2. 宁夏盐池毛乌素沙地生态系统国家定位观测研究站,751500,宁夏盐池;
3. 中国水利水电科学研究院,100038,北京;
4. 新疆农业大学林学与园艺学院,830052,乌鲁木齐
中国水土保持科学 ![]() ![]() |
土壤风蚀指在风的作用下沉积物的分离、搬运和沉积,它是松散、干燥和裸露的地表土壤被气流或气固两相流吹蚀、磨蚀和传输的一个连续的动力学和物理学过程[1],也是一个多元、连续、复杂的综合自然地理过程[2-3],它不仅是塑造地球景观的重要驱动力,还是土地沙化的首要环节[4]。
土壤风蚀发生缓慢,强危害性,难于测量,且影响因素十分复杂[5]。一般认为,土壤风蚀与气候、地表粗糙度、植被(作物)、土壤结皮和土壤风蚀可蚀性等因素存在密切关系[6]。其中,土壤风蚀可蚀性是土壤系统的一个重要内在属性,是解析土壤风蚀过程的关键基础,也是构建土壤风蚀模型的核心参数[7-8]。但由于土壤风蚀可蚀性影响因素复杂且相关研究起步相对较晚,至今仍有很多重要问题尚未解决,成为学术界讨论的焦点和热点问题。
鉴于此,在全面总结土壤风蚀可蚀性国内外研究成果的基础上,系统梳理土壤风蚀可蚀性研究领域的主要进展,围绕土壤风蚀可蚀性概念与内涵、量化表达和动态特征3个研究的热点和焦点问题进行了综合评述,以期为相关研究者提供参考和借鉴,共同推动土壤风蚀可蚀性研究的发展。
1 土壤风蚀可蚀性的概念与内涵1941年,以专著《The Physics of Blown Sand and Desert Dunes(风沙和荒漠沙丘物理学)》的出版为标志,Bagnold[9]开启了现代土壤风蚀研究的序幕。次年,Chepil[10]首次提出了土壤风蚀可蚀性这一概念,用以表征土壤发生风力侵蚀时的脆弱程度。由此,土壤风蚀可蚀性研究蓬勃发展,人们逐步认识到土壤性质对于风力侵蚀过程的重要影响。现阶段,土壤风蚀可蚀性一般被定义为土壤内在属性对风力侵蚀造成的剥离和搬运的敏感程度[11]。
在研究早期,国内学者通常使用土壤风蚀抗蚀性描述表层土壤对风力侵蚀过程的影响,这与国外学者[12]常用的土壤风蚀可蚀性为存在明显差异。虽然土壤风蚀可蚀性与土壤风蚀抗蚀性均反应土壤内在属性与风力侵蚀之间的关系,但也存在一定的差异。土壤风蚀可蚀性侧重于描述土壤对于风力侵蚀作用的敏感程度,并不具有力学属性;而土壤风蚀抗蚀性则是从侵蚀动力学角度出发,强调地表土壤对于土壤风蚀的抵抗能力,具备较强的力学属性[13]。这一细微差异直接影响了人们对土壤风蚀过程的理解和认识。
作为一个连续的动力学和物理学过程,土壤风蚀的各个发生要素应具备丰富、科学的力学属性;因此,从侵蚀动力学角度出发,建议使用具有力学属性的土壤风蚀抗蚀性替代土壤风蚀可蚀性,用以描述土壤抵抗土壤风蚀的能力,并重新从动力学和物理学角度给出土壤风蚀抗蚀性的定义,以指导其量化表达。
2 土壤风蚀可蚀性的量化表达自土壤风蚀可蚀性这一概念诞生以来,国内外学者[14-16]始终致力于探索简单、科学、有效、量化的土壤风蚀可蚀性评价方法和评价指标(表 1)。这些评价指标与土壤内在属性和侵蚀动力过程存在密切关系,对于深入理解土壤风蚀可蚀性具有重要意义。但是,由于土壤风蚀过程和土壤风蚀可蚀性影响因子的复杂性,导致上述评价指标并不能全面、准确地表征土壤风蚀可蚀性特征;因此,相关研究成果的科学性始终存在一定争议,造成研究成果的推广和应用的迟滞。
![]() |
表 1 土壤风蚀可蚀性评价指标 Tab. 1 Evaluation indexes for wind erodibility |
