文章快速检索     高级检索
  中国水土保持科学   2021, Vol. 19 Issue (1): 115-121.  DOI: 10.16843/j.sswc.2021.01.014
0

引用本文 

夏振尧, 洪焕, 高峰, 邵艳艳, 肖海, 杨悦舒, 李铭怡, 许文年. 水泥添加量及其养护时长对基材抗蚀性的影响[J]. 中国水土保持科学, 2021, 19(1): 115-121. DOI: 10.16843/j.sswc.2021.01.014.
XIA Zhenyao, HONG Huan, GAO Feng, SHAO Yanyan, XIAO Hai, YANG Yueshu, LI Mingyi, XU Wennian. Influence of cement addition amount and maintenance duration on the erosion resistance for ecological restoration substrate[J]. Science of Soil and Water Conservation, 2021, 19(1): 115-121. DOI: 10.16843/j.sswc.2021.01.014.

项目名称

国家重点研发计划项目课题"西南高山亚高山区工程创面生态修复关键材料制备与优化应用技术"(2017YFC0504902);国家自然基金青年科学基金项目"基于稀土元素示踪的植物篱对三峡库区坡耕地侵蚀-沉积分布的影响机制"(41807068);长江科学院开放研究基金"三峡库区消落带时空变化对侵蚀过程的影响及其动力机制"(CKWV2018488/KY)

第一作者简介

夏振尧(1981-), 男, 博士, 教授。主要研究方向: 边坡生态防护。E-mail: xzy_yc@126.com

通信作者简介

肖海(1988-), 男, 博士, 讲师。主要研究方向: 土壤侵蚀机理与生态防护。E-mail: oceanshawctgu@126.com

文章历史

收稿日期:2019-09-25
修回日期:2020-09-06
水泥添加量及其养护时长对基材抗蚀性的影响
夏振尧 1,2, 洪焕 1, 高峰 1, 邵艳艳 1, 肖海 1,2, 杨悦舒 1, 李铭怡 1, 许文年 1,2     
1. 三峡库区地质灾害教育教育部重点实验室(三峡大学), 443002, 湖北宜昌;
2. 三峡库区生态环境教育部工程研究中心, 443002, 湖北宜昌
摘要:为研究水泥添加量及其养护时长对基材抗蚀性的影响,在黄棕壤中掺入不同水泥添加量(0、2%、4%、6%和8%),并设定5个养护时长(0、7、15、30和45 d)进行养护,在坡度为20°、径流量25 L/min的水力条件下测定生态修复基材分离能力,并分析团聚体稳定性。结果表明:随着养护时间的增加,各水泥添加量的生态修复基材分离能力逐渐减小。同一养护时间下,生态基材的分离能力随着水泥添加量的增加呈现先快速减小后慢速减小的变化趋势。同一水泥添加量下,生态修复基材团聚体平均质量直径(MWD)及几何平均直径(GMD)在养护时长15 d内时呈现显著性差异;同一养护时间下,生态修复基材水稳性团聚体的MWD和GMD在水泥添加量6%以内时呈现显著性差异。幂函数关系能够很好地描述生态修复基材的MWD和GMD与分离能力之间的关系。
关键词分离能力    水泥添加量    养护时长    团聚体    
Influence of cement addition amount and maintenance duration on the erosion resistance for ecological restoration substrate
XIA Zhenyao 1,2, HONG Huan 1, GAO Feng 1, SHAO Yanyan 1, XIAO Hai 1,2, YANG Yueshu 1, LI Mingyi 1, XU Wennian 1,2     
1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University), Ministry of Education, 443002, Yichang, Hubei, China;
2. Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, 443002, Yichang, Hubei, China
Abstract: [Background] Engineering construction can not only promote social and economic development, but also easily cause various environmental geological problems, especially many exposed slopes caused by traffic, mining, hydropower, and other engineering construction. Artificial ecological restoration is carried out to limit the negative effects, and the cement is usually added as binder into the ecological restoration substrate to improve its erosion resistance, however, the effects of cement addition amounts and maintenance duration on the erosion resistance for ecological restoration substrate are still unclear. [Methods] The amounts of different cement (0, 2%, 4%, 6% and 8%) were added to per 100 kg of the yellow brown soil with 6% organic materials and 4% habitat substrate modifier improver. The uniformly mixed materials were packed in a self-made ring knife (105 mm in diameter and 50 mm in height) to obtain a bulk density of 1.35 g/cm3 and maintenance with different durations (0, 7, 15, 30 and 45 d). The scouring experiment was conducted to obtain detachment capacity under the hydraulic conditions of slope 20° and runoff 25 L/min, and the stability of soil aggregate was also tested. [Results] 1) The detachment capacity of the ecological restoration substrate gradually reduced with the increasing of the maintenance duration under the same amount of cement addition. The detachment capacity of ecological restoration substrate was large within the first 15 d and the first 7 d at the 2%, 4% and at 6%, 8% of cement addition amounts, respectively. In addition, the detachment capacity of the ecological restoration substrate also decreased with the increasing of cement addition amount and was characterized by a rapid decrease followed by a gradual decrease under the same maintenance duration. 2) The power functions well described the relationship between the detachment capacity of ecological restoration substrate and the maintenance duration under different amount of cement addition (R2>0.789). And the relationship between the detachment capacity of ecological restoration substrate and the cement addition amount also described by power functions for different maintenance duration (R2>0.861). 3) The Mean Weight Diameter (MWD) and Geometric Mean Diameter (GMD) for the ecological restoration substrate aggregates showed significantly difference within 0-15 d maintenance duration while no significantly difference after then. The MWD and GMD for the ecological restoration substrate aggregates showed significant difference between with and without cement addition, and significant difference was found within the 6% of cement addition amount while no significant difference between 6% and 8% of cement addition amount existed for most maintenance duration. The relationship between the detachment capacity of ecological restoration substrate and MWD and GMD can be described by using the power function. [Conclusions] The detachment capacity suppresses while the aggregate stability enhances after the cement added into the ecological restoration substrate.
Keywords: detachment capacity    cement addition amount    maintenance duration    aggregate    

