文章快速检索     高级检索
  中国水土保持科学   2020, Vol. 18 Issue (2): 52-61.  DOI: 10.16843/j.sswc.2020.02.007
0

引用本文 

蒋春晓, 王彬, 王玉杰, 王云琦, 胡波, 张文龙. 基于LB法的缙云山典型林分土壤团聚体的稳定性[J]. 中国水土保持科学, 2020, 18(2): 52-61. DOI: 10.16843/j.sswc.2020.02.007.
JIANG Chunxiao, WANG Bin, WANG Yujie, WANG Yunqi, HU Bo, ZHANG Wenlong. Soil aggregate stability of typical forest stands in the Jinyun Mountain based on Le Bissonnais method[J]. Science of Soil and Water Conservation, 2020, 18(2): 52-61. DOI: 10.16843/j.sswc.2020.02.007.

项目名称

北京林业大学中央高校基本科研业务费专项资金"三峡库区坡面碳-氮-水循环过程对林分结构特征的响应"(2017PT10);国家重点研发计划"南方人工林时空分布格局和演变趋势"(2017YFC0505501)

第一作者简介

蒋春晓(1995-), 女, 硕士研究生。主要研究方向:水土保持。E-mail:jiangchunxiao0427@bjfu.edu.cn

通信作者简介

王玉杰(1960-), 男, 教授, 博士生导师。主要研究方向:水土保持。E-mail:wyujie@bjfu.edu.cn

文章历史

收稿日期:2019-05-14
修回日期:2019-06-25
基于LB法的缙云山典型林分土壤团聚体的稳定性
蒋春晓 1,2, 王彬 1,2, 王玉杰 1,2, 王云琦 1,2, 胡波 1,2, 张文龙 1,2     
1. 北京林业大学水土保持学院 重庆三峡库区森林生态系统教育部野外科学观测研究站, 100083, 北京;
2. 北京林业大学水土保持学院 重庆缙云山三峡库区森林生态系统国家定位观测研究站, 100083, 北京
摘要:黄壤坡面是长江中上游地区水土流失主要策源地之一,而针对黄壤地区典型林分下土壤团聚体稳定性的变化特征仍不明晰。选取长江中上游地区重庆缙云山4种典型林分(针阔混交林、常绿阔叶林、毛竹林、灌木林)为研究对象,采用Le Bissonnais(LB)法中快速湿润(FW)、慢速湿润(SW)和机械振荡(ST)3种处理方式区分黄壤团聚体破碎机制,定量分析不同林分类型下土壤团聚体稳定性变化特征及其影响因素。结果表明:1)不同林分土壤团聚体稳定性整体呈现MWDFW < MWDST < MWDSW的趋势。2)不同破碎机制下4种林分类型团聚体稳定性存在显著差异,常绿阔叶林的土壤团聚体最为稳定,毛竹林的土壤团聚体稳定性最差。3)同一林分下表层土壤(0~1 cm)团聚体MWD大于相应下层土壤(>1~20 cm)MWD,通常林地内采用的0~20 cm土层土壤团聚体MWD,若不考虑表层(0~1 cm)和下层(>1~20 cm)土壤团聚体间的差异,将会低估表层土壤团聚体的稳定性。4)冗余分析表明,不同团聚体破碎机制下土壤团聚体稳定性的主要影响因素存在差异,FW和SW处理下土壤团聚体稳定性主要受SOM、CEC、交换性Mg2+、Ca2+影响,ST处理下土壤团聚体稳定性则主要受交换性K+、Ca2+、Mg2+和黏粒含量的影响。整体而言,不同林分土壤团聚体稳定性特征存在显著差异,且不同团聚体破碎机制下影响因素不同。
关键词团聚体稳定性    Le Bissonnais法    林分类型    黄壤    三峡库区    
Soil aggregate stability of typical forest stands in the Jinyun Mountain based on Le Bissonnais method
JIANG Chunxiao 1,2, WANG Bin 1,2, WANG Yujie 1,2, WANG Yunqi 1,2, HU Bo 1,2, ZHANG Wenlong 1,2     
1. Three-gorges Area(Chongqing) Forest Eco-system Research Station of Ministry of Education, School of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China;
2. Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China
Abstract: [Background] The slope land of yellow soil is one of the main source of soil erosion for the middle and upper reaches of the Yangtze River, while there is still a research gap in soil aggregate stability under typical forests in the yellow soil area. When using aggregate stability to assess soil erodibility, samples are usually collected from 0-20 cm soil layer. However, the surface of soil (0-1 cm) is still the active layer where various activities act although there is no obvious crust in forest land. Compared with the study on 0-20 cm soil layer, it is important to clarify the aggregate stability of the very surface layer for forest soil. [Methods] Mixed coniferous and broad-leaved forest, evergreen broad-leaved forest, Phyllostachys pubescens forest and shrub forest in the Jinyun Mountain were selected as research sites. In each site, 5 m x 20 m plots were selected. Samples were collected from the surface soil (0-1 cm) and subsoil (>1-20 cm), and 3 repeats along diagonal of each plot and mixed for each plot. The aggregate breakdown mechanism was distinguished by fast wetting test (FW), slow wetting test (SW) and stirring test (ST) in the Le Bissonnais (LB) method, and their stability was expressed by MWD (mean weight diameter)FW, MWDSW, and MWDST, respectively. Soil properties such as soil particle distributions (PSD), soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), cation exchange capacity (CEC), and exchangeable cations (K+, Na+, Ca2+, and Mg2+) were measured as potential explanatory factors of soil aggregate stability. [Results] 1) The stability of soil aggregates in different forest stands showed a trend of MWDFW < MWDST < MWDSW in general. 2) The soil aggregates stability of 4 forest stands showed a significant difference under different aggregate breakdown mechanisms. The soil aggregates of evergreen broad-leaved forest were the most stable while that of P. pubescens forest were very weak. 3) MWD of the surface soil was greater than that of the corresponding subsoil under the same stand, and the difference varied with different aggregate breakdown mechanism.4) Redundancy analysis (RDA) showed that the cumulative explanations of standard soil properties tested on soil aggregate stability were as high as 99.0%. The main factors influencing soil aggregate stability were different under different aggregate breakdown mechanisms. For FW and SW, soil aggregate stability was mainly affected by SOM, CEC, and exchangeable Mg2+, Ca2+. For ST it was mainly affected by exchangeable K+, Ca2+, Mg2+ and clay content. There was a significantly positive correlation between SOM and soil aggregate stability (P=0.004), and a negative correlation between exchangeable Na+ and the stability under three breakdown mechanism. [Conculsions] There are significant differences in soil aggregate stability in different stands, and the influencing factors are different under different aggregate breakdown mechanisms. Compared with the other three stands, evergreen broad-leaved forest demonstrate the most obvious effect on soil aggregates stability in this area. The mostly used average MWD of the 0-20 cm would, if the difference between surface soil aggregate (0-1 cm) and subsoil aggregate (>1-20 cm) is ignored, probably underestimate the aggregate stability of surface soil.
Keywords: soil aggregate stability    Le Bissonnais method    forest stands    yellow soil    Three Gorges Reservoir area    