20世纪60年代以来,土壤风蚀研究逐渐由理论向应用研究转变[44]。1965年,基于对美国中西部平原地区农田土壤风蚀研究成果的系统总结,Woodruff等[45]提出了土壤风蚀方程(wind erosion equation,WEQ)。此后,风力侵蚀预报系统(wind erosion prediction system,WEPS)、欧洲轻壤土风蚀模型(wind erosion on European light soils,WEELS)、随机风蚀模拟系统(wind erosion stochastic simulator,WESS)和修正的土壤风蚀方程(revised wind erosion equation,RWEQ)等土壤风蚀模型相继诞生[33, 46-50]。虽然这些土壤风蚀模型的理论框架和计算方法不尽相同,但土壤风蚀可蚀性均是其核心计算模块(表 2)[11]。更为重要的是,受益于土壤风蚀模型的发展、完善,土壤风蚀可蚀性评价方法也由单因素量化评价指标逐步发展为多因素量化评价体系,其科学性进一步增强[51]。
![]() |
表 2 土壤风蚀预报模型中土壤风蚀可蚀性的评价指标[45-49] Tab. 2 Evaluation indices for wind erodibility in wind erosion models |
研究实践证明,单因素和多因素的土壤风蚀可蚀性量化评价体系在特定区域的土壤风蚀研究工作中都有成功的应用实例;但是,相关研究工作仍有许多环节有待发展和提高。一方面,上述土壤风蚀可蚀性量化表达方法多为经验模型,其理论基础存在明显缺陷[52];另一方面,评价指标或评价体系的产生具有明显的地带性特征,其普适性也一直受到普遍质疑[53]。因此,研究探索一种科学、简便、普适,且能够体现土壤抵抗风力侵蚀作用力学属性的土壤风蚀可蚀性量化表达方法是目前该研究领域急需解决的重要研究内容。
3 土壤风蚀可蚀性的动态特征在现有的计算模型中,土壤风蚀可蚀性常常被当作土壤的一种静态属性[11, 47]。但实际上,在自然条件和人类活动的共同影响下,土壤结构和功能在不同时空尺度中均呈现出了不同的抗风蚀能力;因此,土壤风蚀可蚀性并不是一成不变的,即具有动态变化特征[54]。现阶段,一般认为土壤风蚀可蚀性的动态变化主要受干湿交替、冻融循环和机械干扰三个驱动过程的影响。
3.1 干湿交替土壤干湿交替过程广泛发生于干旱风沙区的表层土壤,其对土壤风蚀可蚀性影响的实质是土壤水分蒸发和凝结产生的气-液界面表面张力驱动的土壤颗粒间内聚力的变化[55]。在土体吸水过程中,土壤颗粒间隙的水滴数量不断增加,由水滴表面张力产生的土壤颗粒间的内聚力也不断增强,土壤中的细小颗粒固结形成团聚体、结皮和土块等更为稳定的结构。此时,风力作用不仅需要克服土壤颗粒的自身重力,还需要克服土壤颗粒间的内聚力才能产生土壤风蚀[56]。但也有研究表明,干湿交替可以显著增大土壤孔隙,形成较大的孔隙压力,土体的不断膨胀和收缩也会软化土体骨架,进而破坏土体结构[57]。因此,我们认为干湿交替对土壤风蚀可蚀性的影响与土壤类型和质地存在密切相关,但其变化过程和驱动机制仍需进一步探究。
3.2 冻融循环冻融循环对土壤风蚀可蚀性的影响与干湿交替造成的土壤颗粒间的内聚力变化存在密切相关,但两者的作用机理存在较大差异[58]。现阶段,国内外学者更多关注冻结作用下土壤风蚀可蚀性的动态变化,而关于冻融循环过程的研究还较为薄弱。一般认为,冻融作用可以减弱土壤颗粒间的内聚力,降低土体结构的稳定性,从而增加土壤风蚀可蚀性[59]。不仅如此,当土壤含水量相同时,随着冻融循环次数的增加,土壤风蚀量也会随之增加[60]。但是,科尔沁沙地沙尘研究却发现,土壤风蚀可蚀性和风蚀量会随土壤的冻结进程不断减小,这可能与冻结作用的发生和持续时间存在密切联系[61]。因此,冻结、融解和冻融循环过程对土壤风蚀可蚀性的影响存在差异,其机理目前尚不明确,仍需要进一步研究。
