文章快速检索     高级检索
  中国水土保持科学   2021, Vol. 19 Issue (2): 135-150.  DOI: 10.16843/j.sswc.2021.02.017
0

引用本文 

赵帅, 蔡雄飞, 王济, 李晓燕, 李丁, 赵士杰, 郁鑫杰, 徐蝶. 原质及改性生物炭对土壤重金属污染物影响的研究进展[J]. 中国水土保持科学, 2021, 19(2): 135-150. DOI: 10.16843/j.sswc.2021.02.017.
ZHAO Shuai, CAI Xiongfei, WANG Ji, LI Xiaoyan, LI Ding, ZHAO Shijie, YU Xinjie, XU Die. Research progress on the effects of raw and modified biochar on soil heavy metal pollutants[J]. Science of Soil and Water Conservation, 2021, 19(2): 135-150. DOI: 10.16843/j.sswc.2021.02.017.

项目名称

贵州省科技支撑计划项目"喀斯特地区蔬菜地农业系统中重金属减控关键技术研究"([2017]2580)

第一作者简介

赵帅(1997-), 男, 硕士研究生。主要研究方向: 生物炭修复治理土壤重金属污染。E-mail: 1217771794@qq.com

通信作者简介

王济(1975-), 男, 博士, 教授。主要研究方向: 土壤重金属污染治理与修复。E-mail: wangji@gznu.edu.cn

文章历史

收稿日期:2020-07-20
修回日期:2021-02-04
原质及改性生物炭对土壤重金属污染物影响的研究进展
赵帅 1,2, 蔡雄飞 1,2, 王济 1,2, 李晓燕 1,2, 李丁 1,2, 赵士杰 1,2, 郁鑫杰 1,2, 徐蝶 1,2     
1. 贵州师范大学地理与环境科学学院, 550025;
2. 贵州省喀斯特山地生态环境国家重点实验室培育基地, 550025:贵阳
摘要:土壤重金属污染问题日益突出,已经对土壤生态环境造成严重危害。生物炭材料来源广泛、成本较低,在环境污染治理中应用较多,已成为当前环境污染功能材料中的研究热点。笔者介绍制备生物炭所需的生物质来源和制备技术,以及生物质原料和制备温度对生物炭性质的影响;讨论生物炭对重金属的吸附机理,并探析生物炭对土壤重金属污染物的修复效果;总结生物炭的改性方法以及改性后结构变化,阐述改性生物炭的性能提升和对重金属的修复效果。目前多数研究旨在探究生物炭对土壤中重金属污染物的修复效果和作用机制,但对生物炭的最终去向、循环利用和对土壤环境的负面影响等方面缺乏研究,未来的研究趋势应该着重于完善生物炭的选取标准和制备体系,避免生物炭对土壤环境造成二次污染。
关键词生物炭    改性    重金属污染    修复效果    
Research progress on the effects of raw and modified biochar on soil heavy metal pollutants
ZHAO Shuai 1,2, CAI Xiongfei 1,2, WANG Ji 1,2, LI Xiaoyan 1,2, LI Ding 1,2, ZHAO Shijie 1,2, YU Xinjie 1,2, XU Die 1,2     
1. School of Geography and Environmental Science, Guizhou Normal University, 550025;
2. The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, 550025:Guiyang, China
Abstract: [Background] Duo to the rapid development of modern society, soil heavy metal pollution becomes increasingly prominent, which seriously threatens the security of ecological environment. Biochar comes from a wide range of biological sources and of a low cost. It has a huge specific surface area, complex pore structure and abundant functional groups. With its excellent performance, it can effectively renovate soil heavy metal pollution, making it a research hotspot in a variety of environmental functional materials. With the complexity of soil heavy metal pollution types, it is necessary to modify biochar to achieve the purpose of improving the remediation effect. [Methods] In view of this research hotspot, numerous literature retrieval were carried out with "biochar", "soil heavy metal pollution", "passivation remediation" and "modified biochar" as keywords. These keywords appeared very frequently in relevant fields. Representative literatures were selected for analysis and integration. The characteristic and applications of biochar were briefly described, the remediation effects of biochar on heavy metal pollutants were summarized, and the modified biochar was emphatically discussed, and the properties of modified biochar and the changes of its effects on heavy metals were discussed. [Results] Biochar comes from a wide range of sources (agricultural wastes, sludge, fruit shells, and poultry dung), it is mainly prepared by low-temperature anoxic slow-speed pyrolysis technology. Its properties mainly depend on the types of biomass raw materials and pyrolysis conditions. The adsorption mechanism of biochar for heavy metals can be divided into surface adsorption (physical adsorption), surface complexation or precipitation, ion exchange and electrostatic attraction, which can effectively reduce the availability and migration of heavy metal pollutants in soil. After modification, the application performance of biochar is enhanced, for example, functional groups are introduced, impurities are removed and surface performance is improved. Remediation effect of heavy metal pollutants in soil is significantly improved. [Conculsions] The treatment of heavy metal contaminated soil by modified biochar has been quite effective, but at present, it is mainly in the laboratory stage or small-scale test stage, and there is a lack of large-scale in-situ experiments. The aging and final flow direction of biochar are not studied deeply enough. The selection of raw materials of biochar should follow the principle of taking local materials, and the secondary pollution of soil environment should be avoided in the process of treatment. Green environmental protection and efficiency is the development trend of biochar field.
Keywords: biochar    modification    heavy metal contamination    remediation effects    

