2. 四川农业大学林学院, 611130, 成都
-
项目名称
- 国家自然科学基金"紫色土坡耕地侵蚀演化特征及其对作物防蚀的响应机制"(41271307);四川省教育厅项目"紫色土区玉米季横垄坡面片蚀过程研究"(15ZB0009)
-
第一作者简介
- 王莹(1992-), 男, 硕士研究生。主要研究方向:土壤侵蚀与水土保持。E-mail:Waying2017@163.com
-
通信作者简介
- 郑子成(1976-), 男, 教授, 博士生导师。主要研究方向:土壤侵蚀与水土保持。E-mail:zichengzheng@aliyun.com
-
文章历史
-
收稿日期:2018-03-05
修回日期:2018-06-11
2. 四川农业大学林学院, 611130, 成都
2. College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
地表糙度是描述微尺度地表轮廓起伏和不规则变化的指标,也是影响坡面土壤侵蚀主要因素之一。研究表明,水蚀过程中地表糙度对土壤侵蚀存在着增加和降低双重作用,并在水蚀过程中相互转化[1-2];同时,泥沙搬运和沉积也会影响地表糙度:因此,研究水蚀过程中地表糙度和侵蚀量关系对于深入揭示紫色土坡面水蚀机理具有重要意义。
降雨作为坡面土壤侵蚀主要动力之一,直接影响地表糙度和侵蚀量变化。降雨和径流对土壤颗粒的剥蚀、搬运和堆积导致地表轮廓起伏[3],加剧土壤侵蚀[4]。植被覆盖能有效削弱降雨和径流对地表糙度和土壤侵蚀影响[5]。同时,地表糙度不仅受随机性因素影响,还受到自身结构性因素影响。研究表明,初始地表糙度越大坡面,降雨后地表糙度降幅越明显[6],合理耕作措施能有效降低坡面土壤侵蚀[7]。横坡垄作作为有效的侵蚀防治措施在川中丘陵区已普遍推广,其对土壤侵蚀的影响因水蚀阶段不同,存在抑制和增强双重作用[8]。可见,水蚀过程中地表糙度和土壤侵蚀受耕作措施,降雨强度和植被覆盖等因素影响,交互影响更为复杂。而目前,对不同耕作措施、降雨强度和植被覆盖条件下地表糙度变化特征研究较多,且多集中于黄土和红壤丘陵区[9],缺乏从下垫面角度探讨水蚀过程中玉米全生育期土壤侵蚀效应。紫色土作为一种侵蚀性高生产力岩性土,土体较薄,集中分布于川中丘陵区,土壤侵蚀严重[10],玉米(Zea mays)作为该区主要的粮食作物之一,其生长阶段与研究区雨季同期[11]。因此,笔者以川中丘陵区紫色土坡耕地为研究对象,开展横垄坡面玉米全生育期水蚀过程中地表糙度和侵蚀量变化特征研究,阐明地表糙度、地表糙度变幅和降雨强度与侵蚀量的关系,以期为揭示紫色土区坡耕地水蚀机理与区域水土流失的有效防控提供理论依据。
1 研究区概况试验在农业部长江上游农业资源与生态环境重点野外科学试验站(E 104°34′12″, N 30°05′12″)进行,位于四川省资阳市雁江区松涛镇响水村,平均海拔为395m,属亚热带季风气候,年均温为16.8℃,年平均降雨量为965.8mm,全年降雨量的80%集中于5—9月份,以暴雨为主,水土流失严重。玉米为该区主栽农作物之一,种植密度约4万株/hm2。土壤为遂宁组母质发育的红棕紫泥,质地较轻,黏粒、粉粒和砂粒含量分别为22%、29%和49%,质地较轻,土壤密度为1.21g/cm3。
2 材料与方法 2.1 小区布设与降雨试验采用人工模拟降雨和微小区相结合的方法,基于前期实地调查,径流小区设计为4m×2m,每个小区由4个2m×1m的微小区组成,其中3个微小区为试验重复,1个为空白对照。小区下垫面用混凝土固化防渗,并铺设10cm厚石英砂作透水层,透水层上填土60cm。各小区底部由水泥砌成箱形集水槽,且与PVC管连接,收集径流泥沙。设计坡度为15°(图 1)。横垄坡面的设置按照当地农耕习惯,垄高、垄宽和垄距分别为25、40和90cm。根据试验区域多年降雨和水文资料,设计降雨强度为1.0、1.5和2.0mm/min,采用分阶段连续降雨方法,总降雨时间为120min,分别于玉米苗期、拔节期、抽雄期和成熟期进行降雨,重复3次,共计36场。
|
图 1 紫色土坡耕地径流小区设计示意图 Fig. 1 Schematic illustration of runoff plot structure on sloping cropland of purple soil |
供试玉米品种为正红6号,于2015年4月垄上单行直播,行距90cm,株距25cm,苗期、拔节期、抽雄期和成熟期株高分别为0.26、1.64、2.45和2.19m;叶面积指数分别为0.108、2.236、2.770和1.356。