土壤侵蚀致使土地退化,影响经济及社会发展,是当前重要的生态环境问题之一[1]。土壤团聚体作为土壤结构的基本单元,其稳定性与土壤抗蚀能力密切相关,稳定的团聚体可提高土壤抵抗外力破坏的能力[2-3];不稳定的团聚体则更易被分散和搬运[4],加剧水土流失。土壤团聚体稳定性广泛影响着土壤持水能力、导水率、通气性、渗透性等土壤性质,进而影响土地生产力[5];因此,土壤团聚体稳定性通常被认为是衡量土壤可蚀性及土壤质量的重要指标[6]。研究[7-8]表明:团聚体稳定性受土壤含水量、黏粒含量、有机质含量、阳离子交换量、矿物质类型等因素的影响。Algayer等[9]指出,土地利用可能在不影响土壤理化性质的情况下造成团聚体稳定性差异。目前研究大多集中在农耕地土壤团聚体稳定性变化特征,而对不同林分类型下土壤团聚体稳定性的研究相对较少。同时,土壤团聚体稳定性研究大多采用0~20cm土层作为表层土壤团聚体测定对象[10-13],Algayer等[9]发现结皮层(0~5mm)土壤团聚体稳定性显著高于下层土壤。尽管林地通常不存在明显的表层结皮,但表层土壤(0~1cm)仍为各种作用活跃的层次;因此,明晰林地表层土壤团聚体的稳定性对不同土层团聚体稳定性具有重要意义。本研究以长江中上游地区重庆缙云山的黄壤为研究对象,定量分析该区域典型林分下土壤团聚体稳定性变化特征及其影响因素,以期为该地区退耕还林、土壤侵蚀预防与有效治理及土地管理提供理论依据。

1 研究区概况

研究区位于重庆缙云山三峡库区森林生态系统国家定位观测研究站(E 106°17′ ~106°24′,N 29°41′ ~29°52′)。该区海拔350~952m,属典型的亚热带季风气候。年平均气温为13.6℃,年均降水量为1611.8mm,年均蒸发量为777.1mm。黄壤为该区及整个重庆市乃至长江中上游地区重要的典型土壤资源,同时也是重要的林业基地,土壤pH 4.0~4.5,平均土层厚度约70cm,0~20cm土层土壤有机质质量分数20~74g/kg。研究区内广泛分布着常绿阔叶林、针阔混交林、毛竹林(Phyllostachys pubescens)、灌木林等典型林分,为长江中上游地区典型代表性植被类型。样地基本情况见表 1

表 1 林分样地基本情况 Tab. 1 Basic information of standard sites of typical forest stands
2 材料与方法 2.1 土壤样品采集与前期处理

