文章快速检索     高级检索
  中国水土保持科学   2019, Vol. 17 Issue (5): 65-74.  DOI: 10.16843/j.sswc.2019.05.008
0

引用本文 

李叶鑫, 吕刚, 王道涵, 李朝辉, 宋鸽, 杜昕鹏, 董亮. 用3种测定方法分析排土场复垦区的表层土壤的饱和导水率[J]. 中国水土保持科学, 2019, 17(5): 65-74. DOI: 10.16843/j.sswc.2019.05.008.
LI Yexin, LÜ Gang, WANG Daohan, LI Chaohui, SONG Ge, DU Xinpeng, DONG Liang. Analyzing the saturated hydraulic conductivity of surface soil in a dump by three measuring methods[J]. Science of Soil and Water Conservation, 2019, 17(5): 65-74. DOI: 10.16843/j.sswc.2019.05.008.

项目名称

国家重点研发计划项目"抚顺西露天矿区生态环境修复与综合整治技术及示范"(2017YFC1503105);辽宁省自然科学基金指导计划项目"露天煤矿排土场土体裂缝的优先流效应研究"(20180550447)

第一作者简介

李叶鑫(1989—), 男, 博士研究生。主要研究方向:工矿区水土保持与生态修复。E-mail:liyexin2008@126.com

通信作者简介

吕刚(1979—), 男, 博士, 副教授。主要研究方向:土壤侵蚀与土壤水文学。E-mail:lvgang2637@126.com

文章历史

收稿日期:2018-12-27
修回日期:2019-04-22
用3种测定方法分析排土场复垦区的表层土壤的饱和导水率
李叶鑫 1,2, 吕刚 2, 王道涵 2, 李朝辉 3, 宋鸽 4, 杜昕鹏 2, 董亮 2     
1. 辽宁工程技术大学 矿业学院, 123000, 辽宁阜新;
2. 辽宁工程技术大学 环境科学与工程学院, 123000, 辽宁阜新;
3. 抚顺矿业集团有限责任公司, 113006, 辽宁抚顺;
4. 西南大学 资源环境学院, 400715, 重庆
摘要:排土场是一种典型人工松散堆积体,其复垦区土壤饱和导水率对排土场地表径流形成及土壤侵蚀过程具有重要影响,也对认识该区域土壤水分运动规律及水分渗漏特征具有重要意义。目前,关于排土场土壤饱和导水率的测定方法较多,但其测定结果的准确程度有待提高。作者采用Hood入渗仪测定排土场3种复垦植被类型表层土壤饱和导水率,分析土壤理化性质对饱和导水率的影响,阐明室内环刀法和双环入渗法测定结果的差异性及其原因,探讨土壤饱和导水率的最优测定方法。结果表明:排土场不同复垦植被土壤含水率为13.51%~15.48%,土壤密度依次为刺槐林地>荒草地>榆树林地,土壤有机质为6.17~8.05 g/kg。刺槐林地、榆树林地和荒草地表层土壤饱和导水率依次为0.77、0.54和0.48 mm/min,不同测定方法的结果表现为Hood入渗仪 < 双环入渗法 < 室内环刀法。排土场表层土壤导水性能依次为榆树林地(0.523)>刺槐林地(0.501)>荒草地(0.488)。Hood入渗仪法在排土场表层土壤饱和导水率测定中有较好的适用性。
关键词饱和导水率    排土场    Hood入渗仪    土壤入渗    复垦植被    
Analyzing the saturated hydraulic conductivity of surface soil in a dump by three measuring methods
LI Yexin 1,2, LÜ Gang 2, WANG Daohan 2, LI Chaohui 3, SONG Ge 4, DU Xinpeng 2, DONG Liang 2     
1. College of Mining Engineering, Liaoning Technical University, 123000, Fuxin, Liaoning, China;
2. College of Environmental Science and Engineering, Liaoning Technical University, 123000, Fuxin, Liaoning, China;
3. Fushun Mining Group Limited Company, 113006, Fushun, Liaoning, China;
4. College of Resources and Environment, Southwest University, 400715, Chongqing, China
Abstract: [Background] Domestic and foreign scholars have conducted a lot of researches on the selection and adaptability of reclaimed vegetation, infiltration characteristics and hydrological effects of reclaimed mine soil, water-holding capacity of soil, and the restoration of soil fertility in the dump. However, it is lack of study on the saturated hydraulic conductivity of reclaimed soil with different reclaimed vegetations in the dump. The saturated hydraulic conductivity of reclaimed soil has an important impact on the formation of surface runoff and soil erosion in the dump, and it is of great significance to understand the soil water movement and the characteristics water leakage in this area. At present, there are many methods for determining the soil saturated hydraulic conductivity of a dump, but the accuracy of the measurement results needs to be improved. [Methods] In the present study, saturated hydraulic conductivity of surface soil with 3 types of reclaimed vegetations (Robinia pseudoacacia forest land, Ulmus pumila forest land, and weeds) was measured and calculated by indoor-ring infiltration method, double-ring infiltration method and Hood infiltrometer, and 3 samples of every forests sample plot were taken. The soil water content, bulk density, porosity and gravel content were measured indoor and their effects on saturated hydraulic conductivity were analyzed. Saturated soil hydraulic conductivity of surface soil in the reclaimed soil was evaluated by analytic hierarchy process. The differences and its reasons of the results by indoor-ring infiltration method and double-ring infiltration method were clarified, and the optimal method of saturated water conductivity was discussed. [Results] 1) Soil moisture content with different reclaimed vegetations was 13.51%-15.48%, and soil bulk density was R. pseudoacacia forest land > weeds > U. pumila forest land. The soil organic matter was 6.17-8.05 g/kg. The gravel content of R. pseudoacacia forest land, U. pumila forest land and weeds were 52.39%, 47.52%, and 54.03%, respectively. The sand content of three reclaimed vegetations was 36.80%-41.43%, silt content was 48.87%-54.27%, and clay content was 8.30%-9.70%. 2) The soil saturated hydraulic conductivity increased significantly with the increasing reclamation years, which was due to the improvement of soil structure by vegetation restoration. The surface soil saturated hydraulic conductivity of R. pseudoacacia forest land, U. pumila forest land, and weeds were 0.77, 0.54, 0.48 mm/min, respectively, and there was no significant difference among three reclaimed vegetations (P>0.05). 3) The results of different measurement methods were Hood infiltrometer < double-ring infiltration method < indoor-ring infiltration method, and the accuracy of Hood infiltrometer was the highest. 4) The saturated hydraulic conductivity was a significant positive correlation with gravel content and silt content, and was a significant negative correlation with bulk density and clay content. The water conductivity of surface soil in the dump was U. pumila forest land (0.523) > R. pseudoacacia forest land (0.501) > weeds (0.488). [Conclusions] The soil saturated hydraulic conductivity is shown as follows U. pumila forest land > R. pseudoacacia forest land > weeds. The results of soil saturated hydraulic conductivity measured by the three methods differed. The dispersion degree and error of the results measured by Hood infiltrator are less than those measured by indoor-ring infiltration method and double-ring infiltration method, there is no need to disturb soil and no head pressure, which is more in line with the actual process of soil water infiltration. Hood infiltrometer shows better applicability in measuring surface soil saturated hydraulic conductivity.
Keywords: saturated hydraulic conductivity    dump    hood infiltrometer    soil infiltration    reclaimed vegetation    