3.3 机械干扰人类活动造成的机械干扰作用对于地表土壤的影响十分强烈,特别是滥垦、滥伐、滥牧等不合理的经营活动,严重地破坏了土体结构,降低了土壤的抗风蚀能力,进而加剧了生态系统结构和功能的退化[62-63]。长期以来,国内外学者采用原位观测、控制实验和风洞模拟等相结合的技术手段,围绕耕作与放牧对土壤风蚀过程的影响开展了大量研究工作,揭示了耕作与放牧干扰对于土壤结构和功能的影响[32, 64]。同时,相关学者也提出了大量的保护性耕作措施以抵抗风力侵蚀作用[65-66]。然而,相关研究成果大多源于野外观测和风洞实验,缺少系统的力学机制分析,并未清晰地揭示土壤风蚀可蚀性在机械干扰作用下的动态变化机制。
土壤风蚀可蚀性是一种随环境条件改变而变化的动态特征[54],但其动态变化的影响因子、驱动机制和关键过程等仍不明确,且常用的土壤风蚀可蚀性计算模型也均未将其动态特征纳入模型构建的基本框架,从而严重降低了计算结果的准确性;因此,研究揭示土壤风蚀可蚀性动态变化机制,并用以修正土壤风蚀可蚀性量化模型,将极大地提升土壤风蚀可蚀性和土壤风蚀的计算精度。
4 结论与展望长期以来,国内外专家学者围绕土壤风蚀可蚀性开展了大量的研究工作,并取得丰硕的研究成果,为土壤风蚀可蚀性动态特征的深入研究奠定了坚实可靠的工作基础;然而,由于土壤风蚀过程的复杂性,相关研究工作存在一些局限和不足。在今后的研究工作中,应围绕土壤风蚀可蚀性的动力学属性,在以下几方面继续强化、深入,不断丰富和完善土壤风蚀可蚀性研究,共同推动土壤风蚀可蚀性研究的持续快速发展,为土壤风蚀研究提供强有力支撑。
1) 阐明土壤风蚀可蚀性的基本内涵。从土壤风蚀发生的侵蚀动力学角度来看,土壤风蚀的实质是风对表层土壤颗粒产生剪切力并导致土壤颗粒脱离静止状态,进而发生分离、搬运和沉积的过程。在这一过程中,表层土壤是风力侵蚀作用的对象,其与风力侵蚀作用的关系具有明确的力学属性,即表层土壤抵抗风力剪切作用的能力。如何正确理解、系统阐述这一动力学过程是土壤风蚀可蚀性研究的首要任务。目前,国内也已有学者在这一领域进行了有益的探索和尝试。邹学勇等[8]给出了土壤风蚀抗蚀性的力学定义,即土壤风蚀抗蚀性是指土壤颗粒因重力和颗粒间内聚力产生的抵抗风剪切力的反作用力,对于指导未来研究具有重要意义。
2) 由土壤颗粒起动的动力学机制可知,在风的作用下土壤颗粒发生运动时,风的侵蚀力应大于土壤颗粒的自重和土壤颗粒间的内聚力。在土壤颗粒自重不变的条件下,土壤风蚀可蚀性的动态变化主要是由于土壤颗粒间内聚力的变化造成的;因此,从侵蚀动力学角度阐明自然条件和人类活动影响土壤颗粒间内聚力的基本过程,识别土壤颗粒间内聚力变化的主要影响因素,揭示土壤可蚀性动态变化过程机制是土壤风蚀可蚀性研究领域亟待解决的关键科学问题。
3) 构建土壤风蚀可蚀性的综合量化模型。虽然土壤的内在属性决定了土壤风蚀发生的难易程度,但现有土壤风蚀可蚀性量化模型多为经验模型,并未与表土的抗剪切力建立直接关系;因此,可参考水力侵蚀研究,针对不同气候、土壤和植被类型,在我国北方风沙区广泛布设风蚀观测小区,并结合室内模拟实验,系统研究土壤风蚀可蚀性、土壤抗剪切力、风蚀输沙量和土壤理化性质的相互关系。同时,考虑土壤风蚀可蚀性动态特征,最终构建具有明确侵蚀动力学内涵、广泛适用于我国北方风沙区、科学性和实用性兼具的土壤风蚀可蚀性综合量化模型,为本土化的土壤风蚀模型构建奠定坚实基础。
[1] |
ZOBECK T M, Van PELT R S. Soil management: Building a stable base for agriculture[M]. Madison, Wisconsin: Soil Science Society of America, 2011: 209.