本研究于2016年7月在各典型林分设立5m×20m的临时试验小区进行土壤样品采集。采样时,沿自然节理用美工刀片轻轻剥离取出林内表层(0~1cm)和下层(1~20cm)土壤样品后置于铝盒中待测,在每个试验小区内沿对角线随机采集3个样品作为重复。土壤样品自然风干后沿节理轻轻掰成直径小于10mm的土块,去除植物根系及石块等,测定其理化性质,同时筛分出3~5mm团聚体用于稳定性测定。

2.2 测定指标及方法

土壤质地采用吸管法测定,土壤有机质(soil organic matter,SOM)采用重铬酸钾外加热法测定,土壤全氮(total nitrogen, TN)采用半微量凯氏定氮法测定,土壤全磷(total phosphorus, TP)采用钼锑抗比色法测定,土壤阳离子交换量(cation exchange content, CEC)采用醋酸铵法测定[14]。土壤团聚体稳定性采用LB法进行测定[15],包括快速湿润处理(fast wetting test,FW)、慢速湿润处理(slow wetting test,SW)和机械振荡处理(stirring test,ST)3种处理方式。土壤团聚体稳定性以平均质量直径(mean weight diameter,MWD)表示。不同的MWD对应不同的团聚体稳定性等级,MWD大于2.0mm代表团聚体非常稳定,MWD为1.3~2.0mm代表团聚体稳定,MWD为0.8~1.3mm代表团聚体中度稳定,MWD为0.4~0.8mm代表团聚体不稳定,MWD为0~0.4mm代表团聚体非常不稳定[15]

1) MWD计算方法[16]

$ \text{MWD}=\sum\limits_{i=1}^{n}{{{x}_{i}}}{{w}_{i}}。$ (1)

式中:xi为筛分后第i级粒级土壤团聚体的平均直径,mm;wi为筛分后第i级粒级土壤团聚体的相应质量占土壤样品干质量的比例,%。

2) 土壤团聚体相对消散指数RSI(relative slaking index)计算方法[16]:

$ \mathrm{RSI}=\frac{\mathrm{MWD}_{\mathrm{SW}}-\mathrm{MWD}_{\mathrm{FW}}}{\mathrm{MWD}_{\mathrm{SW}}} \times 100。$ (2)

式中:RSI为FW对土壤团聚体的破坏程度,即土壤团聚体对消散作用的敏感程度;MWDSW为慢速湿润处理下获得的团聚体平均质量直径,mm;MWDFW为快速湿润处理下获得的团聚体平均质量直径,mm。

3) 土壤团聚体相对机械破坏指数RMI(relative mechanical breakdown index)计算方法[16]

$ \mathrm{RMI}=\frac{\mathrm{MWD}_{\mathrm{SW}}-\mathrm{MWD}_{\mathrm{ST}}}{\mathrm{MWD}_{\mathrm{SW}}} \times 100。$ (3)

式中:RMI为ST对土壤团聚体的破坏程度,即土壤团聚体对机械振荡作用的敏感程度;MWDST为机械振荡处理下获得的团聚体平均质量直径。

2.3 数据分析

采用单因素方差分析(One-way ANOVA)最小显著差法LSD(least-significant difference)进行数据间差异研究,显著性水平0.05。采用Pearson相关系数对团聚体稳定性与各土壤性质之间的相关性进行分析。冗余分析通过CANOCO 4.5软件完成。数据统计分析采用SPSS20.0和Excel 2016完成,图表采用Excel 2016绘制。

3 结果与分析 3.1 土壤基本理化性质

4种林分类型的土壤质地基本相同,均为酸性黄壤(表 2)。表层土壤有机质呈显著差异,平均值为54.60g/kg,变异系数30%;整体呈常绿阔叶林>针阔混交林>灌木林>毛竹林的趋势。对于下层土壤,不同林分间有机质呈显著差异(针阔混交林和毛竹林间除外),平均值为31.68g/kg,变异系数28%;整体呈常绿阔叶林>灌木林>针阔混交林>毛竹林的趋势。4种林分表层土壤有机质均显著高于下层土壤有机质,这与目前已有研究[17]表明的土壤有机质存在表聚现象一致,且该表聚现象不受林分类型的影响。表层土壤有机质主要来源于枯落物及动植物残体的分解,其中大量腐殖质对土颗粒具有黏结的作用要,而下层土壤有机质主要来源于表层土壤有机质的淋溶和迁移[7]。不同林分间土壤有机质存在差异的主要原因是枯落物的数量与分解速率。储小院[18]在相同研究区的结果表明,4种林分枯落物总量存在明显差异,枯落物厚度为灌木林(4.5cm)>针阔混交林(3.5cm)>常绿阔叶林(3.4cm)>毛竹林(1.4cm)。枯落物的分解速率受叶的形态[19]、土壤微生物的种类和数量[20]、木质素含量[21]等因素的影响。叶片间木质素和纤维素含量存在针叶树>阔叶树>毛竹的特点[22],随着木质素和纤维素含量的增多,枯落物分解速率明显减慢[23],故而导致常绿阔叶林土壤有机质显著高于针阔混交林土壤有机质;毛竹林由于枯落物数量最少且叶片纤维素含量较高,不易分解,故土壤有机质相对较低。基于上述原因,本研究中土壤有机质在不同林分间表现出显著差异。