降雨装置为SR型移动式人工模拟降雨器,喷头系统为美国V-80100,2台降雨器分别位于小区两侧对喷降雨,有效降雨高度为6m,降雨面积为35m2,降雨均匀系数可超过85%。
2.2 数据处理与分析试验过程中,溅蚀量收集采用溅蚀板法[12],片蚀和细沟侵蚀阶段产流量和产沙量的每隔3min收集1次,分别用体积法和烘干法测定。
采用Saleh链条法[13]对顺坡和横坡方向地表糙度进行测定,根据前期研究结果,每次测量间隔20cm效果最优,并求算平均糙度作为试验小区地表糙度,计算式为:
| $ R = \left( {1 - \frac{{{l_2}}}{{{l_1}}}} \right) \times 100; $ | (1) |
| $ {R_r} = \left( {\frac{{{R_2}}}{{{R_1}}} - 1} \right) \times 100\% 。$ | (2) |
式中:R为任意方向上的地表糙度;l1为链条实际长度,cm;l2为链条放置于地表长度,cm;Rr为地表糙度变幅;R1为雨前地表糙度;R2为雨后地表糙度。
试验数据统计分析采用DPS 11.0软件,多重比较选择LSD(least significant difference)法,方程拟合采用SPSS 17.0软件完成,图表制作采用Origin 9.0和Excel 2013。
3 结果与分析 3.1 水蚀过程中玉米各生育期地表糙度变化特征如图 2所示,不同降雨强度条件下,玉米各生育期地表糙度变幅在细沟侵蚀阶段最大。
|
柱上不同字母表示同一降雨强度下,不同水蚀阶段在P < 0.05水平上差异显著;不同上标字母表示同一水蚀阶段,不同降雨强度在P < 0.05水平上差异显著,下同。Different letters on the histograms indicate significant difference between different water erosion stages at P < 0.05 level, and different superscript letters indicate significant difference among rainfall intensities at P < 0.05 level at the same water erosion stage. The same below. 图 2 水蚀过程中玉米各生育期地表糙度变化 Fig. 2 Change of soil surface roughness at maize growing stages during water erosion process |
苗期除1.0mm/min降雨强度外,其他降雨强度条件下地表糙度变幅随水蚀阶段推进分别降低43.36%和58.87%;1.0mm/min降雨强度条件下,地表糙度变幅在片蚀阶段呈增加趋势,溅蚀和细沟侵蚀阶段与之相反。拔节期1.0和1.5mm/min降雨强度条件下,片蚀阶段地表糙度增幅最大,细沟侵蚀阶段降低幅度最大;2.0mm/min降雨强度条件下,片蚀和细沟侵蚀阶段地表糙度变幅呈增加趋势,溅蚀阶段与之相反。抽雄期1.5mm/min降雨强度条件下,细沟侵蚀阶段地表糙度增加幅度显著高于溅蚀和片蚀阶段,分别为溅蚀和片蚀阶段的1.35倍和1.77倍;1.0和2.0mm/min降雨强度条件下溅蚀阶段地表糙度变幅逐渐降低,片蚀和细沟侵蚀阶段与之相反。成熟期1.0和2.0mm/min降雨强度条件下地表糙度变幅在溅蚀和片蚀阶段有所降低,细沟侵蚀阶段呈增加趋势,1.5mm/min降雨强度条件下与之相反。
3.2 水蚀过程中玉米各生育期侵蚀量变化特征如图 3所示,不同降雨强度条件下,玉米各生育期侵蚀量均在细沟侵蚀阶段最大。2.0mm/min降雨强度条件下,细沟侵蚀量显著高于溅蚀和片蚀阶段;1.5mm/min降雨强度条件下,抽雄期溅蚀量分别是片蚀和细沟侵蚀量的11.33%和9.2%;1.0mm/min降雨强度条件下,玉米各生育期片蚀和细沟侵蚀量显著高于溅蚀阶段。随着玉米生育期推进,片蚀和细沟侵蚀量在苗期最大,抽雄期最小。除溅蚀阶段外,其他水蚀阶段玉米各生育期侵蚀量在2.0mm/min降雨强度条件下最大,显著高于1.0mm/min降雨强度条件。溅蚀阶段侵蚀量变化较为复杂,除苗期外,其他生育期侵蚀量在1.0mm/min降雨强度条件下最大,显著高于其他降雨强度。苗期2.0mm/min降雨强度条件下侵蚀量分别为1.0和1.5mm/min降雨强度条件下的12.88倍和3.24倍。