随着现代社会的快速发展,工矿业和农业生产过程中排放的大量重金属(heavy metals, HMs)污染物进入土壤环境,严重危害土壤生态环境和生物健康[1-2]。生物质材料在缺氧、相对低温的条件下热解制备的高含碳固体物质称之为生物炭(biochar, BC)[3]。生物炭材料因其具有来源广泛、绿色环保、成本低廉等性质,成为治理HMs污染土壤的研究热点[4-5];BC具有高度芳香化和杂环化结构,这使它具备良好的吸附能力,可以有效地修复土壤环境中的HMs污染;它还具有复杂的孔隙结构、巨大的比表面积和丰富的表面基团,可为土壤中的微生物提供一定所需栖息环境和所需元素,提升微生物的活性和繁殖效率,对土壤HMs污染治理起到正面调节作用[6-7]。但当前土壤HMs污染情况复杂多样,原质BC不能满足现有需求且达不到研究效果,因此需要对原质BC材料进行改性处理,提升原质BC某方面性能,例如增大比表面积、孔隙复杂程度和改变表面的官能团物质类别,以此对HMs污染土壤达到更好的治理效果[8]。笔者介绍制备BC所需的生物质来源和生物炭制备技术,以及生物质原料和制备温度对BC性质的影响;讨论BC对HMs的吸附机制,并探析BC对土壤HMs污染物的修复效果;总结BC的改性方法以及改性后结构变化,阐述改性BC的性能提升和对HMs的修复效果。最后对BC修复HMs污染土壤的发展方向和情况进行总结和展望,希望为BC修复HMs污染土壤领域的研究和发展提供借鉴。

1 生物炭来源与制取 1.1 原料来源和制备过程

可用于制备BC的材料来源广泛,其中包含农林废弃物、污泥、果壳、家禽粪便等几种类型,不同研究采用的生物质原料和制备过程也有较大差别,表 1对一些研究中所涉及到的BC原料来源和制备过程进行总结。

表 1 生物炭的原料来源和制备 Tab. 1 Raw materials sources of biochar and preparations
1.2 制备工艺和影响性质的主要因素

BC由生物质原料通过热化学过程(缺氧或无氧条件下)制备。制备BC的工艺可分为快速热裂解、慢速热裂解、气化、水热炭化等几类。由表 2可知,几种制备方法的温度区间在175~1 500 ℃左右,气化法所需温度较高,制备过程须达到700~1 500 ℃高温和较高气压,且BC产率较低,只有10%左右,但是停留时间较短,只需几秒钟到几分钟,此法主要用于获取气相产物;而水热炭化法所需制备温度较低,且BC产量较高,可达到30%~60%,缺点是停留时间较长,需要几个小时时间,含水量高的生物质材料使用此方法进行BC的制备;大多数研究中采用慢速热裂解手段制备所需BC。

表 2 生物炭制备方法[15] Tab. 2 Biochar preparation methods[15]

BC的物化性质包括产率、灰分、挥发分、表面积、孔径、阳离子交换量等,受原料种类和热解条件影响较大[9-11]。动物粪便和植物秸秆的BC产率相差较大,因为其中的灰分和HMs含量差异显著,挥发分和灰分之间呈正相关关系[7]。研究发现,水葫芦、杨树枝和玉米秸秆BC的表面性质差异较大,水葫芦BC表面积更大,对Pb的吸附效率最高。温度是热解BC时的关键工艺参数,较高温度裂解制备的BC具有较高的pH、灰分含量、生物学稳定性和碳含量,BC的表面积、微孔量及疏水性也较高;较低温度裂解下吸附容量较高[12]。不考虑原料差异所带来的影响,热解温度决定了BC的比表面积和阳离子交换量(cation exchange capacity, CEC),只有在一定的温度范围内热解BC[13],才能使BC的表面积、孔径及阳离子交换量获得最大值[14],提高HMs污染物的去除效率。

2 生物炭对重金属的吸附机理和修复效果 2.1 吸附机理

为了研究BC对HMs的去除效果,需要明确其吸附过程的基本机制。一般可分为表面吸附(物理吸附)、表面络合或沉淀、离子交换和静电引力作用[7]。BC对HMs离子的表面吸附效果取决于BC对HMs离子的化学键力强度,也与HMs离子本身的性质有关,比表面积和孔隙结构也是影响BC吸附能力的关键因素,通常情况下,较大的比表面积和复杂的孔隙结构会强化BC的表面吸附能力;表面络合或沉淀则与BC表面的官能团种类和数量有直接关系,且BC表面的金属和矿物组分(CO32-、SiO32-和PO43-)也会对其产生影响;离子交换作用效果与BC表面的金属种类和性质相关;静电引力作用可分为2种情况:当HMs带负电荷时,会被BC表面带正电的官能团吸引;但带正电荷时就会被BC表面带负电的官能团吸引;详见图 1

图 1 生物炭对重金属吸附机理[7] Fig. 1 Mechanism of heavy metal adsorption by biochar[7]
2.2 对污染土壤中重金属的修复效果