表 2 不同林分表层和下层土壤基本理化性质 Tab. 2 General soil properties of surface soil and subsoil for different forest stands

4种林分下土壤CEC呈显著差异,表层土壤CEC均高于下层土壤CEC(表 2)。表层土壤CEC平均值为14.38cmol/kg,变异系数38%,CEC由高到低依次为常绿阔叶林>灌木林>针阔混交林>毛竹林。下层土壤CEC平均值为10.32cmol/kg,变异系数37%,含量由高到低表现为灌木林>常绿阔叶林>针阔混交林>毛竹林。该现象主要是由CEC来源、土壤pH值、土壤微生物等综合作用造成的。尤其在本研究区域内,4种林分表层土壤受到酸雨、温度变化、空气、微生物的影响更大;由于表层土壤pH值低于下层土壤,导致表层土壤矿质风化作用更为强烈,从而释放出更多的CEC[24]

交换性K+、Ca2+、Mg2+含量在不同林分和不同土层间整体均呈显著差异,且4种林分表层土壤交换性Mg2+含量显著高于下层土壤;针阔混交林、常绿阔叶林、灌木林表层土壤K+、Ca2+含量均高于下层土壤,毛竹林则与之相反(表 2)。作为最易淋失的可溶性养分,4种林分表层土壤交换性Na+含量均显著低于下层土壤Na+含量。

TN和TP质量分数可反映土壤养分的分布状况(表 2)。研究发现,随着土壤肥力水平的提高,土壤颗粒的团聚度增大[25]。本研究中各林分表层土壤TN表现出显著差异(常绿阔叶林和灌木林间除外),变化范围1.61 ~2.95g/kg;各林分下层土壤TN均呈显著差异,变化范围为1.42 ~1.77g/kg。针阔混交林和毛竹林表层土壤TN均显著高于下层土壤,常绿阔叶林和灌木林表层土壤和下层土壤之间则未表现出显著差异。半干旱区森林生态系统的相关研究表明,TN与SOM显著相关且与团聚体的稳定性具有较强的相关性[26]。而在本研究中,亚热带森林生态系统中TN与SOM的变化趋势并不一致,表层土壤TN质量分数表现为针阔混交林>毛竹林>灌木林>常绿阔叶林,下层土壤表现为灌木林>常绿阔叶林>毛竹林>针阔混交林。产生这种情况的原因可能是TN主要分布于小粒径微团聚体中,而在大团聚体中含量较少[27]。表层土壤TP变化于0.23 ~0.51g/kg,不同林分间TP不存在显著差异(针阔混交林和毛竹林、毛竹林和灌木林间除外);下层土壤TP的变化范围为0.17 ~0.49g/kg,仅毛竹林和其余林分之间存在显著差异。4种林分表层和下层土壤间TP质量分数未表现出显著差异。这是由于P质量分数主要受土壤母质的影响[28],在土壤中的存在较稳定,且主要存在于微团聚体中[29],故而不同林分间及不同土层间TP差异不显著。

3.2 土壤团聚体稳定性的变化特征

对于表层土壤,针阔混交林和常绿阔叶林在ST处理下得到的MWD最小,毛竹林和灌木林在FW处理下得到的MWD最小,4种林分在SW处理下的MWD最大(图 1)。对于下层土壤,根据团聚体稳定性分级标准[15],4种林分在SW处理和ST处理下得到的MWD均大于2.0mm,属于非常稳定团聚体;而FW处理下得到的MWD均小于2.0mm,且最小为0.94mm(毛竹林),属于中度稳定团聚体。说明不均匀膨胀作用对表层土壤团聚体的破坏最小,消散作用对下层土壤团聚体的破坏最大。由表 3可知:4种林分表层土壤和下层土壤的RSI和RMI均为正值(灌木林下层土壤的RMI除外),说明不均匀膨胀作用对土壤团聚体的破坏最小;供试土样的RSI均显著大于RMI(针阔混交林和常绿阔叶林的表层土壤除外),说明土壤团聚体对消散作用比对机械振荡作用的反应更为强烈。整体而言,不同林分团聚体稳定性呈现MWDFW < MWDST < MWDSW的趋势。说明研究区土壤团聚体的破坏主要是由于团聚体内部“闭蓄”空气爆破压力大于土壤颗粒间的黏聚力所致,同时雨滴击溅等外部破碎力加剧了其破碎程度。该结论与Wu等[30]、Algayer等[9]、Li等[31]和郭伟等[32]的研究结果一致,但与王彬[16]在黑土区所得MWDFW < MWDSW < MWDST的结论不同。分析其原因,慢速湿润处理主要通过黏粒的不均匀膨胀作用使团聚体破碎,作用本身对团聚体的破坏程度较小[15],且黄壤中黏土矿物以胀缩性小的高岭石等为主[33];因此,黏粒膨胀的团聚体破碎机制在黄壤中表现相对较弱。