随着我国经济的迅速发展,大规模基础建设也越来越多,随之带来的生态环境问题日益凸显。为提高土壤抗侵蚀能力,水泥作为粘结剂添加于生态护坡基材之中,并得到了广泛应用[1-3]。然而水泥添加量及其养护时长对基材抗蚀性的影响尚不明确。

土壤侵蚀是土壤及其母质受水力、重力、风力等外力作用,在人为和自然因素影响下发生的各种破坏、分离、沉积和搬运的现象[4]。分离是土壤侵蚀整个过程中的初始阶段,它在土壤侵蚀的整个过程中具有非常重要的作用[5]。土壤分离能力是指清水径流在单位时间、单位面积内,从土体上分离出的土壤量,即最大土壤分离速率[5-7]。分离能力是确定土壤可蚀性和临界剪切力的前提条件,是描述土壤抗蚀能力的重要参数,分离能力越大,抗冲性越弱。

土壤团聚体作为土壤结构的基本单元,对侵蚀过程存在着重要影响[8],团聚体稳定性与土壤抗蚀性存在密切关系。前人研究结果表明水稳性团聚体含量、团聚体稳定性等指标可以成为土壤抗蚀性的重要指标[9-14]。水泥作为粘结材料,能够增加生态修复基材中大粒级的团聚体含量并减少小粒级的团聚体含量[15]。而水泥添加量及其养护时长对团聚体稳定性的影响仍需要进一步明确。

笔者设置不同水泥添加量和不同养护时长参数,分析水泥对生态修复基材分离能力与生态修复基材团聚体稳定性的影响,并分析生态修复基材团聚体稳定性与土壤分离能力之间的关系,为揭示水泥添加对生态修复基材抗冲性的影响提供科学依据,并为生态修复基材水土保持提供理论依据。

1 材料与方法

本试验于三峡大学地学楼前的试验场地中开展。试验土壤为湖北省宜昌市典型土壤类型黄棕壤。试验前将土取回风干后过5 mm筛,装入编织袋中待用。水泥采用的是华新水泥(宜昌)有限公司生产的普通水泥(P.O 42.5)。生境基材改良剂采用三峡大学生产的专利产品(专利号:01138343.7),有机物料采用宜昌夜明珠华鑫木材厂的锯末,试验用水采用地下水。

