2. 昆明市土地开发整理中心, 650100, 昆明;
3. 云南农业大学机电工程学院, 650201, 昆明;
4. 云南农业大学资源环境学院, 650201, 昆明
中国水土保持科学 2021, Vol. 19 Issue (3): 81-88. DOI: 10.16843/j.sswc.2021.03.010 |
草本植物播种常用单播或混播。混播草本由于有效利用空间、地力及植物间的互利共生关系,与单播相比具有产量高、品质好、减轻病虫草害、降低生产成本等优势,在人工建植草地中常被采用[1-2]。混播豆科和禾本科草本,有利于增加草带的总盖度和草层高度,增强草带的水土保持效果[3]。植物根系能固结土壤,提高边坡稳定、减少土壤侵蚀,在生态环境保护和改善中发挥着重要作用;基本农田建设中,在田坎上种植草本植物、不仅提高田坎的稳定性,还增加农田的生物多样性。植物根系的固土能力主要用土壤的抗剪强度增量来衡量,一般通过直接剪切试验、三轴剪切试验及原位剪切试验得到。直剪试验和原位剪切试验,土样的受剪面是预设的,不一定是最薄弱面,且在剪切破坏过程中逐渐变小,因此试验所测定的抗剪强度不一定能代表根系的固土能力,三轴试验中的破坏面是真正的最薄弱面,可以更客观地反映根系固土的实际[4]。当三轴试验中侧向应力为零时,即为无侧限抗压强度试验,土体的抗剪强度全部以黏聚力的形式表现[5],可用无侧限抗压强度试验测定草本植物根系提高土体抗剪强度增量[6-7]。近年来学者对单一植物根系固土力学特征及机理开展深入的研究[8-14]。单播草本根系的固土能力与破坏面根密度、根面积比和含根量相关,可用这些指标来预测根系提高土体的抗剪强度(即抗剪强度增量)[15];也有研究表明,根系抗剪强度增量与含根量之间是开口向下的二次函数关系,存在最优的含根量[16]。但目前对混播草本植物根系增强土体抗剪强度研究鲜见报道。开展混播草本植物根系增强土体抗剪强度研究,掌握混播草本植物根系增强土体抗剪强度机理,对合理选择混播的配置方式,提高草本植物固土效应,促进生态环境建设具有重要的生产实践意义。
1 试验地概况试验地位于昆明市盘龙区云南农业大学后山试验基地,E 102°44′57″,N 25°7′44″,海拔1 930 m,属亚热带季风气候,年降雨量900~1 000 mm,年日照时间2 393 h,年平均气温14.2 ℃,土壤为山原红壤,肥力中等,土粒相对密度为2.80。
2 材料与方法固土护坡的草本多为斜生型根系和垂直型根系的植物。本研究选用常用的护坡植物非洲狗尾草(Setariaanceps stapf ex massey)代表斜生型根系[17],紫花苜蓿(Medicago sativa)代表垂直型根系[18]。非洲狗尾草,多年生禾本科狗尾草属植物。紫花苜蓿,多年生豆科草本植物,根粗壮,入土深。
2.1 试样制备因表层杂质较多,土样采用试验地15 cm以下土层的原状土。用环刀法测定原状土密度,烘干法测定原状土含水率,计算试验地土的干密度。
2017年7月,准备长50 cm、Φ110 mm×3.2 mm的PVC管沿中轴线一分为二,对合后用3个管卡固定,用皮筋箍上塑料袋封住底部;取土料过5 mm筛,搅拌均匀,装入制备好的PVC管中,装入土样高度约为50 cm,边装边均匀压实,管中土的含水量为28.31%,干密度为0.940 g/cm3,和试验地原状土的干密度相当,装填好的土样放置在室外自然沉降。
试验设单播非洲狗尾草、单播紫花苜蓿、混播紫花苜蓿+非洲狗尾草、素土4个处理,每个处理10个样品,共计40个样品。2017年7月底管内点播紫花苜蓿、非洲狗尾草育苗,8月底选取健壮的非洲狗尾幼苗移栽进PVC管内,为了消除种植密度和间距的影响,每根PVC管内种植6株(混播处理每种草各3株),均匀的种在以PVC管中点为中心,半径为30 mm的圆周上。在生长期内,定期进行除杂草、浇水等管理。
2.2 根土复合体无侧限抗压强度测定2018年10月初,在种草的3个处理中各选9个植株长势良好的土柱、再随机选取9个素土土柱立放在水面下浸泡24 h使其充分饱和后取出,松开PVC管卡取出柱体,剪掉植株的地上部分。为更好地研究不同深度混播根系的固土能力,分为上(0~25 cm)、下(25~50 cm)2层观测,用钢锯缓慢平稳地将柱体从中间锯开分为2节,每节的高度为25 cm,截取中间20 cm为试样,截面直径为10.360 cm,分别称量后计算柱体的饱和密度。每个柱体取截下的土样10 g左右,放入铝盒,称量后用烘干法测定土样的饱和含水量。
采用南京土壤仪器厂生产的SJ-1A型应变控制式三轴仪进行无侧限抗压强度试验测定柱体的黏聚力C,操作步骤按照土工试验规程进行[19]。有根处理与素土处理的黏聚力差值ΔC即为有根处理的黏聚力增量,该增量即为根系增强土体的抗剪强度。
2.3 根系特征值的测定用游标卡尺测量强度试验破坏面的根系直径,并记录破坏面根数N;破坏后柱体置于细网筛内小心洗出所有的根系,用吸水纸将根系表层水分擦干,烘干称质量。
1) 破坏面根密度(root density,Rd)为破坏面根的数量与破坏面面积的比值。
| $ {{R}_{\text{d}}}=\frac{N}{S} 。$ | (1) |
式中:Rd为破坏面根密度,个/cm2;N为破坏面根的数量,个;S为破坏面面积,cm2。