土壤饱和导水率是土壤在饱和状态下,单位时间内通过单位面积的水量,反映了土壤入渗性能和导水能力[1-2],其大小直接影响地表径流量和土壤水分分布特征[3]。土壤饱和导水率受土壤密度及孔隙分布特征[4]、土壤质地[5]、有机质含量[6]、植被类型[7]等多个因素共同影响,具有较强的空间变异性[8]。目前,土壤饱和导水率的测定方法主要有室内环刀法、双环入渗法、Guelph入渗仪法、圆盘入渗仪法、Hood入渗仪等[9-11]。Hood入渗仪法是一种新型张力式渗透计,是通过负压力来测定土壤饱和导水率,具有省时省力、不扰动土体、读数相对准确等优点,其测定结果最为接近土壤饱和导水率的实际值[12-13]。以往关于Hood入渗仪测定土壤饱和导水率的研究多集中在林地、草地、耕地等自然土壤。Schwarzel等[12]在分析圆盘入渗仪的测定原理及优缺点的基础上提出了Hood入渗仪法,该方法解决了圆盘入渗仪的测定弊端,测定结果更加接近土壤导水率的实际值。高朝侠等[14]利用Hood入渗仪研究黄土区不同土地利用方式下的土壤饱和导水率,认为林地和草地的土壤饱和导水率大于耕地。覃淼等[15]对桂北地区不同土地利用类型的土壤饱和导水率进行研究,结果却表明农田的土壤饱和导水率大于林地和草地;但未见该方法在排土场、弃渣场、弃石场等矿山工程扰动土的应用。矿山工程扰动土是指以采矿业等产生的固体废弃物为母质,经人工整理、改良促进其风化、熟化而成的一类土壤,其表层可能是土状堆积物,也可能是石砾、石碴、石屑[16],排土场就是一种典型的矿山工程扰动土,其形成与复垦的过程就是土壤重构的过程。排土场土壤结构经过破坏-重构以及表层严重压实后,其土壤密度[17]、入渗特征[18]、土壤团聚体[19]、土壤水文过程[20]均发生明显改变,其中对排土场复垦区土壤水分运动及其入渗能力影响最为显著[17]。王洪丹等[21]研究结果表明排土场土壤密度、孔隙度和砾石含量存在不同程度的变异性。杨国敏等[22]指出排土场砾石含量高,大孔隙发达,容易发生优先流形式入渗。吕刚等[23]研究了不同复垦方式条件下排土场饱和导水率特征,认为一定程度上排土场水分条件决定土地生产力水平。可见,排土场土壤水分运动具有较强的空间变异性,研究排土场表层土壤饱和导水率不仅能够深入认识其土壤水文过程,也可为后期研究排土场深层土壤导水能力、土壤水分有效利用提供数据支撑。

