use/cover change on soil erosion in Karst area of northwest Guizhou province[J]. Bulletin of Soil and Water Conservation, 2012, 32(4): 16. |
[30] |
SHARIFAT K, KUSHWAHA R L. Soil translocation by two tillage tools[J]. Canadian Agricultural Engineering, 1997, 39(2): 77. |
[31] |
MUYSEN W V, GOVERS G, BERGKAMP G, et al. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage[J]. Soil & Tillage Research, 1999, 51(3/4): 303. |
[32] |
HECKRATH G, HALEKOH U, DJURHUUS J, et al. The effect of tillage direction on soil redistribution by mouldboard ploughing on complex slopes[J]. Soil & Tillage Research, 2006, 88(1/2): 225. |