土壤中HMs具有迁移性、不可降解性、稳定性和毒害性。BC孔隙结构复杂且发达,拥有巨大的比表面积和丰富的官能团,可以有效吸附土壤中的HMs并且降低其在土壤中的迁移性和生物有效性[15-16]。陈再明等[13]发现水稻秸秆BC中的有机碳和无机矿物组分对Pb2+可产生吸附作用,其最大的吸附量可达85.7 mg/g;实验表明,牛粪和稻杆BC可以降低Pb、Zn和Cd的TCLP形态含量[17],其中牛粪BC和稻杆对Pb的作用效果优良,可分别降低56.0%和35.8%的TCLP形态Pb含量,降低Pb的迁移性。在HMs污染土壤中施加BC,不仅可以提高土壤pH、增加CEC和土壤表面可变负电荷,还可降低土壤电动电位(zeta),HMs离子与BC发生键合作用后形成金属氢氧化物、碳酸盐或磷酸盐沉淀[18],明显降低某些HMs的有效态含量[19],减弱HMs生物有效性和毒性[20];徐楠楠等[21]在研究中得到与上述一致的结果,在施加玉米秸秆BC后土壤pH升高,Cd2+与OH-结合形成沉淀物Cd(OH)2;Xu等[22]通过研究发现也得到相似的结果,粪便BC可与大部分Cd形成金属磷酸盐和碳酸盐沉淀。BC还可以强化阳离子的吸附能力,抑制Pb的解吸并促进Pb3(CO3)2(OH)2、Pb2OF2沉淀产生;Dong等[23]通过研究发现BC中的P含量较高,其中溶解产生的可溶性P与Pb能够形成Ca2Pb8(PO4)6(OH)2和Pb10(PO4)6(OH)2沉淀;郭文娟等[24]热解棉花秸秆制备BC,在吸附Cd过程中加入电解质钠盐和钾盐(NaCl、NaNO3和KNO3)后,对BC与Cd2+的离子交换产生竞争,抑制BC对Cd2+的吸附,通过FTIR分析BC,发现水葫芦BC吸收Cd2+的量等于释放其他几种阳离子的量(K+、Ca2+、Na+和Mg2+),Cd2+与BC上的O—H和—CH2中含有的H+也可发生离子交换[25];袁启慧等[26]发现BC与HMs可形成络合物,BC中的CO可与Cd2+络合;因为BC种类繁多,且性质差异较大,所以研究效果存在差异性,在此基础上针对不同土壤环境和污染类型,深入研究BC的制备条件,提高BC性能和修复效率。

3 改性生物炭研究和对重金属修复效果 3.1 改性方法和结构变化

不同类型的BC性质有较大差异,从环境污染的角度出发,人们常通过物理、化学2类改性方法来提升BC自身性能。其中化学改性方法应用较为广泛,主要包括酸改性、碱改性、氧化剂改性、金属氧化物改性和碳质材料改性;物理改性主要包括蒸汽和汽化(图 2)。酸改性可以去除BC表面的金属等杂质,并且引入酸性官能团物质,常用到盐酸、硫酸、硝酸、磷酸、草酸和柠檬酸[27];碱改性可以提升BC的表面积,引入含氧官能团,常见的碱性改性剂有NaOH和KOH;通过加入不同的氧化剂,如H2O2、HNO3或KMnO4[28],也能起到引入含氧官能团的作用,还可以活化BC表面官能团并增加其活性点位;而金属氧化物改性可提升BC磁性,磁化介质能够长时间稳定存在于BC中,修复完成后BC和被修复对象易于分离,表面性能和吸附能力得到增强,一般采用金属Fe、Mg、Al和Mn作为金属氧化物;利用碳质材料改性可以提高BC的表面积;利用蒸汽和汽化改性BC,可提高BC的pH和比表面积,使其表面的孔隙结构复杂化,拥有更大的孔隙体积,增强其吸附能力[29]

图 2 生物炭改性方法[30] Fig. 2 Modification methods of biochar[30]

大多数研究发现,BC的结构如表面形态、孔径分配、表面积和表面官能团是影响BC吸附能力的关键性质,改性的目的是使BC获得更加突出的结构性能,以便在实际运用中发挥最大效力[31]。无论是化学改性还是物理改性,几乎都能改变原有BC的表面结构,使其表面塌陷或出现褶皱,从而提高BC的比表面积,但是少数研究发现在BC改性后,其孔洞被改性物质堵塞造成孔径和比表面积减小的情况(表 3)。因此对于不同的生物质原料应该选取不同的改性方法,尽量避免出现负面效应。

表 3 改性后生物炭结构性质变化 Tab. 3 Changes in structures and properties of biochar after modification
3.2 对重金属修复效果

相比于原质BC,改性BC施加进入HMs污染土壤后,对HMs的修复效果会得到不同程度的加强,提高HMs稳定形态含量,降低植物根际有效态HMs浓度。利用磷酸盐改性竹子生物炭,发现对Cd的吸附能力提升将近10倍,其去除效率可达到85.78%;由表 4可知,利用磷酸改性小麦秸秆,可以提升土壤pH,使Pb沉淀从而达到固定效果;而用聚乙烯亚胺改性玉米秸秆生物炭后,对Cr6+的最大吸附量可达到386.3 mg/g,对Cr6+的最大吸附效率达到95.94%,有着非常优良的吸附效果;通过大量研究结果表明,纳米零价铁BC性能优良,采用羧甲基纤维素来稳定纳米零价铁BC,当制备比例为2.5 g/kg时,对Cr6+的修复效率可达100%。

表 4 改性生物炭对重金属的修复效果 Tab. 4 Remediation effects of modified biochar on heavy metals