基于此,作者以海州露天煤矿排土场3种复垦植被类型表层土壤为研究对象,分析其土壤理化性质及其对饱和导水率的影响,评价不同植被类型土壤导水能力,对比分析室内环刀法、双环入渗仪、Hood入渗仪测定结果的差异性,探寻排土场土壤饱和导水率最优测定方法,以期为进一步研究排土场土壤水分运动规律及水分渗漏特征提供科学依据。

1 研究区概况

研究区位于辽宁省阜新市海州露天煤矿排土场,总面积约为13 km2。排土场呈阶梯状,边坡坡度为35°~45°。研究区年均降水量511.4 mm,主要集中在6—8月,占全年73.25%,年蒸发量1 790 mm,年均气温7.3 ℃,≥10 ℃积温3 476 ℃,年均风速3 m/s,无霜期154 d,主要土壤类型为典型褐土。2004年,由国土资源部投资对该排土场开展土地复垦工作。在复垦前期,利用大型采矿复垦机械进行搬运、平整、压实工作,使“人造场地”恢复成较合理的地形地貌;之后再进行客土回填工程,客土来源于附近南瓦村一荒草地,土壤类型为褐土,覆土厚度为30 cm,以此建立有利于植物生长的表层和生根层,为后期生物复垦奠定基础。复垦土地规模为998.17 hm2,具有乔灌草、灌草、乔木、灌木、牧草、农田等多种复垦模式,复垦树种为刺槐(Robinia pseudoacacia)、榆树(Ulmus pumila)、油松(Pinus tabulaeformis)、刺槐和榆树混交、紫穗槐(Amorpha fruticosa)、火炬树(Rhus typhina)、柠条(Caragana korshinskii)等,排土场内没有灌溉系统,全部水分均来自天然降水。

2 材料与方法 2.1 样地布设与土壤样品采集

在综合考虑排土场排弃工艺、地形地貌、植被恢复状况等多个因素前提下,于2017年7—8月在排土场复垦区(复垦年限为13年)选取相邻但相互之间无影响的3种复垦植被类型(刺槐林地、榆树林地和荒草地)作为研究对象,以荒草地为研究对照,研究排土场复垦区不同植被类型土壤饱和导水率及其影响因素。在不同复垦植被下布设1个20 m×20 m样方,在每个样方内选取3个试验点,各试验点间呈品字形分布,每个试验点下采集0~10 cm土层土壤样品,以分析排土场表层土壤理化性质。土壤含水率采用烘干法(105 ℃)测定,土壤密度和孔隙度采用环刀法测定,砾石(>2 mm)体积含量采用水洗法和排水法测定,土壤有机质含量采用重铬酸钾外加热法测定,土壤机械组成采用吸管法测定(按照国际制土壤分级标准划分,砂粒2.000~0.020 mm,粉粒0.020~0.002 mm,黏粒 < 0.002 mm)。每个指标均为3个重复。试验点基本情况见表 1

表 1 各样地基本概况 Tab. 1 Basic situation of the plots
2.2 土壤饱和导水率测定

排土场不同复垦植被土壤饱和导水率分别采用Hood入渗仪、室内环刀法和双环入渗法测定,每种方法每个试验点3个重复,共计27场试验,记录每次试验水温。Hood入渗仪为德国UGT公司生产的Hood IL-2700型入渗仪(图 1),由Hood水罩(半径为8.8 cm或12.4 cm)、U形管压力计、导水管路、储水管等组成。导水压力由Hood里的马氏瓶供水系统提供,有效的压力可以从零到负压直至土壤气泡点(空气入渗点)间自由选择。与单环和双环入渗相比,Hood入渗仪无需处理土壤表面,最大程度地降低了扰动作用对水分入渗的影响。具体实验操作为:在每个试验点选择地势平坦的地方,将钢圈(半径为8.8 cm的小钢圈,有效入渗面积为242 cm2)压入土壤一部分,在钢圈中心处放置水罩,在水罩和钢圈之间用直径小于2 mm的饱和细沙密封;向U型管内注水至零刻度,注意不要进气泡,如果有气泡,将水倒出,重新注水;关闭所有阀门并连接管路,先给内管注水,再给外管注水,注意外管水面要略低于内管水面;调节水罩中间的水柱高度和U形管的液面差,所形成的压力差即为试验的压力值,至此准备试验全部完成。计时后,每隔一定时间(1 min)记录一次液面下降高度,直到数据稳定为止。