不同小写字母表示同一土层不同林分团聚体稳定性在0.05水平差异性显著,不同大写字母表示同一林分不同土层团聚体稳定性在0.05水平差异性显著。MWD为团聚体平均质量直径。不同的MWD对应不同的团聚体稳定性等级,MWD大于2.0mm代表团聚体非常稳定(VS),MWD为1.3 ~ 2.0mm代表团聚体稳定(S),MWD为0.8 ~ 1.3mm代表团聚体中度稳定(M),MWD为0.4 ~ 0.8mm代表团聚体不稳定(U),MWD为0 ~ 0.4mm代表团聚体非常不稳定(VU)[15]。MF代表针阔混交林,GF代表常绿阔叶林,PF代表毛竹林,SF代表灌木林。Different lowercase letters indicate significant difference in soil aggregate stability between different stands in the same soil layer at 0.05 level, and different capital letters indicate the significant difference between different soil layers in the same stands at 0.05 level. MWD stands for mean weight diameter. Each MWD corresponds to one of five classes of stability: MWD >2.0mm corresponds to very stable material (VS), between 2.0 and 1.3mm corresponds to stable material (S), between 1.3 and 0.8mm corresponds to median stability (M), between 0.8 and 0.4mm corresponds to unstable material (U), and < 0.4mm corresponds to very weak stability(VU). MF is the abbreviation of mixed coniferous and broad-leaved forest, GF is the abbreviation of evergreen broad-leaved forest, PF is the abbreviation of Phyllostachys pubescens forest and SF is the abbreviation of shrub forest. 图 1 不同林分土壤团聚体平均质量直径 Fig. 1 Mean weight diameter of soil aggregates in different forest stands
表 3 土壤团聚体相对消散指数(RSI)及相对机械破坏指数(RMI) Tab. 3 Relative slaking index (RSI) andrelative mechanical breakdown index (RMI) %

快速湿润处理下,表层土壤MWDFW变化于1.92~3.11mm(图 1a),变异系数17%;4种林分MWDFW存在显著差异,整体表现为常绿阔叶林>针阔混交林>灌木林>毛竹林。表层土壤各林分RSI不同,常绿阔叶林的RSI最小,为6.44 %,灌木林的RSI最大,为23.57 %(表 3)。结果表明,就表层土壤而言,消散作用对常绿阔叶林土壤团聚体的破坏作用最小,对灌木林土壤团聚体的破坏作用最大。下层土壤MWDFW的变化范围为0.94~1.87mm,变异系数29%;不同林分间MWDFW呈显著差异(毛竹林和灌木林间除外),依次为常绿阔叶林>针阔混交林>灌木林>毛竹林。对于下层土壤,常绿阔叶林的RSI最小(42.87%),毛竹林的RSI最大(53.87%)。就下层土壤而言,消散作用对常绿阔叶林土壤团聚体的破坏作用最弱,而对毛竹林土壤团聚体的破坏作用最强。

慢速湿润处理下表层土壤MWDSW变化于2.47~3.33mm(图 1b),变异系数11%;不同林分间MWDSW表现出显著差异(针阔混交林和灌木林间除外),由高到低依次为常绿阔叶林>灌木林>针阔混交林>毛竹林。下层土壤MWDSW的变化范围为1.99~3.27mm,变异系数22%;不同林分间MWDSW呈显著差异(毛竹林和灌木林间除外),MWDSW依次为常绿阔叶林>针阔混交林>毛竹林>灌木林。

机械振荡处理下表层土壤MWDST的变化范围为2.09~3.09mm(图 1(c)),变异系数为14%;4种林分MWDST存在显著差异,整体表现为常绿阔叶林>灌木林>毛竹林>针阔混交林。下层土壤MWDST的范围为1.99~2.85mm,变异系数为13%;4种林分MWDST存在显著差异,由高到低依次为常绿阔叶林>灌木林>针阔混交林>毛竹林。针阔混交林表层和下层土壤RMI均显著高于其他林分(表 3),说明其对机械振荡作用比较敏感;而毛竹林RMI最小,表明其土壤团聚体对不均匀膨胀作用和机械振荡作用反应最为接近。

同一林分表层土壤和下层土壤MWD间存在显著差异(针阔混交林和常绿阔叶林MWDSW除外),且随处理方式的不同而产生变化(图 1)。各处理下,4种林分表层土壤的MWD均大于下层土壤的MWD(针阔混交林MWDSW和MWDST除外)。上述结果表明,常绿阔叶林、灌木林、毛竹林的表层土壤团聚体均比下层稳定,针阔混交林下层土壤经过SW和ST处理后稳定性与上层差异不明显。因此,在评估林下土壤团聚体稳定性时,不能笼统地采用0~20cm土层进行分析,需考虑表层(0~1cm)与下层(>1~20cm)土壤的团聚体稳定性差异,否则将会低估表层土壤的团聚体稳定性。