试验用样参照一种常用的水泥基生态修复基材—植被混凝土生态修复基材配合比进行配置:以土壤100 kg为基准,设置5种(0%、2%、4%、6%和8%)水泥添加量(质量比),另添加6%的有机物料和4%的生境基材改良剂。将所有材料混合均匀后,电子秤称取等量混合物装填于自制环刀(直径100.5 mm,高50 mm)中,逐层压实并在层间打毛处理以避免分层,最终形成密度为1.35 g/cm3 的试样。然后将试样放于塑料盒中进行室内洒水养护,分别养护至0、7、15、30、45 d时,供冲刷试验使用。

冲刷试验在长5 m、宽0.4 m、深0.3 m的水槽内进行,水槽升降端有一深度为0.5 m的稳流池以确保试验过程中径流的稳定流出。试验前一天,对养护至设计时长试样进行饱和处理以消除含水率的影响。将调整坡度到20°并将流量率定至25 L/min以形成稳定的水力条件进行冲刷试验,待样品冲刷至2 cm处时结束试验并记录时间,将接样桶静置24 h左右,倒掉上清液,将所收集的泥沙转移至铁盒中置于烘箱并烘干至恒质量,用于确定冲刷泥沙量。每组试验重复3次。

生态修复基材团聚体测试采用湿筛法,取100 g生态修复基材套筛放入径级为5、2、1、0.5和0.25 mm的套筛中进行湿筛试验。本研究对水泥添加量为6%养护时长为15 d的试样进行电镜扫描以从微观角度分析水泥对生态修复基材的影响。

生态基材分离能力定义为在清水径流冲刷作用下,单位时间、单位面积,水流将生态基材所含颗粒分离速率,计算公式如下:

$ {D_{\rm{r}}} = \frac{{{E_{\rm{r}}}}}{{St}}。$ (1)

式中:Dr为分离能力,g/(cm2·s);Er为每个冲刷样所收集到的泥沙样干质量,g;S为冲刷面积,即环刀截面积(79.327 cm2);t为冲刷每个环刀样所用时间,s。在相同水力条件下,数值越大,表明生态修复基材抗冲性越差。

团聚体稳定性采用团聚体平均质量直径(mean weight diameter,MWD,mm)和几何平均直径(geometric mean diameter,GMD, mm)表示,计算公式分别[16]如下:

$ {\rm{MWD}} = \sum\limits_{i = 1}^n {{X_i}{W_i}} ; $ (2)
$ {\rm{GMD}} = {\rm{exp}}\left( {\sum\limits_{i = 1}^n {{W_i}{\rm{ln}}{X_i}/\sum\limits_{i = 1}^n {{W_i}} } } \right)。$ (3)

式中:Xii粒级范围团聚体的平均直径,mm;Wi为i粒级范围团聚体的质量占总样品干质量的分数,%。MWD和GMD值越大,说明土壤团聚体的稳定性越强。

2 结果与分析 2.1 水泥添加量和养护时长对生态修复基材分离能力的影响

同一水泥添加量下,生态修复基材分离能力随养护时长的变长呈现先减小后平稳的趋势(图 1左),幂函数能够很好地描述各水泥添加量下生态修复基材分离能力与养护时长之间的关系(R2>0.789,表 1左)。水泥添加量2%与4%时和6%与8%时基材分离能力分别主要在前15 d和前7 d的养护时长内呈现减小趋势,之后则达到了一个稳定状态。

图 1 生态修复基材分离能力随养护时长(左)和水泥添加量(右)变化规律 Fig. 1 Variation of the detachment capacity of the ecological restoration substrate as a function of the maintenance duration (left) and the cement addition amount (right)
表 1 生态修复基材分离能力与养护时长及水泥添加量关系 Tab. 1 Relationship between detachment capacity of the ecological restoration substrate and the maintenance duration and the cement addition amount

在同一养护时长下,生态基材分离能力随水泥添加量增加呈现先快速减小后慢速减小的变化趋势(图 1右),幂函数能够很好地描述各养护时长下生态修复基材分离能力与水泥添加量之间的关系(R2>0.861,表 1右)。与无水泥添加样相比,水泥的添加能够大幅度地减小分离能力,2%、4%、6%和8%水泥添加量的生态修复基材分离能力平均减小75.61%、83.92%、90.12%和96.22%。