|
[2] |
丁国栋. 风沙物理学(第二版)[M]. 北京: 中国林业出版社, 2010: 118. DING Guodong. Aeolian physics (2rd)[M]. Beijing: China Forestry Publishing House, 2010: 118. |
[3] |
刘昀东, 高广磊, 丁国栋, 等. 风蚀荒漠化地区土壤质量演变特征研究进展[J]. 南京林业大学学报(自然科学版), 2017, 41(5): 161. LIU Yundong, GAO Guanglei, DING Guodong, et al. Soil quality in wind erosion desertified regions: A review[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 161. |
[4] |
董治宝, 吕萍. 70年来中国风沙地貌学的发展[J]. 地理学报, 2020, 75(3): 509. DONG Zhibao, LV Ping. Development of aeolian geomorphology in China in the past 70 years[J]. Acta Geographica Sinica, 2020, 75(3): 509. |
[5] |
ZHAO Y, GAO G L, ZHANG Y, et al. Aeolian sediment fingerprinting in the Cuona Lake Section along the Qinghai-Tibetan Railway[J]. Journal of Cleaner Production, 2020(261): 121233. |
[6] |
de ORO L A, COLAZO J C, BUSCHIAZZO D E. RWEQ-Wind erosion predictions for variable soil roughness conditions[J]. Aeolian Research, 2016, 20: 139. DOI:10.1016/j.aeolia.2016.01.001 |
[7] |
陈宇轩, 丁国栋, 高广磊, 等. 呼伦贝尔沙地风沙土有机质和碳酸钙含量特征[J]. 中国水土保持科学, 2019, 17(4): 104. CHEN Yuxuan, DING Guodong, GAO Guanglei, et al. Characteristics of organic matter and calcium carbonate of aeolian soils in Hulun Buir Sandy Land[J]. Science of Soil and Water Conservation, 2019, 17(4): 104. |
[8] |
邹学勇, 张春来, 程宏, 等. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875. ZOU Xueyong, ZHANG Chunlai, CHENG Hong, et al. Classification and representation of factors affecting soil wind erosion in a model[J]. Advances in Earth Science, 2014, 29(8): 875. |
[9] |
BAGNOLD R A. The physics of blown sand and desert dunes[M]. New York: Dover Publications, 1941: 10.
|
[10] |
CHEPIL W S. Measurement of wind erosiveness of soils by the dry sieving procedure[J]. Scientific Agriculture, 1942, 23(3): 154. |
[11] |
WEBB N P, STRONG C L. Soil erodibility dynamics and its representation for wind erosion and dust emission models[J]. Aeolian Research, 2011, 3(2): 165. DOI:10.1016/j.aeolia.2011.03.002 |
[12] |
WEBB N P, MCGOWAN H A. Approaches to modeling land erodibility by wind[J]. Progress in Physical Geography, 2009, 33(5): 587. DOI:10.1177/0309133309341604 |
[13] |
郑子成, 张锡洲, 李廷轩, 等. 玉米生长期土壤抗蚀性特征及其影响因素分析[J]. 农业工程学报, 2014, 30(4): 100. ZHENG Zicheng, ZHANG Xizhou, LI Tingxuan, et al. Soil anti-erodibility and analysis of its influencing factors during growing stages of maize[J]. Transactions of the CSAE, 2014, 30(4): 100. DOI:10.3969/j.issn.1002-6819.2014.04.013 |
[14] |
翟子宁, 苏备. 土壤可蚀性研究进展[J]. 土壤通报, 2016, 47(1): 253. ZHAI Zining, SU Bei. Research progress on soil erodibility[J]. Chinese Journal of Soil Science, 2016, 47(1): 253. |
[15] |
SONG Yang, LIU Lianyou, YAN Ping, et al. A review of soil erodibility in water and wind erosion research[J]. Journal of Geographical Sciences, 2005, 15(2): 167. DOI:10.1007/BF02872682 |
[16] |
南岭, 杜灵通, 展秀丽. 土壤风蚀可蚀性研究进展[J]. 土壤, 2014, 46(2): 204. NAN Ling, DU Lingtong, ZHAN Xiuli. Advances in study on soil erodibility for wind erosion[J]. Soils, 2014, 46(2): 204. |