1.外环 2.水罩 3.溢流室 4.立管 5.入渗容器 6.内管 7.外管 8.U型管 9, 10, 11.软管 12.三脚架 V1, V2, V3.阀门 Us.U型管内的水压差 K.止水夹 P.吸气口 Hs.立管初始水头高 Z.入渗容器水头高 I.内管上口高度 B.马氏瓶入渗高度 T.储水高度 HK.内管下口距地面高度。 1. Outer ring. 2. Water shield. 3. Overflow chamber. 4. Riser. 5. Infiltration container. 6. Inner tube. 7. Outer tube. 8. U-tube. 9, 10, 11. Hose. 12. Tripod.. V1, V2, V3: Valve. Us: Water pressure difference in U-tube. K: Water stop clip. P: Suction port. Hs: Initial head height in riser. Z: Water head high in infiltration container. I: Upper mouth height of inner tube. B: Infiltration height of markov bottle. T: Water storage height. HK: Lower mouth height of inner tube from the ground. 图 1 Hood入渗仪 Fig. 1 Hood infiltrometer
2.3 饱和导水率计算与数据处理

1) 室内环刀法和双环入渗法。

室内环刀法和双环入渗法的饱和导水率按下式[9]计算:

$ {K_t} = \frac{{{R_{\rm{s}}}}}{{\frac{H}{{{C_1}L + {C_2}{D_1}}} + \frac{1}{{\alpha ({C_1}L + {C_2}{D_1})}} + 1}}。$ (1)

式中:Ktt/ ℃时的饱和导水率,mm/min;Rs为稳定入渗率,mm/min;H为水头高,cm,本次试验为5 cm;C1C2为量纲一经验常数,分别为0.316π和0.184π;L为环刀打入土壤深度,cm,本次试验室内环刀法为5 cm,双环入渗法为10 cm;D1为环刀内径,cm,本次试验室内环刀法为5 cm,双环入渗法为10 cm;α为常量,0.2 cm-1

2) Hood入渗仪。

Wooding[24]1968年建立了圆形区域入渗(半径为a)到无限远土壤内部的稳定流量

$ Q = {\rm{ \mathit{ π} }}{a^2}k\left( {1 + \frac{4}{{{\rm{ \mathit{ π} }}\alpha a}}} \right)。$ (2)

式中:Q为稳定流量,cm3/min;a为圆形入渗面的半径,cm;k为导水率,mm/min,是土壤或其他介质中水势的函数,即$k = {K_\mathit{t}}{{\rm{e}}^{\alpha \mathit{\psi }}}$,式中α为系数,cm-1ψ为张力,cm。

通过实验可以测得α,入渗测量由不同的ψ获得。测量时可以使用任意不同的ψ进行,最大到土壤气泡点(半径a),选择2个邻近值(h1h2),则有:

$ {Q_1} = {\rm{ \mathit{ π} }}{a^2}{K_{\rm{t}}}{{\rm{e}}^{\alpha {h_1}}}\left( {1 + \frac{4}{{{\rm{ \mathit{ π} }}\alpha a}}} \right),$ (3)
$ {Q_2} = {\rm{ \mathit{ π} }}{a^2}{K_{\rm{t}}}{{\rm{e}}^{\alpha {h_2}}}\left( {1 + \frac{4}{{{\rm{ \mathit{ π} }}\alpha a}}} \right)。$ (4)

式(3)和式(4)相除可得

$ \alpha = \frac{{{\rm{ln}}\frac{{{Q_1}}}{{{Q_2}}}}}{{{h_1} - {h_2}}}。$ (5)

进而得到导水率计算公式:

$ k({h_1}) = \frac{{\frac{{{Q_1}}}{{{\rm{ \mathit{ π} }}{a^2}}}}}{{1 + \frac{4}{{{\rm{ \mathit{ π} }}\alpha a}}}},$ (6)
$ k({h_2}) = \frac{{\frac{{{Q_2}}}{{{\rm{ \mathit{ π} }}{a^2}}}}}{{1 + \frac{4}{{{\rm{ \mathit{ π} }}\alpha a}}}}。$ (7)

3) 饱和导水率换算。

土壤水运动与温度关系密切,为对比分析将其他温度下测定的饱和导水率换算成标准温度(10 ℃)下饱和导水率,计算公式[25]如下:

$ {K_\mathit{s}} = \frac{{{K_t}}}{{0.7 + 0.03t}}。$ (8)

式中:Ks为10 ℃的饱和导水率,mm/min;Ktt/℃的饱和导水率,mm/min。

4) 土壤饱和导水率评价。

采用层次分析法评价排土场表层土壤饱和导水率,步骤为:首先筛选评价指标,采用相关系数法确定各个指标之间的相关性及各指标权重[26],计算单项评价指标之间的相关系数,然后求某评价指标之间相关系数的平均值,并以该平均值占所有评价指标相关系数平均值总和的比作为该单项评价指标的权重Wi;再对各个指标进行量纲一化,将量纲一化系数Ni与权重Wi相乘,求和后计算土壤饱和导水率综合指数SHC,并对综合指数进行排序确定综合排序。量纲一系数Ni和土壤饱和导水率综合指数SHC计算公式如下:

$ {N_i} = \frac{{{Q_{ij}}}}{{{Q_{i{\rm{max}}}} + {Q_{\mathit{i}{\rm{min}}}}}},$ (9)
$ {\rm{SHC}} = \sum\limits_{i = 1}^n {{W_i} \cdot {N_i}} 。$ (10)