3.3 土壤团聚体稳定性影响因素分析

冗余分析(redundancy analysis, RDA)表明,本研究选取的土壤理化性质对土壤团聚体稳定性的累积解释量高达99.0%(表 4)。第一典范轴对土壤团聚体稳定性的解释量为69.6%,前2个典范轴对其累积解释量为95.8%,对土壤理化性质和团聚体稳定性相关度累积解释量高达98.1%。

表 4 土壤理化性质与团聚体稳定性冗余分析结果 Tab. 4 Redundancy analysis results of soil properties and soil aggregate stability

不同破碎机制下团聚体稳定性的主要影响因素存在差异(图 2)。FW和SW处理下,土壤团聚体稳定性主要受SOM、CEC、交换性Mg2+、Ca2+影响,ST处理下土壤团聚体稳定性则主要受交换性K+、Ca2+、Mg2+和黏粒含量的影响。交换性Na+与3种破碎机制下土壤团聚体稳定性均呈负相关关系。Keren等[34]的研究表明,交换性Na+对土壤团聚体具有很强的分散作用,可导致土壤团聚体的破碎;Le Bissonnais[15]同样指出,多价阳离子导致絮凝,而单价阳离子导致分散。SOM与土壤团聚体稳定性呈极显著正相关关系(P=0.004),表明SOM是黄壤团聚体的主要胶结物质之一。由于有机质对团聚体间的胶结力使“气爆”作用减弱[35],同时增加团聚体的疏水性,减慢其被湿润的速度,从而降低土粒中填充空气对团聚体的破坏作用[36-37];因此,有机质对土壤团聚体稳定性的作用可体现在不同破碎机制中。

MWDFW refers to mean weight diameter of fast wetting test, MWDSW refers to mean weight diameter of slow wetting test, and MWDST refers to mean weight diameter of stirring test. 图 2 土壤理化性质与不同破碎机制下土壤团聚体稳定性RDA排序 Fig. 2 RDA sort graph of soil properties and soil aggregate stability by different breakdown mechanism

除ST处理下黏粒含量与土壤团聚体稳定性呈显著正相关外,FW和SW处理下均未呈现上述特征。FW处理下,黏粒含量与土壤团聚体稳定性呈负相关关系。已有研究[38-39]表明,在FW处理中,毛管孔隙内“闭蓄”空气的含量随黏粒含量的增加而增加,消散作用随之增强,导致团聚体稳定性下降。此外,王彬[40]研究证明,黏粒对土壤团聚体稳定性具有双重效应,一方面作为胶结物质增强团聚体稳定性,另一方面增强黏粒膨胀作用以降低团聚体稳定性。在本研究SW处理下,黏粒含量与土壤团聚体稳定性呈正相关关系,说明黏粒含量表现出增强团聚体稳定性的正向胶结作用。这可能是由于该双重效应存在阈值现象,本研究中黏粒含量尚未达到特定阈值。

4 结论

1) 不同林分土壤团聚体稳定性呈现MWDFW < MWDST < MWDSW的趋势。黄壤团聚体的破坏主要是由于团聚体内部“闭蓄”空气爆破压力大于土壤颗粒间的黏聚力所致,同时雨滴击溅等外部破碎力加剧了其破碎程度。不同破碎机制下4种林分类型团聚体稳定性呈显著差异,整体而言常绿阔叶林土壤团聚体最为稳定,毛竹林土壤团聚体稳定性最差。

2) 同一林分表层土壤和下层土壤MWD存在显著差异,且该差异随处理方式的不同而变化。表层土壤MWD大于相应下层土壤MWD,通常林地内采用的0~20cm土层土壤团聚体MWD,若不考虑表层(0~1cm)和下层(>1~20cm)土壤团聚体间的差异,将会低估表层土壤团聚体的稳定性。

3) 不同破碎机制下团聚体稳定性的主要影响因素不同。冗余分析表明,FW和SW处理下土壤团聚体稳定性主要受SOM、CEC、交换性Mg2+、Ca2+影响,ST处理下土壤团聚体稳定性则主要受交换性K+、Ca2+、Mg2+和黏粒含量的影响。交换性Na+与3种破碎机制下土壤团聚体稳定性均呈负相关关系。