[17] |
CHEPIL W S. Properties of soil which influence wind erosion: Ⅱ Dry aggregate structure as an index of erodibility[J]. Soil Science, 1950, 69(5): 403. DOI:10.1097/00010694-195005000-00006 |
[18] |
CHEPIL W S. Properties of soil which influence wind erosion: Ⅲ. Effect of apparent density on erodibility[J]. Soil Science, 1951, 71(2): 141. DOI:10.1097/00010694-195102000-00008 |
[19] |
CHEPIL W S. Improved rotary sieve for measuring state and stability of dry soil structure[J]. Soil Science Society of America Journal, 1952, 16(2): 113. DOI:10.2136/sssaj1952.03615995001600020001x |
[20] |
CHEPIL W S. Factors that influence clod structure and erodibility of soil by wind: Ⅲ. Calcium carbonate and decomposed organic matter[J]. Soil Science, 1954, 77(6): 473. DOI:10.1097/00010694-195406000-00008 |
[21] |
CHEPIL W S. Factors that influence clod structure and erodibility of soil by wind: IV. Sand, silt, and clay[J]. Soil Science, 1955, 80(2): 155. DOI:10.1097/00010694-195508000-00009 |
[22] |
朱震达, 刘恕, 肖龙山. 草原地带沙漠化环境的特征及其治理的途径: 以内蒙乌兰察布草原为例[J]. 中国沙漠, 1981, 1(1): 6. ZHU Zhenda, LIU Shu, XIAO Longshan. The characteristics of environment vulnerable to desertification and the ways of its control in steppe zone: Taking the Inner Mongolian Ulan Chap Steppe as an example[J]. Journal of Desert Research, 1981, 1(1): 6. |
[23] |
GILLETTE D A, ADAMS J, MUHS D, et al. Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air[J]. Journal of Geophysical Research Atmospheres, 1982, 87(C11): 9003. DOI:10.1029/JC087iC11p09003 |
[24] |
SKIDMORE E L, POWERS D H. Dry soil-aggregate stability: Energy-based index1[J]. Soil Science Society of America Journal, 1982, 46(6): 1274. DOI:10.2136/sssaj1982.03615995004600060031x |
[25] |
FRYREAR D W. A field dust sampler[J]. Journal of Soil and Water Conservation, 1986, 41(2): 117. |
[26] |
POTTER K N. Estimating wind-erodible materials on newly crusted soils[J]. Soil Science, 1990, 150(5): 771. DOI:10.1097/00010694-199011000-00003 |
[27] |
ZOBECK T M. Soil properties affecting wind erosion[J]. Journal of Soil & Water Conservation, 1991, 46(2): 112. |
[28] |
ZOBECK T M, POPHAM T W. Influence of microrelief, aggregate size, and precipitation on soil crust properties[J]. Transactions of the Asae, 1992, 35(2): 487. DOI:10.13031/2013.28625 |
[29] |
O'NEILL A L. Reflectance spectra of microphytic soil crusts in semi-arid Australia[J]. International Journal of Remote Sensing, 1994, 15(3): 675. DOI:10.1080/01431169408954106 |
[30] |
哈斯. 坝上高原土壤不可蚀性颗粒与耕作方式对风蚀的影响[J]. 中国沙漠, 1994, 14(4): 92. HA Si. Effects of unerodable soil particles and tillage way on wind erosion on Bashang Highland[J]. Journal of Desert Research, 1994, 14(4): 92. |
[31] |
LEYS J, KOEN T, MCTAINSH G. The effect of dry aggregation and percentage clay on sediment flux as measured by a portable field wind tunnel[J]. Soil Research, 1996, 34(6): 849. DOI:10.1071/SR9960849 |