2) 根面积比(root area ratio,Rar)为柱体破坏面上根的截面积和与土体剪切面积之比[20]。用下式计算
| $ {R_{{\rm{ar}}}} = \frac{{\sum {\frac{{{\rm{ \mathsf{ π} }}d_i^2}}{4}} }}{A} 。$ | (2) |
式中di为破坏面第i个根的直径;A为剪切面积,用土柱的横截面积代表,A=80.080 cm2。
3) 柱体的含根量
| $ Q=\left( {{M}_{\text{R}}}/M \right)\times 100 。$ | (3) |
式中:Q为含根量,%;MR为柱体内根烘干后的质量,g;M为饱和柱体的质量,g。
3 结果与分析 3.1 草本植物根系柱体的黏聚力增量 3.1.1 受压柱体的饱和密度和饱和含水量受压柱体的饱和密度、饱和含水量见表 1。饱和密度,上层(0~25 cm深范围内)、下层(25~50 cm深范围内)的素土柱体与有根柱体均达显著差异,但有根柱体间差异不显著。饱和含水量上、下层各处理间无显著差异。
| 表 1 受压柱体的饱和密度、饱和含水量、黏聚力和黏聚力增量 Tab. 1 Saturated density, saturated water content, cohesion and cohesion increment of a compressed column |
素土柱体与有根柱体的黏聚力C极显著性差异,混播柱体的C与紫花苜蓿柱体的极显著性差异,与非洲狗尾草无显著性差异(表 1)。
紫花苜蓿、非洲狗尾草、混播的根土复合体上层黏聚力增量ΔC分别是素土黏聚力C值的125.93%、180.9%、235.42%,下层分别为62.82%、139.04%、183.04%。说明生长一年草本植物根系增强土体的抗剪强度以混播紫花苜蓿和非洲狗尾草的最强,非洲狗尾草次之,紫花苜蓿最差。3个处理上、下部的ΔC之比分别为2.113、1.373、1.357,表明草本根系增强土体的抗剪强度上部高于下部。
3.2 柱体破坏面根系特征与黏聚力增量的关系 3.2.1 破坏面根系径级分布参考杨秀云等[21]、段青松等[22]进行径级划分,破坏面根系径级分布、平均直径及根系总数见表 2。3个处理中,单播紫花苜蓿根系的平均直径最大达到3.111 mm,是单播非洲狗尾草的19.32倍、混播的7.35倍。单播紫花苜蓿根系直径>1 mm的较多,达85.80%,< 0.2 mm的根系未观测到。单播非洲狗尾草根系直径不超过0.6 mm,< 0.1 mm占34.03%,≥0.1~0.2 mm范围内的占37.16%;而混播则在所有观测径级范围内都有分布,且主要分布在 < 0.2 mm的范围内,表明2种草混播丰富根系的径级分布。
| 表 2 受压柱体破坏面根系径级分布、平均直径及根系总数 Tab. 2 Root diameter class distribution and mean diameter of the damaged surface of a compressed column |
3个处理中,单株平均根数以紫花苜蓿最少、非洲狗尾草最多,混播居中,混播单株平均根数小于两种草单播之和,其原因在于混播中根系数量多的非洲狗尾草株数和根系数量少的非洲狗尾草株数各占一半。
3.2.2 受压柱体根系特征值受压柱体的根系特征值见表 3。破坏面根密度(Rd),上下部柱体均为单播非洲狗尾草最大、单播紫花苜蓿最小,混播居中,它们之间的差异达极显著。破坏面根面积比(Rar)、柱体含根量(Q),上下部柱体均为单播紫花苜蓿最大,混播次之,单播非洲狗尾草最小,单播紫花苜蓿的Rar、Q与另2个处理间达极显著差异,另2个处理间无显著差异。
| 表 3 受压柱体的根系特征值 Tab. 3 Root characteristics of compressed columns |
根密度(Rd)与黏聚力增量(ΔC)关系如图 1所示。单播非洲狗尾草、混播的Rd与ΔC呈二次函数的显著相关,而单播紫花苜蓿的Rd与ΔC的相关性较低。随着破坏面Rd的增加,3个处理的黏聚力增量ΔC也呈现先增加后减小趋势,存在最优的Rd。
|
图 1 黏聚力增量ΔC-根密度关系曲线 Fig. 1 Cohesion increment ΔC-root density relation curve |
柱体破坏面根面积比Rar与凝聚力增量ΔC关系如图 2所示。单播紫花苜蓿的Rar与ΔC没有相关性。单播非洲狗尾草的Rar与ΔC呈二次函数的极显著,混播呈二次函数的显著相关,2个处理拟合函数的二次项系数为负值,函数图像开口向下,存在最优的Rar值。
|
图 2 黏聚力增量ΔC-根面积比关系曲线 Fig. 2 Cohesion increment ΔC-root area ratio relation curve |
柱体含根量Q与黏聚力增量ΔC关系如图 3所示。单播非洲狗尾草、混播柱体Q与ΔC呈二次函数的极显著相关,拟合函数的二次项系数为负值,函数图像开口向下,存在最优的Q值,这与栗岳洲等[16]、胡其志等[23]的研究结果一致。
|
图 3 黏聚力增量ΔC-含根量关系曲线 Fig. 3 Cohesion increment ΔC- root content relation curve |