研究发现,在BC的结构中引入N、P和S基团能提高BC碱性和表面极性,使其电子结构发生改变,引入基团位点可以产生局部电荷累积的离域效应,局部的电荷密度对电子转移有重要作用,配位机制促进了分子的解离或吸附,可以增强对HMs离子的吸附效果[81]。在杨兰等[82]的研究中,原状Cd污染土壤中,几种改性BC都可以降低Cd的有效态和可交换态含量;在外源高含量Cd污染土壤中,也可以起到同样的效果,说明改性BC对于重金属迁移转化产生积极效应。目前,大多数改性BC应用在水中污染物的吸附或者去除,对土壤中HMs污染物的钝化研究相对较少[83],虽然BC治理土壤HMs污染物有着不错的效果,但对改性BC在热解后是否会产生有害毒素并对土壤造成二次污染的研究不足,是否会破坏土壤中原有的生态系统动态平衡也还不够清楚,未来应建全BC在HMs污染土壤中的应用规范,以期改性BC材料在土壤HMs污染原位修复领域中更加实用。

4 总结及展望

1) 原质BC在HMs污染土壤的修复治理中或许不够有效、高效和长效,针对不同类型的BC材料,通过适当的改性方法提升BC的自身性能,并尽可能控制成本和环境影响,提高HMs污染土壤治理成效。

2) 目前多数关于BC治理修复HMs污染土壤的研究还停留在实验室阶段或者小规模实验阶段,缺乏大规模原位实验,实验室条件与大田实验环境差异较大,缺乏自然环境因素对实验的影响。BC施加到土壤后长期暴露在自然环境中会出现老化的现象,老化后BC的修复效果可能会降低,还应探究老化带来的负面效果以及BC的流向问题。

2) BC材料来源广泛且类型和范围无专业划分标准,针对不同材料选取适当制备方法,探究不同类型BC材料的最佳热解条件将会决定BC修复治理土壤HMs的功效最大化能否实现。针对现有研究阶段的不足,利用当地特有的生物质原材料,探析当地主要的HMs污染类型,选取合适的生物质原料进行产业化推广应用,坚持绿色环保的理念合理运用BC材料,以免对环境造成二次污染。