[32] |
刘连友, 王建华, 李小雁, 等. 耕作土壤可蚀性颗粒的风洞模拟测定[J]. 科学通报, 1988, 43(15): 1663. LIU Lianyou, WANG Jianhua, LI Xiaoyan, et al. Wind tunnel simulation of erodible particles in cultivated soil[J]. Chinese Science Bulletin, 1988, 43(15): 1663. |
[33] |
董治宝, 李振山. 风成沙粒度特征对其风蚀可蚀性的影响[J]. 土壤侵蚀与水土保持学报, 1998, 4(4): 1. DONG Zhibao, LI Zhenshan. Wind erodibility of aeolian sand as influenced by grain-size parameters[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4(4): 1. |
[34] |
ZOBECK T M, POPHAM T W, SKIDMORE E L, et al. Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distributions[J]. Soil Science Society of America Journal, 2003, 67(2): 425. DOI:10.2136/sssaj2003.4250 |
[35] |
ELDRIDGE D J, LEYS J F. Exploring some relationships between biological soil crusts, soil aggregation and wind erosion[J]. Journal of Arid Environments, 2003, 53(4): 457. DOI:10.1006/jare.2002.1068 |
[36] |
GOOSSENS D. Effect of soil crusting on the emission and transport of wind-eroded sediment: Field measurements on loamy sandy soil[J]. Geomorphology, 2004, 58(1-4): 145. DOI:10.1016/S0169-555X(03)00229-0 |
[37] |
WIGGS G F S, BAIRD A J, ATHERTON R J. The dynamic effects of moisture on the entrainment and transport of sand by wind[J]. Geomorphology, 2004, 59(1-4): 13. DOI:10.1016/j.geomorph.2003.09.002 |
[38] |
NEUMAN M K, MAXWELL C, RUTLEDGE C. Spatial and temporal analysis of crust deterioration under particle impact[J]. Journal of Arid Environments, 2005, 60(2): 321. DOI:10.1016/j.jaridenv.2004.04.007 |
[39] |
李晓佳, 海春兴, 刘广通. 阴山北麓不同用地方式下春季土壤可蚀性研究[J]. 干旱区地理, 2007(6): 926. LI Xiaojia, HAI Chunxing, LIU Guangtong. Spring soil erodibility for different land use patterns in the north piedmont of the Yinshan Mountains[J]. Arid Land Geography, 2007(6): 926. |
[40] |
STOUT J E. Simultaneous observations of the critical aeolian threshold of two surfaces[J]. Geomorphology, 2007, 85(1/2): 3. |
[41] |
CHAPPELL A, VAN Pelt S, ZOBECK TM, et al. Estimating aerodynamic resistance of rough surfaces using angular reflectance[J]. Remote Sensing of Environment, 2010, 114(7): 1462. DOI:10.1016/j.rse.2010.01.025 |
[42] |
ZAMANI S, MAHMOODABADI M. Effect of particle-size distribution on wind erosion rate and soil erodibility[J]. Archives of Agronomy & Soil Science, 2013, 59(12): 1743. |
[43] |
杜宇佳, 高广磊, 陈丽华, 等. 土壤微生物膜对风沙土固沙保水特性的影响[J]. 农业工程学报, 2020, 36(17): 98. DU Yujia, GAO Guannglei, CHEN Lihua, et al. Effects of soil microbial films on sand fixation and water retention characteristics of aeolian soils[J]. Transactions of the CSAE, 2020, 36(17): 98. DOI:10.11975/j.issn.1002-6819.2020.17.012 |
[44] |
JARRAH M, MAYEL S, TATARKO J, et al. A review of wind erosion models: Data requirements, processes, and validity[J]. Catena, 2020, 187: 104388. DOI:10.1016/j.catena.2019.104388 |
[45] |
WOODRUFF NP, SIDDOWAY FH. A wind erosion equation[M]. Madison, Wisconsin: Soil Science Society of American Proceeding, 1965: 602.