式中:Ni为指标i量纲一系数;Qij为3个样地中第j个样地指标i的数值;Qimax为3个样地中指标i的最大值;Qimin为3个样地中指标i的最小值;SHC为土壤质量综合指数;Wi为各指标权重;n为指标个数,n=9。

土壤饱和导水率差异性采用SPSS 17.0单因素方差分析(one-way ANOVA),指标之间的相关性、权重和土壤饱和导水率综合指数采用Microsoft Excel 2003计算。

3 结果与分析 3.1 土壤理化性质分析

排土场不同复垦措施会改善土壤理化性质,进而影响饱和导水率。由表 2可以看出,排土场不同复垦措施土壤含水比例为13.51%~15.48%,各样地之间无差异;土壤密度大小依次为刺槐林地>荒草地>榆树林地,刺槐林地、榆树林地和荒草地砾石比例分别为52.39%、47.52%和54.03%,砾石含量较高,说明排土场经过多年的风化和植被恢复,仍然存在较多的砾石。榆树林地土壤有机质质量分数为8.05 g/kg,其次为刺槐林地,荒草地仅为6.17 g/kg。各样地的砂粒和粉粒的含量高于粘粒含量,其中砂粒比例在36.80%~41.43%之间,粉粒比例在48.87%~54.27%之间,黏粒比例在8.30%~9.70%之间,由国际制土壤分级标准可知,该土壤类型为粉砂质土壤。

表 2 各样地土壤物理性质 Tab. 2 Soil physical properties of the plots
3.2 土壤饱和导水率特征

表层土壤饱和导水率直接影响土壤入渗能力及水分再分布,进而影响排土场地表径流量及土壤侵蚀过程,同时也决定深层土壤水分的动态变化特征[3]。由图 2可知,刺槐林地、榆树林地和荒草地土壤饱和导水率(不同测定方法的平均值)依次为0.77、0.54和0.48 mm/min,刺槐林地、榆树林地和荒草地之间无显著差异(P>0.05),刺槐林地土壤饱和导水率是榆树林地和荒草地的1.43倍和1.60倍,说明刺槐林地具有较强的导水能力,这与刺槐林地良好的土壤结构以及较高的砾石含量有关。

不同小写字母表示不同样地之间差异显著(P < 0.05),不同大写字母表示不同测定方法之间差异显著(P < 0.05)。 Different lowercase letters indicate significant differences between different plots (P < 0.05), and different capital letters indicate significant differences between different measurement methods (P < 0.05). 图 2 排土场土壤饱和导水率 Fig. 2 Soil saturated hydraulic conductivity of the dump

对比分析不同测定方法条件下土壤饱和导水率可知,各个样地均表现为Hood入渗仪 < 双环入渗法 < 室内环刀法,其中刺槐林地土壤饱和导水率依次为0.44、0.89和0.99 mm/min,榆树林地依次为0.36、0.37和0.88 mm/min,荒草地则为0.34、0.53和0.57 mm/min。Hood入渗仪测定土壤饱和导水率不会扰动土体,最大程度地降低扰动作用对水分入渗的影响,其测定结果更加接近实际导水率。刺槐林地、榆树林地、荒草地土壤饱和导水率大小依次为0.44、0.36和0.34 mm/min,表现为刺槐林地大于榆树林地和荒草地。室内环刀法和双环入渗法的测定结果要高于Hood入渗仪法,且同一样地2种方法测定结果的最大值和最小值相差2.06倍和1.79倍,不仅增加了试验数据的离散程度,也表明该方法由于自身原因而具有较大的测量误差,丁文峰等[27]也认为双环入渗法测定结果的误差较大,最大值是最小值的13倍。

为分析排土场植被恢复年限对土壤导水性能的影响,利用吕刚等[23]在2012年采用室内环刀定水头法测定该排土场榆树林地土壤导水率的研究结果,将两组数据进行独立样本t检验(α=0.05),对比分析土壤饱和导水率随复垦年限增加(8年与13年)的变化特征。表 3为排土场不同复垦年限榆树林地土壤饱和导水率t检验结果。由表 3可知,本研究榆树林地土壤饱和导水率为0.881 mm/min,吕刚等[23]研究结果为0.153 mm/min,两者具有显著差异性(P < 0.05),说明随着复垦年限的增长,土壤饱和导水率显著提高,其增加幅度可达474.57%,表明植被恢复能够改善土壤结构,显著提高排土场土壤导水能力。

表 3 排土场不同复垦年限榆树林地土壤饱和导水率t检验 Tab. 3 t test of soil saturated hydraulic conductivity in Ulmus pumila forest land with different reclamation years of dump
3.3 土壤饱和导水率影响因素分析

本研究选取土壤含水率(X1)、土壤密度(X2)、毛管孔隙度(X3)、非毛管孔隙度(X4)、砾石含量(X5)、土壤有机质(X6)、砂粒含量(X7)、粉粒含量(X8)、黏粒含量(X9)与土壤饱和导水率(Y)(Hood入渗仪测定值)做相关分析,结果见表 4。可以看出,土壤饱和导水率与土壤密度、砾石含量、粉粒含量、黏粒含量呈显著或极显著相关,其中土壤饱和导水率与砾石含量呈极显著正相关关系(P < 0.01),与粉粒含量呈显著正相关关系(P < 0.05),与土壤密度和黏粒含量呈显著负相关关系(P < 0.05)。