5 参考文献
[1]
李江遐, 吴林春, 张军, 等. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 2015, 24(12): 2075.
LI Jiangxia, WU Linchun, ZHANG Jun, et al. Research progress in remediation of heavy metal contaminated soils by biochar[J]. Ecology and Environmental Sciences, 2015, 24(12): 2075.
[2]
谢金亮, 张建锋, 刘永兵, 等. 白云鄂博稀土伴生矿区土壤重金属污染及其环境评价[J]. 中国水土保持科学, 2020, 18(2): 92.
XIE Jinliang, ZHANG Jianfeng, LIU Yongbing, et al. Heavy metal pollution and environmental assessment in the soil of the rare earth associated mining area in Bayan Obo[J]. Science of Soil and Water Conservation, 2020, 18(2): 92.
[3]
CAO Xinde, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222. DOI:10.1016/j.biortech.2010.02.052
[4]
BUSTIN R M, GUO Yingting. Abrupt changes(jumps) in reflectance values and chemical composition of artificial charcoals and inertinite in coals[J]. International Journal of Coal Geology, 1999, 38(3/4): 237.
[5]
MUNIR M A M, LIU Guijian, YOUSAF B, et al. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil[J]. Chemosphere, 2019(240): 124845.
[6]
WANG Shengsen, GAO Bin, ZIMMERMAN A R, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass[J]. Chemosphere, 2015(134): 257.
[7]
王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692.
WANG Chongqing, WANG Hui, JIANG Xiaoyan, et al. Research advances on adsorption of heavy metals by biochar[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692.
[8]
黄安香, 杨定云, 杨守禄, 等. 改性生物炭对土壤重金属污染修复研究进展[J]. 化工进展, 2020, 39(12): 5266.
HUANG Anxiang, YANG Dingyun, YANG Shoulu, et al. Advance in remediation of heavy metal pollution in soil by modifiedbiochar[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5266.
[9]
王宏胜, 唐朝生, 巩学鹏, 等. 生物炭修复重金属污染土壤研究进展[J]. 工程地质学报, 2008, 26(4): 1064.
WANG Hongsheng, TANG Chaosheng, GONG Xuepeng, et al. Research progress in remediation of heavy metal contaminated soils with biochar[J]. Journal of Engineering Geology, 2008, 26(4): 1064.
[10]
马献发, 李伟彤, 孟庆峰, 等. 生物炭对土壤重金属形态特征及迁移转化影响研究进展[J]. 东北农业大学学报, 2017, 48(6): 82.
MA Xianfa, LI Weitong, MENG Qingfeng, et al. Research advance on biochars of the speciation, mobility and transfer of heavy metals in soils[J]. Journal of Northeast Agricultural University, 2017, 48(6): 82. DOI:10.3969/j.issn.1005-9369.2017.06.011
[11]
王红, 夏雯, 卢平, 等. 生物炭对土壤中重金属铅和锌的吸附特性[J]. 环境科学, 2017, 38(9): 3944.
WANG Hong, XIA Wen, LU Ping, et al. Adsorption characteristics of biochar on heavy metals (Pb and Zn) in soil[J]. Environmental Science, 2017, 38(9): 3944.
[12]
安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11): 1851.
AN Zengli, HOU Yanwei, CAI Chao, et al. Lead (Ⅱ) adsorption characteristics on different biochars derived from rice straw[J]. Environmental Chemistry, 2011, 30(11): 1851.
[13]
陈再明, 方远, 徐义亮, 等. 水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4): 769.
CHEN Zaiming, FANG Yuan, XU Yiliang, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4): 769.
[14]
何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1.
HE Xusheng, GENG Zengchao, SHE Diao, et al. Implications of production and agricultural utilization of biochar and its international dynamic[J]. Transactions of the CSAE, 2011, 27(2): 1.
[15]
MOHAN D, SARSWAT A, OK Y S, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: A critical review[J]. Bioresource Technology, 2014(160): 191.
[16]
CUI Liqiang, PAN Genxing, LI Lianqing, et al. The reduction of wheat Cd uptake in contaminated soil via biochar amendment: A two-year field experiment[J]. BioResources, 2012, 7(4): 5666.
[17]
王济, 李丁, 宣斌, 等. 有机物料对土壤Pb有效态作用机理及影响效果研究进展[J]. 贵州师范大学学报(自然科学版), 2018, 36(2): 107.
WANG Ji, LI Ding, XUAN Bin, et al. Review on the mechanism and effect of organic materials on available Pb in soil[J]. Journal of Guizhou Normal University(Natural Sciences), 2018, 36(2): 107. DOI:10.3969/j.issn.1004-5570.2018.02.019
[18]
PARK J H, CHOPPALA G, LEE S J, et al. Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils[J]. Water, Air, & Soil Pollution, 2013(224): 1711. DOI:10.1007%2Fs11270-013-1711-1
[19]
臧晓梅, 缪爱军, 郑浩, 等. 3种修复剂对底泥中不同形态重金属去除效果评估[J]. 环境工程学报, 2017, 11(8): 4585.
ZANG Xiaomei, LIAO Aijun, ZHENG Hao, et al. Efficiency of three remediation agents on removal of heavy metals or metalloids from sediments[J]. Chinese Journal of Environmental Engineering, 2017, 11(8): 4585.
[20]
CAO Xinde, MA Lena, GAO Bin, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine.[J]. Environ. Sci. Technol., 2009, 43(9): 3285. DOI:10.1021/es803092k
[21]
徐楠楠, 林大松, 徐应明, 等. 玉米秸秆生物炭对Cd2+吸附特性及影响因素[J]. 农业环境科学学报, 2014, 33(5): 958.