单播紫花苜蓿的Rar、Q与黏聚力增量ΔC没有相关性,主要原因在于紫花苜蓿主根粗大,主根在Rar、Q中占比高,但它对土体的网络固结作用弱,形成的抗剪强度低,这与之前的研究是一致的。
综上可以得出,紫花苜蓿根系ΔC与柱体破坏面的Rd、Rar和Q间关系不显著,不能用这些量来预测根系ΔC;而非洲狗尾草、混播根系ΔC与Rd、Rar和Q间关系达显著或极显著,且以柱体含根量的相关性最高,可以用柱体含根量预测混播草本根系的抗剪强度增量。
4 讨论混播豆科和禾本科草本,能增强草带的水土保持效果,本研究中混播根系的抗剪强度增量高于单播,说明混播根系固土能力优于单播根系。虽然混播的抗剪强度增量高于单播,但与非洲狗尾草差异不显著,与紫花苜蓿达显著,表明混播提高固土能力的作用,因不同植物的搭配而不同,如何搭配混播植物以获得最大抗剪强度增量,仍需进一步研究。
本研究中单播紫花苜蓿处理单株平均根数56个,单播非洲狗尾草422个;混播2种草各有3株,若按单播处理相加计算,单株平均根数为239个,而实测的为341个,说明混播能增加单株根系的数量,这与朱亚琼等[24]的研究结果一致,根系数量的增加,对固土能力的提高是有利的,特别是在植物生长的初期。
本研究得出,与单播相比,混播丰富了根系的径级分布。混播在影响根系生长的同时,也会对土壤产生影响,不同作物种植在一起,根系分泌物和根际土壤的特征也会发生变化[25],这些变化如何影响抗剪强度增量,值得深入探究。
本研究中,混播根系抗剪强度增量与Rd、Rar和Q存在较好的相关性,且与Q的相关性最好,这与大部分单播草本植物是一致的。研究也表明紫花苜蓿的Rar、Q等特征值与ΔC间没有相关性,在类似研究中也发现此现象,这也提醒我们,不同植物的混播,其抗剪强度增量与根系特征值相关性可能会存在较大的差异。
5 结论混播紫花苜蓿和非洲狗尾草根系的抗剪强度增量高于单播,混播扩大根系的径级分布,增加单株根系的数量。混播根系抗剪强度增量与Rd、Rar和Q存在较好的相关性且与Q的相关性最好,可用Q预测混播根系增强的土体抗剪强度。
| [1] |
郑伟, 朱进忠, 加娜尔古丽, 等. 不同混播方式对豆禾混播草地生产性能的影响[J]. 中国草地学报, 2011, 33(5): 45. ZHENG Wei, ZHU Jinzhong, Jianaerguli, et al. Effects of different mixed sowing patterns on production performance of legume-grass mixture[J]. Chinese Journal of Grassland, 2011, 33(5): 45. |
| [2] |
TEKELI A S, ATES E. Yield potential and mineral composition of white clover (Trifolium repens L.) -tall fescue (Festuca arundinacea Schreb.) mixtures[J]. Journal of Central European Agriculture, 2005, 6(1): 27. |
| [3] |
字淑慧, 段青松, 吴伯志. 混播草带防治坡耕地水土流失效应的研究[J]. 农业工程学报, 2006, 22(5): 61. ZI Shuhui, DUAN Qingsong, WU Bozhi. Effects of mixed grass strip on reducing water and soil losses in sloping fields[J]. Transactions of the CSAE, 2006, 22(5): 61. DOI:10.3321/j.issn:1002-6819.2006.05.014 |
| [4] |
王金霞, 杨旸, 段青松, 等. 含根系土体抗剪强度试验研究进展[J]. 江苏农业科学, 2017(18): 36. WANG Jinxia, YANG Yang, DUAN Qingsong, et al. Research progress on shear strength test of soil containing roots[J]. Jiangsu Agricultural Sciences, 2017(18): 36. |
| [5] |
陈仲颐. 土力学[M]. 北京: 清华大学出版社, 1994: 174. CHEN Zhongyi. Soil mechanics[M]. Beijing: Tsinghua University Press, 1994: 174. |
| [6] |
段青松, 赵燚柯, 杨松, 等. 不同草本植物根系提高无侧限受压土体的抗剪强度[J]. 土壤学报, 2019, 56(3): 650. DUAN Qingsong, ZHAO Yike, YANG Song, et al. Effect of herb roots improving shear strength of unconfined compressed colum[J]. Acta Pedologica Sinica, 2019, 56(3): 650. |
| [7] |