表 4 土壤饱和导水率与土壤物理性质指标的相关性分析 Tab. 4 Correlation analysis between soil saturated hydraulic conductivity and soil physical properties

相关分析的结果仅能说明土壤饱和导水率与土壤物理性质指标的相关关系,不能反映出两者之间的实际关系;因此,再对上述指标进行多元逐步回归分析,构建排土场饱和导水率方程,为Y=0.03X5-1.19(R2=0.801,F=28.237,Sig. < 0.001)。由方差分析可知,该方程达到极显著水平,具有统计学意义,说明砾石含量是影响排土场表层土壤饱和导水率的主要因子。

3.4 土壤饱和导水率评价

选取上述影响指标作为评价指标,各评价指标的相关系数及其权重见表 4表 5

表 5 各评价指标的相关系数平均值和权重系数 Tab. 5 Average correlation coefficient and weight value of each evaluation index

表 6可知,排土场各个样地土壤导水性能大小依次为榆树林地>刺槐林地>荒草地,其综合指数分别为0.523、0.501、0.488,即排土场榆树林地导水能力最强,刺槐林地次之,荒草地最差,但相互之间无显著差异(P>0.05)。说明通过采取适当的植被恢复措施,能够有效地提高排土场表层土壤导水能力。

表 6 排土场土壤导水性能综合评价 Tab. 6 Comprehensive evaluation of soil water conductivity in the dump
4 讨论

笔者采用3种方法测定排土场表层土壤饱和导水率,室内环刀法和双环入渗法均利用经验参数计算获取,而Hood入渗仪法为实测数据[9]。利用试验数据计算室内环刀法和双环入渗法与Hood入渗仪计算结果的相对误差,具体结果见表 7。室内环刀法和双环入渗法的计算结果均显著大于Hood入渗仪法(P < 0.05),其相对误差分别为67.65%~144.44%和2.78%~102.27%,其中Hood入渗仪测定的土壤饱和导水率为0.38 mm/min,其数值与吕春娟等[28]关于排土场渗透系数的研究结果最为接近。从本研究上看,Hood入渗仪法测定结果离散程度和误差较小,且不需要扰动土体,也不存在水头压力,更符合土壤水分入渗的实际过程,适用于排土场表层土壤饱和导水率的测定。

表 7 不同测定方法计算的排土场表层土壤饱和导水率及相对误差 Tab. 7 Saturated hydraulic conductivity and relative error of surface soil by different measuring methods

室内环刀法和双环入渗法的测定结果偏大的原因是:排土场砾石含量较高,其存在的位置及体积也会加大室内环刀法和双环入渗法的采样难度和试验难度,且砸入环刀所产生的震动能量会破坏扰动土壤结构,加大土体内部的松散程度,在土壤样品与环刀内壁之间产生缝隙,形成土壤水分快速运动的优先路径,雷廷武等[29]认为优先流的形成是导致该方法入渗结果偏高的主要原因之一;同时,室内环刀法和双环入渗法均为一维入渗,水头高能够增加土壤入渗能力(本试验为5 cm),更是土壤一维有压入渗的主导驱动力[30]。因此,室内环刀法和双环入渗法由于其自身试验缺点及打击环刀产生的震动作用,并不适用于排土场这类结构松散、砾石含量较高的土壤类型。然而,Hood入渗仪只能获取土壤饱和导水率,却不能揭示土壤水分的入渗过程,且存在稍有侧渗、入渗面积较小、代表性较差等不足,在后期研究中可加大试验点个数,基于地统计学和GIS软件等手段研究排土场复垦区不同植被类型表层土壤饱和导水率的空间分布及变异特征,并分析排土场土壤饱和导水率随土层深度的变化规律,揭示排土场水分渗漏特征。

5 结论

1) 排土场土壤密度和砾石含量偏高,土壤有机质含量较低。各样地土壤饱和导水率在0.48~0.77 mm/min之间,刺槐林地是榆树林地和荒草地的1.43倍和1.60倍;3种测定方法的结果均表现为Hood入渗仪 < 双环入渗法 < 室内环刀法,Hood入渗仪法测定结果的离散程度和误差最小,更适合用于测定排土场表层土壤饱和导水率。

2) 排土场表层土壤饱和导水率与砾石含量和粉粒含量呈显著正相关关系,与土壤密度和粘粒含量呈显著负相关关系,其方程表达式为Y=0.03X5- 1.19。排土场榆树林地导水能力最强,刺槐林地次之,荒草地最差。