5 参考文献
[1]
HU Feinan, LIU Jingfang, XU Chenyang, et al. Soil internal forces initiate aggregate breakdown and splash erosion[J]. Geoderma, 2018(320): 43.
[2]
RACHMAN A, ANDERSON S H, GANTZE C J. Influence of long-term cropping systems on soil physical properties related to soil erodibility[J]. Soil Science Society of America Journal, 2003, 67(2): 637. DOI:10.2136/sssaj2003.6370
[3]
李鉴霖, 江长胜, 郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2014, 35(12): 4695.
LI Jianlin, JIANG Changsheng, HAO Qingju. Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain[J]. Environmental Science, 2014, 35(12): 4695.
[4]
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. European Journal of Soil Science, 1982, 33(2): 141. DOI:10.1111/j.1365-2389.1982.tb01755.x
[5]
AN S, MENTLER A, MAYER H, et al. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China[J]. Catena, 2010, 81(3): 226. DOI:10.1016/j.catena.2010.04.002
[6]
BRYAN R B. Soil erodibility and processes of water erosion on hillslopes[J]. Geomorphology, 2000, 32(3/4): 385.
[7]
张琪, 方海兰, 史志华, 等. 侵蚀条件下土壤性质对团聚体稳定性影响的研究进展[J]. 林业科学, 2007, 43(S1): 77.
ZHANG Qi, FANG Hailan, SHI Zhihua, et al. Advances in influence factors of aggregate stability under erosion[J]. Scientia Silvae Sinicae, 2007, 43(S1): 77.
[8]
胡波, 王玉杰, 王彬, 等. 自然降雨条件下结皮层团聚体稳定性变化特征研究[J]. 农业机械学报, 2017, 48(6): 225.
HU Bo, WANG Yujie, WANG Bin, et al. Dynamics of stability of soil crust under natural rainfall event[J]. Transactions of the CSAM, 2017, 48(6): 225.
[9]
ALGAYER B, WANG Bin, BOURENNANE H, et al. Aggregate stability of a crusted soil:Differences between crust and sub-crust material, and consequences for interrill erodibility assessment. An example from the Loess Plateau of China[J]. European Journal of Soil Science, 2014, 65(3): 325. DOI:10.1111/ejss.12134
[10]
BULLOCK M S, NELSON S D, KEMPER W D. Soil cohesion as affected by freezing, water content, time and tillage[J]. Soil Science Society of America Journal, 1988, 52(3): 770. DOI:10.2136/sssaj1988.03615995005200030031x
[11]
BAJRACHARYA R M, LAL R. Crusting effects on erosion processes under simulated rainfall on a tropical Alfisol[J]. Hydrological Processes, 1998, 12(12): 1927. DOI:10.1002/(SICI)1099-1085(19981015)12:12<1927::AID-HYP654>3.0.CO;2-Y
[12]
BERNARD BARTHōS, ROOSE E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2): 133. DOI:10.1016/S0341-8162(01)00180-1
[13]
CōDRIC LEGOUT, LEGUEDOIS S, BISSONNAIS Y L. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements[J]. European Journal of Soil Science, 2010, 56(2): 225.
[14]
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30.
BAO Shidan. Soil Agro-chemistrical Analysis[M]. Beijing: China Agriculture Press, 2000: 30.
[15]
LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology[J]. European Journal of Soil Science, 1996, 47(1): 425.
[16]
王彬.东北典型薄层黑土区土壤可蚀性关键因子分析与土壤可蚀性计算[D].陕西杨凌: 西北农林科技大学, 2009: 20.
WANG Bin. Key factors and calculation of soil erodibility in the typical eroded black soil area of northeast China[D]. Yangling, Shaanxi: Northwest A&F University, 2009: 20.
[17]
任启文, 王鑫, 李联地, 等. 小五台山不同海拔土壤理化性质垂直变化规律[J]. 水土保持学报, 2019, 33(1): 241.
REN Qiwen, WANG Xin, LI Liandi, et al. Vertical variation of soil physical and chemical properties at different altitudes in Xiaowutai Mountain[J]. Journal of Soil and Water Conservation, 2019, 33(1): 241.
[18]
储小院.缙云山林地土壤侵蚀物理力学机制研究[D].北京: 北京林业大学, 2010: 28.
CHU Xiaoyuan. Physical and mechanical mechanism of soil erosion of forests in Jinyun Mountain, Chongqing city[D]. Beijing: Beijing Forestry University, 2010: 28.
[19]
VITOUSEK P. Litter decomposition on the Mauna Loa environmental matrix, Hawai'i:Patterns, mechanisms, and models[J]. Ecology, 1994, 75(2): 418. DOI:10.2307/1939545
[20]
李志安, 邹碧, 丁永祯, 等. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志, 2004, 23(6): 77.
LI Zhian, ZOU Bi, DING Yongzhen, et al. Key factors of forest litter decomposition and research progress[J]. Chinese Journal of Ecology, 2004, 23(6): 77. DOI:10.3321/j.issn:1000-4890.2004.06.017
[21]
TAYLOR B R, PARSONS P W F J. Nitrogen and lignin content as predictors of litter decay rates:A microcosm test[J]. Ecology, 1989, 70(1): 97. DOI:10.2307/1938416
[22]
刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012: 304.