KLEINFELDER D, SWANSON S, NORRIS G, et al. Unconfined compressive strength of some streambank soils with herbaceous roots[J]. Soil Science Society of America Journal, 1992, 56(6): 1920. DOI:10.2136/sssaj1992.03615995005600060045x |
| [8] |
COMINO E, DRUETTA A. The effect of Poaceae roots on the shear strength of soils in the Italian alpine environment[J]. Soil & Tillage Research, 2009, 106(2): 194. |
| [9] |
FAN C C, TSAI M H. Spatial distribution of plant root forces in root-permeated soils subject to shear[J]. Soil & Tillage Research, 2016(156): 1. |
| [10] |
刘秀萍, 陈丽华, 宋维峰, 等. 林木根系与黄土复合体的抗剪强度试验研究[J]. 北京林业大学学报, 2006, 28(5): 67. LIU Xiuping, CHEN Lihua, SONG Weifeng, et al. Study on the shear strength of forest root-loess composite[J]. Journal of Beijing Forestry University, 2006, 28(5): 67. DOI:10.3321/j.issn:1000-1522.2006.05.011 |
| [11] |
赵丽兵, 张宝贵, 苏志珠, 等. 草本植物根系增强土壤抗剪切强度的量化研究[J]. 中国生态农业学报, 2008, 16(3): 718. ZHAO Libing, ZHANG Baogui, SU Zhizhu, et al. Quantitative analysis of soil anti-shearing strength enhancement by the root systems of herb plants[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 718. |
| [12] |
刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区2种灌木植物根-土界面微观结构特征及摩擦特性试验[J]. 岩石力学与工程学报, 2018, 37(5): 1270. LIU Yabin, HU Xiasong, YU Dongmei, et al. Microstructural features and friction characteristics of the interface of shrub roots and soil in loess area of Xining Basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1270. |
| [13] |
ZHANG Chaobo, CHEN Lihua, LIU Yaping, et al. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength[J]. Ecological Engineering, 2010, 36(1): 19. DOI:10.1016/j.ecoleng.2009.09.005 |
| [14] |
DAZIO E, CONEDERA M, SCHWARZ M. Impact of different chestnut coppice managements on root reinforcement and shallow landslide susceptibility[J]. Forest Ecology & Management, 2018, 417: 63. |
| [15] |
BORDONI M, MEISINA C, VERCESI A, et al. Quantifying the contribution of grapevine roots to soil mechanical reinforcement in an area susceptible to shallow landslides[J]. Soil & Tillage Research, 2016(163): 195. |
| [16] |
栗岳洲, 付江涛, 余冬梅, 等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报, 2015, 34(7): 1370. LI Yuezhou, FU Jiangtao, YU Dongmei, et al. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1370. |