XU Nannan, LIN Dasong, XU Yingming, et al. Adsorption of aquatic Cd2+ by biochar obtained from corn stover[J]. Journal of Agro-Environment Science, 2014, 33(5): 958.
[22]
XU Xiaoyun, CAO Xinde, ZHAO Ling. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars[J]. Chemosphere, 2013, 92(8): 955. DOI:10.1016/j.chemosphere.2013.03.009
[23]
DONG Xiaoling, MA L Q, LI Yuncong. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 2011, 190(1/3): 909.
[24]
郭文娟, 梁学峰, 林大松, 等. 土壤重金属钝化修复剂生物炭对镉吸附特性研究[J]. 环境科学, 2013, 34(9): 3716.
GUO Wenjuan, LIANG Xuefeng, LIN Dasong, et al. Adsorption of Cd2+ on biochar from aqueous solution[J]. Environmental Science, 2013, 34(9): 3716.
[25]
HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13): 5550.
[26]
袁启慧, 包立, 张乃明. 钝化剂种类和粒径对复合污染土壤镉铅有效态的影响[J]. 农业资源与环境学报, 2019, 36(2): 192.
YUAN Qihui, BAO Li, ZHANG Naiming. The effect of type and particle size of passivator on effective state of Cd and Pb in compound polluted soil[J]. Journal of Agricultural Resources and Environment, 2019, 36(2): 192.
[27]
RAJAPAKSHA A U, CHEN S S, TSANG D C, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere, 2016(148): 276.
[28]
LI Yunchao, SHAO Jingai, WANG Xiaohua, et al. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component(furfural) adsorption[J]. Energy and Fuels, 2014, 28(8): 5119. DOI:10.1021/ef500725c
[29]
HASS A, GONZALEZ J M, LIMA I M, et al. Chicken manure biochar as liming and nutrient source for acid Appalachian soil[J]. Journal of Environmental Quality, 2012, 41(4): 1096. DOI:10.2134/jeq2011.0124
[30]
WANG Jianlong, WANG Shizong. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019(227): 1002.
[31]
QIAN Kezhen, KUMAR A, ZHANG Hailin, et al. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 2015(42): 1055.
[32]
王楠, 吴玮, 杨春光, 等. 盐酸改性松针生物炭对磺胺甲噁唑的吸附性能[J]. 环境工程学报, 2020, 14(6): 1428.
WANG Nan, WU Wei, YANG Chunguang, et al. Adsorption performance of hydrochloric acid-modified pine needle biochar on sulfamethoxazolef[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1428.
[33]
杨奇亮, 吴平霄. 改性多孔生物炭的制备及其对水中四环素的吸附性能研究[J]. 环境科学学报, 2019, 39(12): 3973.
YANG Qiliang, WU Pingxiao. Preparation of modified porous biochar and its adsorption properties for tetracycline in water[J]. Acta Scientiae Circumstantiae, 2019, 39(12): 3973.
[34]
CHEN Baoliang, CHEN Zaiming, LÜ Shaofang. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102(2): 716. DOI:10.1016/j.biortech.2010.08.067
[35]
INYANG M, GAO Bin, PULLAMMANAPPALLIL P, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 2010, 101(22): 8868. DOI:10.1016/j.biortech.2010.06.088
[36]
周书葵, 田林玉, 荣丽杉, 等. 3种固定剂联合修复铀尾矿污染土壤[J]. 精细化工, 2020, 37(10): 2105.
ZHOU Shukui, TIAN Linyu, RONG Lishan, et al. Remediation of uranium contaminated soil with three combined stabilizers[J]. Fine Chemicals, 2020, 37(10): 2105.
[37]
吴丹萍, 李海红, 张田田. ZnCl2/AlCl3改性生物炭的甲基紫吸附特性研究[J]. 化工新型材料, 2020, 48(8): 227.
WU Danping, LI Haihong, ZHANG Tiantian. Study on adsorption characteristics of methyl violet by modified biochar[J]. New Chemical Materials, 2020, 48(8): 227.
[38]
王思源, 申健, 李盟军, 等. 不同改性生物炭功能结构特征及其对铵氮吸附的影响[J]. 生态环境学报, 2019, 28(5): 1037.
WANG Siyuan, SHEN Jian, LI Mengjun, et al. Functional and structural characteristics of different modified biochar and its impacts on ammonium nitrogen adsorption[J]. Ecology and Environmental Sciences, 2019, 28(5): 1037.
[39]
郭晓慧, 康康, 于秀男, 等. 磁改性柚子皮与杏仁壳生物炭的理化性质研究[J]. 农业工程学报, 2018, 34(S1): 164.
GUO Xiaohui, KANG Kang, YU Xiunan, et al. Study on physicochemical properties of magnetic modified biocharderived from pyrolysis of pomelo peel and apricot keanel shell[J]. Transactions of the CSAE, 2018, 34(S1): 164.
[40]
胡术刚, 栾小凯, 颜昌宙, 等. 改性生物炭的制备及其对水中镉离子的吸附试验[J]. 环境工程, 2019, 37(5): 12.
HU Shugang, LUAN Xiaokai, YAN Changyu, et al. Preparation of modified biochar and its adsorption for cadmium ions in water[J]. Environmental Engineering, 2019, 37(5): 12.
[41]
吴鸿伟, 陈萌, 黄贤金, 等. 改性生物炭对水体中头孢噻肟的吸附机制[J]. 中国环境科学, 2018, 38(7): 2527.
WU Hongwei, CHEN Meng, HUANG Xianjin, et al. Preparation of modified biochar for adsorption of cefotaxime in solution[J]. China Environmental Science, 2018, 38(7): 2527. DOI:10.3969/j.issn.1000-6923.2018.07.018
[42]
马艳茹, 孟海波, 沈玉君, 等. 改性生物炭对沼液氨氮的吸附效果研究[J]. 中国农业科技导报, 2018, 20(11): 135.
MA Yanru, MENG Haibo, SHEN Yujun, et al. Research on adsorption effect of ammonia-nitrogen from biogas slurry by modified biochar[J]. Journal of Agricultural Science and Technology, 2018, 20(11): 135.
[43]
孙晓杰, 秦永丽, 伍贝贝, 等. 硅烷偶联剂改性生物炭的疏水性能优化试验[J]. 环境科学与技术, 2019, 42(12): 68.
SUN Xiaojie, QIN Yongli, WU Beibei, et al. Optimization of hydrophobic properties of biochar modified by silane coupling agent[J]. Environmental Science & Technology, 2019, 42(12): 68.