6 参考文献
[1]
FARES A, ALVA A K, NKEDIKIZZA P, et al. Estimation of soil hydraulic properties of a sandy soil using capacitance probes and Guelph permeameter[J]. Soil Science, 2000, 165(10): 768. DOI:10.1097/00010694-200010000-00002
[2]
王子龙, 赵勇钢, 赵世伟, 等. 退耕典型草地土壤饱和导水率及其影响因素研究[J]. 草地学报, 2016, 24(6): 1254.
WANG Zilong, ZHAO Yonggang, ZHAO Shiwei, et al. Study on soil saturated hydraulic conductivity and its influencing factors in typical grassland of farmland conversion[J]. Acta Agrestia Sinica, 2016, 24(6): 1254.
[3]
刘春利, 邵明安. 黄土高原坡地表层土壤饱和导水率和水分含量空间变异特征[J]. 中国水土保持科学, 2009, 7(1): 13.
LIU Chunli, SHAO Mingan. Spatial variation of saturated hydraulic conductivity and soil water of the surface layer of a slope on the Loess Plateau[J]. Science of Soil and Water Conservation, 2009, 7(1): 13. DOI:10.3969/j.issn.1672-3007.2009.01.003
[4]
GWENZI W, HINZ C, HOLMES K, et al. Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem[J]. Geoderma, 2011, 166(1): 43. DOI:10.1016/j.geoderma.2011.06.010
[5]
NOVAK V, KNAVA K, SIMUNEK J. Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method[J]. Geoderma, 2011, 161(3/4): 177.
[6]
LADO M, PAZ A, BENHUR M. Organic matter and aggregate-size interactions in saturated hydraulic conductivity[J]. Soil Science Society of America Journal, 2004, 68(1): 234. DOI:10.2136/sssaj2004.2340
[7]
梁向锋, 赵世伟, 张扬, 等. 子午岭植被恢复对土壤饱和导水率的影响[J]. 生态学报, 2009, 29(2): 636.
LIANG Xiangfeng, ZHAO Shiwei, ZHANG Yang, et al. Effects of vegetation rehabilitation on soil saturated hydraulic conductivity in Ziwuling Forest Area[J]. Acta Ecologica Sinica, 2009, 29(2): 636. DOI:10.3321/j.issn:1000-0933.2009.02.011
[8]
张川, 陈洪松, 张伟, 等. 喀斯特坡面表层土壤含水量、容重和饱和导水率的空间变异特征[J]. 应用生态学报, 2014, 25(6): 1585.
ZHANG Chuan, CHEN Hongsong, ZHANG Wwei, et al. Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1585.
[9]
朱良君, 张光辉, 任宗萍. 4种土壤入渗测定方法的比较[J]. 水土保持通报, 2012, 32(6): 163.
ZHU Liangjun, ZHANG Guanghui, REN Zongping. Comparing four methods for soil infiltration measurement[J]. Bulletin of Soil and Water Conservation, 2012, 32(6): 163.
[10]
REYNOLDS W D, ELRICK D E. Determination of hydraulic conductivity using a tension infiltrometer[J]. Soil Science of America Journal, 1991, 55(3): 633. DOI:10.2136/sssaj1991.03615995005500030001x
[11]
王红兰, 宋松柏, 唐翔宇. 基于Guelph法的土壤饱和导水率测定方法对比[J]. 农业工程学报, 2012, 28(24): 99.
WANG Honglan, SONG Songbai, TANG Xiangyu. Comparison of determination methods for saturated soil hydraulic conductivity with Guelph infiltrometer[J]. Transactions of the CSAE, 2012, 28(24): 99.
[12]
SCHWARZEL K, PUNZEL J. Hood infiltrometer:A new type of tension infiltrometer[J]. Soil Science Society of America Journal, 2007, 71(5): 1438. DOI:10.2136/sssaj2006.0104
[13]
MORET-FERNANDEZ D, LATORRE B, PENA C, et al. A modified hood infiltrometer to estimate the soil hydraulic properties from the transient water flow measurements[J]. Journal of Hydrology, 2015, 530: 554. DOI:10.1016/j.jhydrol.2015.10.014
[14]
高朝侠, 徐学选, 宇苗子, 等. 黄土塬区土地利用方式对土壤大孔隙特征的影响[J]. 应用生态学报, 2014, 25(6): 1578.
GAO Chaoxia, XU Xuexuan, YU Miaozi, et al. Impact of land use types on soil macropores in the loess region[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1578.
[15]
覃淼, 翟禄新, 周正朝. 桂北地区土地利用类型对土壤饱和导水率和持水能力的影响研究[J]. 水土保持研究, 2015, 22(3): 28.
QIN Miao, ZHAI Luxin, ZHOU Zhengchao. Influence of land use types on soil saturated hydraulic conductivity and water retention in northern Guangxi[J]. Research of Soil and Water Conservation, 2015, 22(3): 28.
[16]
李俊杰, 白中科, 赵景逵, 等. "矿山工程扰动土"人工再造的概念、方法、特点与影响因素[J]. 土壤, 2007, 39(2): 216.