| [17] |
ZHANG Bin, ZHAO Qiguo, HORN R, et al. Shear strength of surface soil as affected by soil bulk density and soil water content[J]. Soil & Tillage Research, 2001, 59(3): 97. |
| [18] |
KARIZUMI N. Figure that tree roots[M]. Tokyo: Cheng Wen Tang Shinkosha, 1979: 110.
|
| [19] |
南京水利科学研究院. 中华人民共和国行业标准: 土工试验规程SL237-1999[M]. 北京: 中国水利水电出版社, 1999: 201. Nanjing Hydraulic Research Institute. People's Republic of China Industry Standard: Geotechnical test code SL237-1999[M]. Beijing: China Water Conservancy and Hydropower Press, 1999: 201. |
| [20] |
WALDRON L J. The shear resistance of root-permeated homogeneous and stratified soil[J]. Journal of the Soil Science Society of America, 1977, 41(5): 843. DOI:10.2136/sssaj1977.03615995004100050005x |
| [21] |
杨秀云, 韩有志. 关帝山华北落叶松人工林细根生物量空间分布及季节变化[J]. 植物资源与环境学报, 2008, 17(4): 37. YANG Xiuyun, HAN Youzhi. Spatial distribution and seasonal change of fine root biomass of Larix principis-rupprechtii plantation in Guandi Mountain[J]. Journal of Plant Resources and Environment, 2008, 17(4): 37. DOI:10.3969/j.issn.1674-7895.2008.04.007 |
| [22] |
段青松, 王金霞, 杨旸, 等. 金沙江干热河谷乡土草本植物根系提高土体抗剪强度及其模型预测[J]. 中国水土保持科学, 2017, 15(4): 87. DUAN Qingsong, WANG Jinxia, YANG Yang, et al. Soil anti-shear strength enhancement by indigenous herbaceous roots in Dry-hot Valley of Jinsha River and its modeling prediction[J]. Science of Soil and Water Conservation, 2017, 15(4): 87. |
| [23] |
胡其志, 周政, 肖本林, 等. 生态护坡中土壤含根量与抗剪强度关系试验研究[J]. 土工基础, 2010, 24(5): 85. HU Qizhi, ZHOU Zheng, XIAO Benlin, et al. Experimental research on relationship between root weight and shearing strength in soil[J]. Soil Engineering and Foundation, 2010, 24(5): 85. DOI:10.3969/j.issn.1004-3152.2010.05.027 |
| [24] |
朱亚琼, 郑伟, 王祥, 等. 混播方式对豆禾混播草地植物根系构型特征的影响[J]. 草业学报, 2018, 27(1): 73. ZHU Yaqiong, ZHENG Wei, WANG Xiang, et al. Effects plant spacing pattern on root morphological and architectural characteristics of legume-grass mixtures[J]. Acta Prataculturae Sinica, 2018, 27(1): 73. |
| [25] |
王婷, 李永梅, 王自林, 等. 间作对玉米根系分泌物及团聚体稳定性的影响[J]. 水土保持学报, 2018, 32(3): 188. WANG Ting, LI Yongmei, WANG Zilin, et al. Effects of intercropping on maize root exudates and soil aggregate stability[J]. Journal of Soil and Water Conservation, 2018, 32(3): 188. |