2.2 团聚体MWD和GMD随水泥添加量和养护时长的变化

不同水泥添加量生态修复基材在各养护时长内MWD值差异显著(图 2a)。在无水泥添加时,MWD值在养护时间7 d后均无显著性差异。在各水泥添加量条件下,在养护时长15 d内,MWD随着养护时长变长而显著增加,之后MWD值随着养护时长的增加无显著性差异。在同一养护时长下,各水泥添加量的MWD均显著大于相应无水泥添加的MWD,这表明水泥添加后能够显著提高团聚体稳定性。水泥添加量越高,MWD值越大,水泥添加量为2%、4%和6%的MWD存在显著性差异,6%和8%的水泥添加量在同一养护时长下MWD值除养护时长为15 d时存在显著性差异外,其他各养护时间内均无显著性差异。这表明增加水泥添加量有利于团聚体形成,提高团聚体稳定性。

不同小写字母和大写字母分别表示生态基材团聚体MWD和GMD在相同水泥添加量下不同养护时长差异显著和相同养护时长下不同水泥添加量差异显著(P < 0.05)。 Different lowercase letters and capital letters refer to the MWD (mean weight diameter) and GMD (geometric mean diameter) of ecological restoration substrate aggregates show significant difference among different maintenance durations for the same cement addition amount and significant difference among different cement addition amounts for the same maintenance duration, respectively (P < 0.05) 图 2 不同水泥添加量生态修复基材团聚体MWD(a)和GMD(b)随着养护时长的变化 Fig. 2 Changes of MWD (a) and GMD (b) of ecological restoration substrate aggregates with different cement addition amounts as a function of maintenance duration

不同养护时长生态修复基材在各水泥添加量下GMD值差异显著(图 2b)。在同一养护时长下,水泥添加量越高,GMD值越大,但6%和8%的水泥添加量在同一养护时长下的GMD值除养护时长为15和30 d存在显著性差异外,其他各养护时间内均无显著性差异。无水泥添加时,GMD值在养护时间7 d后相互之间均无显著性差异,但均显著大于0d的GMD。在各水泥添加量条件下,在养护时长15 d内,GMD随着养护时长变长而显著增加,之后GMD值随着养护时长的增加无显著性差异,这和上述MWD变化趋势一致。

2.3 径流分离能力与土壤团聚体之间的关系

随着团聚体稳定性增加,生态修复基材分离能力先快速减小后慢速减小(图 3)。生态修复基材的分离能力与团聚体的MWD和GMD呈现较好的幂函数的关系,相关系数分别达到0.946 5和0.945 3,这表明MWD和GMD均能很好描述生态修复基材分离能力的变化。

图 3 生态修复基材分离能力与团聚体MWD(左)和GMD(右)之间的关系 Fig. 3 Relationship between the detachment capacity of the ecological restoration substrate and MWD (left) and GMD (right)
3 讨论

与无水泥添加的生态修复基材相比,添加水泥的生态修复基材分离能力大幅度减小,表明生态修复基材的抗冲刷能力明显优于无水泥添加的土壤。所添加的水泥会与水发生水化反应,直接转化为水合硅酸钙、水合铝酸钙、氢氧化钙晶等水化物。各水化物硬化形成水泥石骨架,改变了土体颗粒骨架的结构,并增加黏聚力[17],造成水泥添加能够大幅度减小生态修复基材的分离能力。分离能力随着水泥添加量的增加先是快速减小后慢速减小,这与生态修复基材里的水灰比有关。生态修复基材前期养护过程中含水率相当,所以随着水泥添加量的增加,水灰比变小。水灰比大,则水泥颗粒能高度分散,水与水泥的接触面积大,因此水化速率快,水化产物有足够的扩散空间,有利于水泥颗粒继续与水泥接触而起反应。