LIU Yixing, ZHAO Guangjie. Wood science[M]. Beijing: China Forestry Publishing House, 2012: 304.
[23]
CALUWE A H D. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species[J]. Ecology, 1997, 78(1): 244. DOI:10.1890/0012-9658(1997)078[0244:NAPMCO]2.0.CO;2
[24]
胡波, 张会兰, 王彬, 等. 重庆缙云山地区森林土壤酸化特征[J]. 长江流域资源与环境, 2015, 24(2): 300.
HU Bo, ZHANG Huilan, WANG Bin, et al. Analysis on the forest soil acidification and mechanisms in Chongqing Jinyun Mountain[J]. Resources and Environment in the Yangtze Basin, 2015, 24(2): 300. DOI:10.11870/cjlyzyyhj201502017
[25]
关连珠, 张伯泉, 颜丽. 不同肥力黑土、棕壤微团聚体组成及其胶结物质的研究[J]. 土壤学报, 1991, 28(3): 260.
GUAN Lianzhu, ZHANG Boquan, YAN Li. Composition of microaggregate and cementing substances in black soils and brown forest soils with different fertility levels[J]. Acta Pedologica Sinica, 1991, 28(3): 260.
[26]
瞿晴, 徐红伟, 吴旋, 等.黄土高原不同植被带人工刺槐林土壤团聚体稳定性及其化学计量特征[J/OL].环境科学, 2019(6): 1-9[2019-04CD*2] 30]. https://doi.org/10.13227/j.hjkx.201811109.
QU Qing, XU Hongwei, WU Xuan, et al. Soil aggregate stability and its stoichiometric characteristics of robinia pseudoacacia forest in different vegetation zones on the Loess Plateau, China[J/OL]. Environmental Science, 2019(6): 1-9[2019-04-30]. https://doi.org/10.13227/j.hjkx.201811109.
[27]
CHRISTENSEN B T. Straw incorporation and soil organic matter in macro-aggregates and particle size separates[J]. European Journal of Soil Science, 1986, 37(1): 125. DOI:10.1111/j.1365-2389.1986.tb00013.x
[28]
郑子成, 何淑勤, 王永东, 等. 不同土地利用方式下土壤团聚体中养分的分布特征[J]. 水土保持学报, 2010, 24(3): 170.
ZHENG Zicheng, HE Shuqin, WANG Yongdong, et al. Distrbution feature of soil nutrients in aggregate under different land use[J]. Journal of Soil and Water Conservation, 2010, 24(3): 170.
[29]
王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415.
WANG Qingkui, WANG Silong. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415. DOI:10.3321/j.issn:0564-3945.2005.03.031
[30]
WU Xinliang, WEI Yujie, WANG Junguang, et al. Effects of soil physicochemical properties on aggregate stability along a weathering gradient[J]. Catena, 2017(156): 205.
[31]
LI Zhaoxia, CAI Chongfa, SHI Zhihua, et al. Aggregate stability and its relationship with some chemical properties of red soils in subtropical China[J]. Pedosphere, 2005, 15(1): 129.
[32]
郭伟, 史志华, 陈利顶, 等. 不同湿润速率对三种红壤坡面侵蚀过程的影响[J]. 土壤学报, 2008, 45(1): 26.
GUO Wei, SHI Zhihua, CHEN Liding, et al. Effects of wetting rate on erosion processes on hillslopes of red soil[J]. Acta Pedologica Sinica, 2008, 45(1): 26. DOI:10.3321/j.issn:0564-3929.2008.01.004
[33]
林杭生, 赵其国. 红黄壤粘土矿物的定量研究[J]. 土壤, 1989(5): 254.
LIN Hangsheng, ZHAO Qiguo. Quantitative study on clay minerals in red-yellow soil[J]. Soils, 1989(5): 254.
[34]
KEREN R, SHAINBERG I, FRENKEL H, et al. The effect of exchangeable sodium and gypsum on surface runoff from Loess Soil1[J]. Soil Science Society of America Journal, 1983, 47(5): 1001. DOI:10.2136/sssaj1983.03615995004700050032x
[35]
张孝存, 郑粉莉. 基于Le Bissonnais法的东北黑土区土壤团聚体稳定性研究[J]. 陕西师范大学学报(自然科学版), 2009, 37(5): 82.
ZHANG Xiaocun, ZHENG Fenli. Study on soil aggregate stability of farmland based on Le Bissonnais method in the black soil region, Northeast China[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2009, 37(5): 82.
[36]
ANGERS D A, SAMSON N, LEGERE A. Early changes in water-stable aggregation induced by rotation and tillage in a soil under barley production[J]. Canadian Journal of Soil Science, 1993, 73(1): 51. DOI:10.4141/cjss93-005
[37]
BEARE M H, HENDRIX P F, COLEMAN D C. Water-stable aggregates and organic matter fractions in conventional and no-tillage soils[J]. Soil Science Society of America Journal, 1994, 58(3): 777. DOI:10.2136/sssaj1994.03615995005800030020x
[38]
ATTOU F, BRUAND A, BISSONNAIS Y L. Effect of clay content and silt-clay fabric on stability of artificial aggregates[J]. European Journal of Soil Science, 2010, 49(4): 569.
[39]
LADO M, BEN-HUR M, SHAINBERG I. Soil wetting and texture effects on aggregate stability, seal formation, and erosion[J]. Soil Science Society of America Journal, 2004, 68(6): 1992. DOI:10.2136/sssaj2004.1992
[40]
王彬.土壤可蚀性动态变化机制与土壤可蚀性估算模型[D].陕西杨凌: 西北农林科技大学, 2013: 890.
WANG Bin. Dynamic mechanism of soil erodibility and soil erodibility calculation model[D]. Yangling, Shaanxi: Northwest A&F University, 2013: 890.