[44]
陈友媛, 李培强, 李闲驰, 等. 浒苔生物炭对雨水径流中氨氮的吸附特性及吸附机制[J/OL]. 环境科学: 1-19[2020-08-19]. https://doi.org/10.13227/j.hjkx.202004051.
CHEN Youyuan, LI Peiqiang, LI Xianchi, et al. Effect of Enteromorpha prolifera biochar on the adsorption characteristics and adsorption mechanisms of ammonia nitrogen in rainfall runoff[J/OL]. Environmental Science: 1-19[2020-08-19]. https://doi.org/10.13227/j.hjkx.202004051.
[45]
张悍, 吴亦潇, 万亮, 等. 碱改性米糠炭对水中四环素的吸附性能研究[J]. 水处理技术, 2020, 46(6): 20.
ZHANG Han, WU Yixiao, WAN Liang, et al. Study on adsorption performance of alkali-modified rice bran biochar for tetracycline in water[J]. Technology of Water Treatment, 2020, 46(6): 20.
[46]
何红艳, 邹思佳. 介孔生物炭的合成、改性及其对染料的吸附性能研究[J]. 化学试剂, 2020, 42(10): 1148.
HE Hongyan, ZOU Sijia., et al. Preparation and modification of mesoporous biochar and adsorption properties for dyes[J]. Chemical Reagents, 2020, 42(10): 1148.
[47]
叶益辰, 孙雨晴, 萨仁格日乐, 等. 磷酸改性生物炭-LDHs(Mg-Al-NO3)复合材料对双酚A的吸附[J]. 环境化学, 2020, 39(1): 61.
YE Yichen, SUN Yuqing, SA Rengerile, et al. Adsorption of bisphenol a by phosphoric acid modified biochar-LDHs(Mg-Al-NO3) composite[J]. Environmental Chemistry, 2020, 39(1): 61.
[48]
孟庆梅, 孟迪, 张艳丽, 等. 榴莲壳生物炭对磺胺嘧啶的吸附性能[J]. 化工进展, 2020, 39(11): 4651.
MENG Qingmei, MENG Di, ZHANG Yanli, et al. Adsorption characteristics of biochar prepared by durian shell on sulfadiazine[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4651.
[49]
安强, 乔卢阿里·科阿里, 金琳, 等. 氯化锌改性玉米秸秆生物炭对Cr(Ⅵ)的吸附特性研究[J]. 重庆大学学报, 2020, 43(10): 104.
AN Qiang, CHORLOUALY K, JIN Lin, et al. Study on adsorption property of Cr(VI) by Corn Stalk Biochar modified byzincchloride[J]. Journal of Chongqing University, 2020, 43(10): 104.
[50]
李安玉, 李双莉, 余碧戈, 等. 镁浸渍生物炭吸附氨氮和磷: 制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683.
LI Anyu, LI Shuangli, YU Biyi, et al. Adsorption of ammonia nitrogen and phosphorus by magnesium impregnated biochar: Preparation optimization and adsorption mechanism[J]. CIESC Journal, 2020, 71(4): 1683.
[51]
王鹏飞, 郅蒙蒙, 储昭升, 等. 生物质粒径对负载MgO生物炭吸附水体中磷的影响[J/OL]. 环境科学: 1-11[2020-08-19]. https://doi.org/10.13227/j.hjkx.202005063.
WANG Pengfei, ZHI Mengmeng, CHU Zhaosheng, et al. Effect of biomass particle size on the adsorption of phosphorus from the aqueous solution by MgO-loaded biochar[J/OL]. Environmental Science: 1-11[2020-08-19]. https://doi.org/10.13227/j.hjkx.202005063.
[52]
智燕彩, 赖欣, 谭炳昌, 等. 铁锰镁离子改性生物炭对溶液硝态氮的吸附性能研究[J]. 核农学报, 2020, 34(7): 1588.
ZHI Caiyan, LAI Xin, TAN Bingchang, et al. Adsorption of nitrate by iron, manganese and magnesium ion modified biochars[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1588.
[53]
乔洪涛, 乔永生, 秦瑞红, 等. 微波酸改性生物炭的制备及其对Cd2+的吸附性能研究[J]. 化工新型材料, 2020, 48(4): 212.
QIAO Hongtao, QIAO Yongsheng, QIN Ruihong, et al. Adsorptive characteristics of Cd2+ in solution by MBC[J]. New Chemical Materials, 2020, 48(4): 212.
[54]
储刚, 赵婧, 刘洋, 等. 氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为[J]. 环境化学, 2018, 37(3): 462.
CHU Gang, ZHAO Jing, LIU Yang, et al. Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment[J]. Environmental Chemistry, 2018, 37(3): 462.
[55]
BAHARUM N A, NASIR H M, ISHAK M Y, et al. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell modified biochar[J]. Arabian Journal of Chemistry, 2020, 13(7): 6106.
[56]
PANDI K, PRABHU S M, CHOI J. Fabrication of lanthanum methanoateon sucrose-derived biomass carbon nanohybrid for the efficient removal of arsenate from water[J]. Chemosphere, 2020(262): 127596.
[57]
ZHANG Xu, GANG D D, SUN Peizhe, et al. Goethite dispersed corn straw-derived biochar for phosphate recovery from synthetic urine and its potential as a slow-release fertilizer[J]. Chemosphere, 2021(262): 127861.
[58]
OGINNI O, YAKABOYLU G A, SINGH K, et al. Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources[J]. Journal of Environmental Chemical Engineering, 2021, 8(2): 103723.
[59]
AJMAL Z, MUHMOOD A, DON R, et al. Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal[J]. Journal of Environmental Management, 2020(253): 109730.
[60]
SONG Jingpeng, ZHANG Shuaishuai, LI Guixianng, et al. Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal[J]. Journal of Hazardous Materials, 2020(391): 121692.
[61]
WANG Yue, YANG Qixia, CHEN Jiacheng, et al. Adsorption behavior of Cr(VI) by magnetically modified Enteromorpha prolifera based biochar and the toxicity analysis[J]. Journal of Hazardous Materials, 2020(395): 122658.
[62]
GODLEWAKA P, BOGUSZ A, DOBROWOLSKI R, et al. Engineered biochar modified with iron as a new adsorbent for treatment of water contaminated by selenium[J]. Journal of Saudi Chemical Society, 2020, 24(11): 824.