|
[46] |
HAGEN L J. A wind erosion prediction system to meet users need[J]. Journal of Soil and Water Conservation, 1991, 46: 106. |
[47] |
巩国丽, 刘纪远, 邵全琴. 基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究[J]. 地理科学进展, 2014, 33(6): 825. GONG Guoli, LIU Jiyuan, SHAO Quanqin. Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the Revised Wind Erosion Equation[J]. Progress in Geography, 2014, 33(6): 825. |
[48] |
BÖHNER J, SCHÄFER W, CONARD O, et al. The WEELS model: Methods, results, and limitations[J]. Catena, 2003, 52(3): 289. |
[49] |
Van PELT R S, ZOBECK T M, POTTER K N, et al. Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events[J]. Environmental Modeling & Software, 2004, 19(2): 191. |
[50] |
TATARKO J, SPORCIC M A, SKIDMORE E L. A history of wind erosion prediction models in the United States Department of Agriculture prior to the wind erosion prediction system[J]. Aeolian Research, 2013, 10: 3. DOI:10.1016/j.aeolia.2012.08.004 |
[51] |
PANEBIANCO J E, BUSCHIAZZO D E, ZOBECK T M. Comparison of different mass transport calculation methods for wind erosion quantification purposes[J]. Earth Surface Processes and Landforms, 2010, 35(13): 1548. DOI:10.1002/esp.1995 |
[52] |
ZOU Xueyong, ZHANG Chunlai, CHENG Hong, et al. Cogitation on developing a dynamic model of soil wind erosion[J]. Science China: Earth Science, 2015, 58: 462. DOI:10.1007/s11430-014-5002-5 |
[53] |
LI Pengfei, MU Xingmin, HOLDEN J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau[J]. Earth-Science Reviews, 2017, 170: 17. DOI:10.1016/j.earscirev.2017.05.005 |
[54] |
WEBB N P, STRONG C L. Soil erodibility dynamics and its representation for wind erosion and dust emission models[J]. Aeolian Research, 2011, 3(2): 165. DOI:10.1016/j.aeolia.2011.03.002 |
[55] |
HARRISON-KIRK T, BEARE M H, MEENKEN E D, et al. Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions[J]. Soil Biology & Biochemistry, 2013, 57: 43. |
[56] |
GHERBOUDI I, BEEGUM S N, MARTICORENA B, et al. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture[J]. Journal of Geophysical Research-Atmospheres, 2015, 120(20): 10915. DOI:10.1002/2015JD023338 |
[57] |
崔凯, 谌文武, 匡静, 等. 干湿交替与盐渍双重作用下干旱和半干旱地区土遗址劣化效应[J]. 中南大学学报(自然科学版), 2012, 43(6): 2378. CUI Kai, CHEN Wenwu, KUANG Jing, et al. Effect of deterioration of earthern ruin with joint function of salinized and alternating wet and dry in arid andsemi-arid regions[J]. Journal of Central South University (Natural Sciences Edition), 2012, 43(6): 2378. |
[58] |
HANCOCK G R, OVERNDEN M, SHARMA K, et al. Soil erosion: The impact of grazing and regrowth trees[J]. Geoderma, 2020(361): 114102. |
[59] |
HAN L, TSUNEKAWA A, TSUBO M. Effect of frozen ground on dust outbreaks in spring on the eastern Mongolian Plateau[J]. Geomorphology, 2011, 129: 412. DOI:10.1016/j.geomorph.2011.03.005 |
[60] |
孙宝洋, 李占斌, 肖俊波, 等. 冻融作用对土壤理化性质及风水蚀影响研究进展[J]. 应用生态学报, 2019, 30(1): 337. SUN Baoyang, LI Zhanbin, XIAO Junbo, et al. Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 337. |
[61] |
LI Xiaolan, ZHANG Hongsheng. Seasonal variations in dust concentration and dust emission observed over Horqin Sandy Land area in China from December 2010 to November 2011[J]. Atmospheric Environment, 2012(61): 56. |
[62] |
张琳琳, 丁国栋, 肖萌, 等. 干草原区车辆碾压对土壤理化性质的影响[J]. 干旱区资源与环境, 2013, 27(12): 81. ZHANG Linlin, DING Guodong, XIAO Meng, et al. The influence of vehicles rolling on physical and chemical properties of soil in steppes[J]. Journal of Arid Land Resources and Environment, 2013, 27(12): 81. DOI:10.3969/j.issn.1003-7578.2013.12.014 |
[63] |
孙世贤, 丁勇, 李夏子, 等. 放牧强度季节调控对荒漠草原土壤风蚀的影响[J]. 草业学报, 2020, 29(7): 23. SUN Shixian, DING Yong, LI Xiazi, et al. Effects of seasonal regulation of grazing intensity on soil erosion in desert steppe grassland[J]. Acta Prataculturae Sinica, 2020, 29(7): 23. |
[64] |
AUBAULT H, WEBB N, STRONG C, et al. Grazing impacts on the susceptibility of rangelands to wind erosion: The effects of stocking rate, stocking strategy and land condition[J]. Aeolian Research, 2015(17): 89. |
[65] |
GUO Zhongling, CHANG Chunping, WANG Rende, et al. Comparison of different methods to determine wind-erodible fraction of soil with rock fragments under different tillage/management[J]. Soil & Tillage Research, 2017(168): 42. |
[66] |
KLIK A, ROSNER J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes[J]. Soil & Tillage Research, 2020(203): 104669. |