在同一养护时长下,生态修复基材土壤团聚体的MWD和GMD均随着水泥添加量的增加而变大。同一水泥添加量下,在养护时长15 d内,生态修复基材土壤团聚体的MWD和GMD亦均随着养护时间变长而增加。这与水泥在生态修复基材的土体中形成了极多的纤维状结晶(图 4)有关。纤维状结晶在土壤颗粒间的空隙中通过不断的延伸与填充,不但使颗粒间孔隙比减小,黏聚力增大,也使大量的微团聚体聚集在一起,在强化学键作用下形成结晶网络和固体致密结构[18],从而提高生态修复基材中大粒级团聚体的含量,增加团聚体稳定性。此外,水泥化学和胶结作用随着水泥添加量的增加而增强,所形成的结晶网络和固体致密结构加大了土体颗粒之间的摩擦面积和互相嵌合度,使团聚体之间接触变得更加紧密,也使团粒之间的接触面积变大,咬合更加深入[19]。因此,随着水泥添加量的增加,黏聚力变大,大团聚体更难破碎成小团聚体,致使有更少的土壤颗粒脱离母质而发生脱离,分离能力变小,则土壤抗冲性变强。生态修复基材的分离能力与MWD及GMD都呈现良好的幂函数关系,这是因为土壤分离是由大团聚体破碎成小团聚体,小团聚体在破碎成更小的团聚体和颗粒而引起的,在水流冲刷作用下,这些细小的土壤颗粒脱离母质发生了迁移,从而引发土壤分离[20]

图 4 生态修复基材电镜扫描下的微型态 Fig. 4 Microstate of the ecological restoration substrate under electron microscope scanning
4 结论

1) 同一水泥添加量下,生态修复基材分离能力随着养护时长的变长呈现先减小后平稳的趋势,水泥添加量2%与4%时和6%与8%时基材分离能力分别主要在前15 d和前7 d的养护时长内生态修复基材分离能力较大,因此在前期可以考虑进行覆盖等处理减少侵蚀发生。

2) 同一养护时间下,幂函数能够很好地描述各水泥添加量下生态修复基材分离能力与水泥添加量之间的关系,水泥添加量越高,生态基材的分离能力呈现先快速减小后慢速减小的变化趋势。

3) 同一水泥添加量下,生态修复基材水稳性团聚体的MWD和GMD在0~15 d内差异显著;同一养护时间下,在水泥添加量6%以内,生态修复基材水稳性团聚体的MWD和GMD与水泥添加量差异显著。生态修复基材的MWD及GMD和土壤分离能力都呈现良好的幂函数关系。