LI Junjie, BAI Zhongke, ZHAO Jingkui, et al. Concept, methods, characteristics and influential factors of artificial rebuilding of mining engineering disturbed soil[J]. Soils, 2007, 39(2): 216. DOI:10.3321/j.issn:0253-9829.2007.02.010
[17]
JONATHAND A, LACHLANJ I, PETERD S. Influence of reclamation management practices on microbial biomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming[J]. Applied Soil Ecology, 2008, 40(2): 387. DOI:10.1016/j.apsoil.2008.06.008
[18]
杨永刚, 苏帅, 焦文涛. 煤矿复垦区土壤水动力学特性对下渗过程的影响[J]. 生态学报, 2018, 38(16): 5876.
YANG Yonggang, SU Shuai, JIAO Wentao. The influence of hydrodynamic characteristics on the infiltration process of soil water in a coal mine reclamation area[J]. Acta Ecologica Sinica, 2018, 38(16): 5876.
[19]
HERRICK J E, SCHUMAN G E, RANGO A. Monitoring ecological processes for restoration projects[J]. Journal for Nature Conservation, 2006, 14(3/4): 161.
[20]
AHIRWAL J, MAITI S K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India[J]. Catena, 2016, 140: 155. DOI:10.1016/j.catena.2016.01.028
[21]
王洪丹, 王金满, 曹银贵, 等. 黄土区露天煤矿排土场土壤与地形因子对植被恢复的影响[J]. 生态学报, 2016, 36(16): 5098.
WANG Hongdan, WANG Jinman, CAO Yingui, et al. Effcet of soil and topography on vegetation restoration in an opencast coal mine dump in a loess area[J]. Acta Ecologica Sinica, 2016, 36(16): 5098.
[22]
杨国敏, 王力. 黑岱沟矿区排土场土壤水的氢氧稳定性同位素特征及入渗规律[J]. 煤炭学报, 2015, 40(4): 944.
YANG Guomin, WANG Li. Characteristics of stable isotopes and infiltration rule of soil water at dumping site in Heidaigou opencast coal mine[J]. Journal ofChina Coal Society, 2015, 40(4): 944.
[23]
吕刚, 王磊, 卢喜平, 等. 不同复垦方式排土场砾石对饱和导水率和贮水能力的影响[J]. 土壤学报, 2017, 54(6): 1414.
Ga ng, WANG Lei, LU Xiping, et al. The effect of gravel on saturated hydraulic conductivity and water storage capacity in reclaimed dump relative to reclamation mode[J]. Acta Pedologica Sinica, 2017, 54(6): 1414.
[24]
WOODING R A. Steady Infiltration from a Shallow Circular Pond[J]. Water Resources Research, 1968, 4(4): 1259.
[25]
曹瑞雪, 邵明安, 贾小旭. 层状土壤饱和导水率影响的试验研究[J]. 水土保持学报, 2015, 29(3): 18.
CAOI Ruixue, SHAO Mingan, JIA Xiaoxu. Experimental study on effects of layered soils on saturated hydraulic conductivity[J]. Journal of Soil and Water Conservation, 2015, 29(3): 18.
[26]
张汪寿, 李晓秀, 黄文江, 等. 不同土地利用条件下土壤质量综合评价方法[J]. 农业工程学报, 2010, 26(12): 311.
ZHANG Wangshou, LI Xiaoxiu, HUANG Wenjiang, et al. Comprehensive assessment methodology of soil quality under different land use conditions[J]. Transactions of the CSAE, 2010, 26(12): 311. DOI:10.3969/j.issn.1002-6819.2010.12.053
[27]
丁文峰, 张平仓, 任洪玉, 等. 秦巴山区小流域水土保持综合治理对土壤入渗的影响[J]. 水土保持通报, 2007, 27(1): 11.
DING Wenfeng, ZHANG Pingchang, REN Hongyu, et al. Effect of comprehensive watershed control on infiltration rate in the Qinba mountain area[J]. Bulletin of Soil and Water Conservation, 2007, 27(1): 11. DOI:10.3969/j.issn.1000-288X.2007.01.003
[28]
吕春娟, 白中科. 露天排土场的岩土侵蚀特征及水保效应分析[J]. 水土保持研究, 2010, 17(6): 14.
LÜ Chunjuan, BAI Zhongke. Soil and rock erosion and soil and water conservation effects of opencast mine dump[J]. Research of Soil and Water Conservation, 2010, 17(6): 14.
[29]
雷廷武, 张婧, 王伟, 等. 土壤环式入渗仪测量效果分析[J]. 农业机械学报, 2013, 44(12): 99.
LEI Tingwu, ZHANG Jing, WANG Wei, et al. Assessment on soil infiltration rates measured by ring infiltrometer[J]. Transactions of the CSAE, 2013, 44(12): 99. DOI:10.6041/j.issn.1000-1298.2013.12.017
[30]
李红星, 樊贵盛. 非饱和土壤有压和无压入渗稳定入渗率间的关系研究[J]. 灌溉排水学报, 2010, 29(2): 17.
LI Hongxing, FAN Guisheng. The quantitative relation of stable infiltration rates between the pressured and non-pressured water infiltration in unsaturated soils[J]. Journal of Irrigation and Drainage, 2010, 29(2): 17.