[63]
YIN Daixia, WANG Xin, PENG Bo, et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J]. Chemosphere, 2017(186): 928.
[64]
张学庆, 费宇红, 田夏, 等. 磷改性生物炭对Pb、Cd复合污染土壤的钝化效果[J]. 环境污染与防治, 2017, 39(9): 1017.
ZHANG Queqing, FEI Yuhong, TIAN Xia, et al. The passivation effect of Pb, Cd composite polluted soil by phosphorus-modified biochar[J]. Environmental Pollution & Control, 2017, 39(9): 1017.
[65]
KHAN M A, AQADAMIL A A, OTERO M, et al. Heteroatom-doped magnetic hydrochar to remove post-transition and transition metals from water: Synthesis, characterization, and adsorption studies[J]. Chemosphere, 2019(218): 1089.
[66]
ZHANG Shihong, ZHANG Han, CAI Ji'an, et al. Evaluation and prediction of cadmium removal from aqueous solution by phosphate-modified activated bamboo biochar[J]. Energy & Fuels, 2017, 32(4).
[67]
周志云, 马文连, 周振, 等. 磷酸改性生物炭和氯混施对土壤铅形态及小麦铅吸收的影响[J]. 农业环境科学学报, 2018, 37(5): 899.
ZHOU Zhiyun, MA Wenlian, ZHOU Zhen, et al. Effects of phosphoric-acid-modified biochar combined with chlorine on soil lead form and lead absorption in wheat[J]. Journal of Agro-Environment Science, 2018, 37(5): 899.
[68]
YU Zhihong, QIU Weiwen, WANG Fei, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar[J]. Chemosphere, 2017(168): 341.
[69]
ISLAM M S, CHEN Yali, WENG Liping, et al. Watering techniques and zero-valent iron biochar pH effects on As and Cd concentrations in rice rhizosphere soils, tissues and yield[J]. Journal of Environmental Sciences, 2021(100): 144.
[70]
CHEN Dun, WANG Xiaobing, WANG Xiaoli, et al. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil[J]. Science of the Total Environment, 2020(714): 136550.
[71]
SHI Yueyue, SHAN Rui, LU Lili, et al. High-efficiency removal of Cr(VI) by modified biochar derived from glue residue[J]. Journal of Cleaner Production, 2020(254): 119935.
[72]
荣嵘, 张瑞雪, 吴攀, 等. AMD铁絮体改性生物炭对重金属吸附机理研究-以Pb(Ⅱ)为例[J]. 环境科学学报, 2020, 40(3): 959.
RONG Rong, ZHANG Ruixue, WU Pan, et al. The adsorption mechanisms of heavy metals by the biochar modified by AMD iron floc: Taking Pb(Ⅱ) as an example[J]. Acta Scientiae Circumstantiae, 2020, 40(3): 959.
[73]
陆嫚嫚, 马洁晨, 张学胜, 等. MnOx负载生物质炭对Cu2+、Zn2+的吸附机理研究[J]. 农业环境科学学报, 2018, 37(10): 2297.
LU Manman, MA Jiecheng, ZHANG Xuesheng, et al. The properties and mechanism of Cu2+ and Zn2+ sorption by MnOx-loaded biochar[J]. Journal of Agro-Environment Science, 2018, 37(10): 2297.
[74]
徐建玲, 张頔, 聂苗青, 等. PEI功能化秸秆生物炭对水中Cr6+的吸附性能[J]. 高等学校化学学报, 2020, 41(1): 155.
XU Jianling, ZHANG Di, NIE Miaoqing, et al. Adsorption of Cr6+ on polyethyleneimine-functionalized straw biochar from aqueous solution[J]. Chemical Journal of Chinese Universities, 2020, 41(1): 155.
[75]
孙彤, 李可, 付宇童, 等. 改性生物炭对弱碱性Cd污染土壤钝化修复效应和土壤环境质量的影响[J]. 环境科学学报, 2020, 40(7): 2571.
SUN Tong, LI Ke, FU Yutong, et al. Effect of modified biochar on immobilization remediation of weakly alkaline Cd-contaminated soil and environmental quality[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2571.
[76]
孟繁健, 朱宇恩, 李华, 等. 改性生物炭负载nZVI对土壤Cr(VI)的修复差异研究[J]. 环境科学学报, 2017, 37(12): 4715.
MENG Fanjian, ZHU Yuen, LI Hua, et al. Effects of the remediation of Cr (VI) in soil by nanoscale zero-valent iron (nZVI) with modified biochar[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4715.
[77]
周春地, 阳婷, 闵熙泽, 等. 零价铁、铜改性生物炭及其对Cr(Ⅵ)吸附性能的影响[J]. 化工进展, 2020, 39(10): 4275.
[78]
WU Huihui, WEI Wenxia, XU Congbin, et al. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr (VI)[J]. Ecotoxicology and Environmental Safety, 2020(188): 109902.
[79]
ZHANG Runyuan, ZHANG Nuanqin, FANG Zhanqiang. In situ remediation of hexavalent chromium contaminated soil by cmc-stabilized nanoscale zero-valent iron composited with biochar[J]. Water Science Technology, 2018, 77(6): 1622.
[80]
梁婷, 李莲芳, 朱昌雄, 等. 铈锰改性生物炭对土壤As的固定效应[J]. 环境科学, 2019, 40(11): 5114.
LIANG Ting, LI Lianfang, ZHU Changxiong, et al. Cerium-manganese modified biochar immobilizes arsenic in farmland soils[J]. Environmental Science, 2019, 40(11): 5114.
[81]
HUANG Xixian, LIU Yunguo, LIU Shaobo, et al. Effective removal of Cr(VI) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles[J]. RSC Advances, 2016, 6(1): 94.
[82]
杨兰, 李冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应[J]. 环境科学, 2016, 37(9): 3562.
YANG Lan, LI Bing, WANG Changquan, et al. Effect of modified biochars on soil cadmium stabilization in paddy soil suffered from original or exogenous contamination[J]. Environmental Science, 2016, 37(9): 3562.
[83]
RAJAPAKSHA A U, CHEN S S, TSANG D C W, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere, 2016(148): 276.