5 参考文献
[1]
赵冰琴, 夏振尧, 许文年, 等. 工程扰动区边坡生态修复技术研究综述[J]. 水利水电技术, 2017, 48(2): 130.
ZHAO Bingqin, XIA Zhenyao, XU Wennian, et al. Review on research of slope eco-restoration technique for engineering disturbed area[J]. Water Resources and Hydropower Engineering, 2017, 48(2): 130.
[2]
夏振尧, 许文年, 王乐华. 植被混凝土生态护坡基材初期强度特性研究[J]. 岩土力学, 2011, 32(6): 1719.
XIA Zhenyao, XU Wennian, WANG Lehua. Research on characteristics of early strength of ecological slope-protected base material of vegetation-growing concrete[J]. Rock and Soil Mechanics, 2011, 32(6): 1719.
[3]
张平仓, 程冬兵, 丁文峰. 长江科学院水土保持专业研究进展[J]. 长江科学院院报, 2015, 32(3): 1.
ZHANG Pingcang, CHENG Dongbing, DING Wenfeng. Research process of soil and water conservation in Yangtze River Scientific Research Institute[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(3): 1.
[4]
LEI T W, NEARING M A, HAGHIGHI K, et al. Rill erosion and morphological evolution: A simulation model[J]. Water Resources Research, 1998, 34(11): 3157. DOI:10.1029/98WR02162
[5]
唐科明, 张光辉, 孙珍玲. 草地土壤分离能力季节变化特征及其影响因素[J]. 中国水土保持科学, 2016, 14(6): 18.
TANG Keming, ZHANG Guanghui, SUN Zhenling. Seasonal variation in soil detachment capacity of grasslands and its influencing factors[J]. Science of Soil and Water Conservation, 2016, 14(6): 18.
[6]
FOSTER G R, MEYER L D. Transport of soil particles by shallow flow[J]. Transactions of the American Society of Agricultural Engineers, 1972, 51(5): 99.
[7]
李少华, 何丙辉, 李天阳, 等. 紫色土丘陵区生物埂不同植被类型土壤分离水动力学特征[J]. 水土保持学报, 2019, 33(3): 70.
LI Shaohua, HE Binghui, LI Tianyang, et al. Hydraulic characteristics of soil detachment under the terrace banks with different vegetation types in the purple hilly area[J]. Journal of Soil Water Conservation, 2019, 33(3): 70.
[8]
DIMOYIANNIS D, VALMIS S, DANALATOS N G. Interrill erosion on cultivated Greek soils: Modelling sediment delivery[J]. Earth Surface Processes and Landforms, 2006, 31(8): 940. DOI:10.1002/esp.1302
[9]
黄义瑞. 我国几类主要地面物质抗侵蚀性能初步研究[J]. 中国水土保持, 1980(1): 43.
HUANG Yirui. Preliminary study on erosion resistance of several main ground materials in China[J]. Soil and Water Conservation in China, 1980(1): 43.
[10]
RORKE B B. Soil erodibility and processes of water erosion on hillslope[J]. Geomorphology, 2000, 32(3): 385.
[11]
史德明, 杨艳生, 姚宗虞. 土壤侵蚀调查方法中的侵蚀试验研究和侵蚀量测定问题[J]. 中国水土保持, 1983(6): 23.
SHI Deming, YANG Yansheng, YAO Zongyu. Erosion test research and erosion measurement in soil erosion survey methods[J]. Soil and Water Conservation in China, 1983(6): 23.
[12]
郭培才, 王佑民. 黄土高原沙棘林地土壤抗蚀性及其指标的研究[J]. 西北林学院学报, 1989, 4(1): 80.
GUO Peicai, WANG Youmin. Study on the calculation method of sediment retained by silt-arresters[J]. Journal of Northwestern College of Forestry, 1989, 4(1): 80.
[13]
周正朝, 上官周平. 子午岭次生林植被演替过程的土壤抗冲性[J]. 生态学报, 2006, 26(10): 3270.
ZHOU Zhengchao, SHANGGUAN Zhouping. Soil anti-scouribility during vegetation succession of Ziwuling secondary forest[J]. Acta Ecologica Sinica, 2006, 26(10): 3270.
[14]
陈晏, 史东梅, 文卓立, 等. 紫色土丘陵区不同土地利用类型土壤抗冲性特征研究[J]. 水土保持学报, 2007, 21(2): 24.
CHEN Yan, SHI Dongmei, WEN Zhuoli, et al. Study on soil anti-erodibility of different land use types in purple soil hilly region[J]. Journal of Soil and Water Conservation, 2007, 21(2): 24.
[15]
ZHOU Mingtao, LI Tianqi, GAO Jiazhen, et al. Erosion resistance and aggregate distribution characteristics of vegetation concrete[J]. Nature Environment and Pollution Technology, 2019(1): 65.
[16]
KATZ A J, THOMPSON A H. Fractal sandstone pores: Implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325. DOI:10.1103/PhysRevLett.54.1325
[17]
黄义端, 田积莹, 雍绍萍, 等. 土壤内在性质对侵蚀影响的研究[J]. 水土保持学报, 1989, 3(3): 9.
HUANG Yirui, TIAN Jiying, YONG Shaoping, et al. The interior soil properties affecting soil erosion in Loess Plateau[J]. Journal of Soil and Water Conservation, 1989, 3(3): 9.
[18]
郭璞. 黄河淤泥激活、固化及其粘土基胶凝材料的研究[D]. 郑州: 郑州大学, 2011: 6.
GUO Pu. The research on activation, solidity of silt in the Yellow River and preparation of clay-based cementitious material[D]. Zhengzhou: Zhengzhou University, 2011: 6.
[19]
YIN Y, WANG L, LIANG C H, et al. Soil aggregate stability and iron and aluminum oxide contents under different fertilizer treatments in a long-term solar greenhouse experiment[J]. Pedosphere, 2016, 26(5): 760. DOI:10.1016/S1002-0160(15)60086-8
[20]
严耿升, 张虎元, 赵天宇, 等. 改性黄土内摩擦角变化研究[J]. 粉煤灰, 2009, 21(4): 14.
YAN Gengsheng, ZHANG Huyuan, ZHAO Tianyu, et al. Study of change of modified loess internal friction angle[J]. Coal Ash, 2009, 21(4): 14.