|
图 3 水蚀过程中玉米各生育期侵蚀量变化 Fig. 3 Change of soil erosion amount at maize growing stages during water erosion process |
由表 1可知:除溅蚀阶段成熟期外,其他水蚀阶段玉米各生育期初始地表糙度和降雨强度与侵蚀量显著相关;水蚀过程中玉米各生育期地表糙度变幅和降雨强度与侵蚀量均显著相关(R2>0.67)。细沟侵蚀阶段玉米各生育期初始地表糙度,地表糙度变幅与侵蚀量极显著相关;片蚀阶段抽雄期初始地表糙度,地表糙度变幅与侵蚀量显著相关,其他生育期初始地表糙度、地表糙度变幅与侵蚀量相关性达到极显著水平;溅蚀阶段除成熟期外,其他生育期初始地表糙度和降雨强度与侵蚀量显著相关,玉米全生育期地表糙度变幅和降雨强度与侵蚀量显著相关,且在苗期、拔节期和抽雄期3者相关性达到极显著水平。
| 表 1 水蚀过程中初始地表糙度、地表糙度变幅与侵蚀量的相关性分析 Tab. 1 Correlation analysis between initial soil surface roughness, change range of surface roughness and soil erosion amount during water erosion process |
水蚀过程中玉米各生育期地表糙度变幅存在差异。本研究中,苗期叶面积指数(LAI (leaf area index) 0.108和株高0.258m相对较小,穿透雨量大[14],地表形成大小不一的坑洼;加之雨滴的压实作用,地表糙度有所降低[15]。片蚀和细沟侵蚀阶段径流的剥蚀搬运作用增强,垄上土壤颗粒沉积在垄沟内,地表糙度降低。1.0mm/min降雨强度条件下片蚀阶段地表糙度增大,这可能是由于局部微地形重组所致。拔节期片蚀阶段地表径流以紊流为主[16],且拔节期LAI为2.236和株高1.660m有所增加,穿透雨量和雨滴动能增强,垄上土壤颗粒受雨滴击打迁移至垄沟,溅蚀阶段地表糙度降低[12]。抽雄期溅蚀阶段地表糙度变幅最小,片蚀和细沟侵蚀阶段有所增大,这可能是由于抽雄期LAI最大(2.770),株高为2.454m,叶片分流作用导致溅蚀的随机性和不确定性增强[12];同时,降雨经茎秆汇流后直接破坏玉米根部土壤,携带泥沙从根系处流出垄沟,形成细沟侵蚀,地表糙度随之增大。成熟期叶片枯萎,叶尖向下,平铺于土壤表面,削弱径流对土壤表面破坏作用[5]。笔者研究中片蚀和细沟侵蚀阶段玉米各生育期侵蚀量随降雨强度增大而增大,细沟侵蚀量显著高于片蚀和溅蚀阶段。这可能是由于片蚀和细沟侵蚀阶段地表径流为坡面侵蚀主要动力,地表径流量随降雨强度增大而增大,同时雨滴击打会增强径流紊动性,加剧土壤侵蚀[16]。拔节期、抽雄期和成熟期溅蚀阶段侵蚀量随降雨强度增加而降低,苗期与之相反,2.0mm/min降雨强度下侵蚀量最大。降雨强度增加,雨滴对表土击打和破坏作用增强,但溅蚀受玉米叶片和茎秆汇流影响,侵蚀量降低[17]。玉米各生育期土壤侵蚀量在苗期最大,抽雄期最低,且抽雄期侵蚀量在降雨强度间差异不显著。这主要是由于抽雄期植被覆盖度大,冠层截留和茎秆汇流作用增强,同时玉米根系生长增强地表土壤抗侵蚀能力,径流剥蚀和搬运泥沙量减少[18]。
细沟侵蚀阶段坡面侵蚀量与初始地表糙度、地表糙度变幅和降雨强度极显著相关,径流作为细沟侵蚀阶段主要动力,径流对沟底剥蚀、冲刷导致侵蚀量和地表糙度增大[19],尤以横垄坡面断垄后效果最为明显[20]。片蚀阶段抽雄期侵蚀量与初始地表糙度和地表糙度变幅相关性达到显著水平,其他生育期初始地表糙度、地表糙度变幅与侵蚀量极显著相关。这主要是由于抽雄期LAI为2.770,雨滴对表面土壤击溅作用降低,同时泥沙在垄沟内堆积,地表糙度和侵蚀量减小[21]。溅蚀阶段玉米全生育期地表糙度变幅与侵蚀量显著相关,除成熟期外,其他生育期初始地表糙度与侵蚀量显著相关。这主要是由于成熟期叶片枯萎,叶尖向下,溅蚀和径流作用减弱[5],同时,水蚀过程中初始地表糙度受到玉米生育期、耕作措施和降雨强度等因素影响[19]。
5 结论1) 玉米各生育期地表糙度在细沟侵蚀阶段变幅最大,抽雄期地表糙度变幅最小,片蚀和细沟侵蚀阶段地表糙度呈增加趋势,2.0mm/min降雨强度条件下地表糙度变幅最大。应加强苗期横垄坡面修复工作,防止水土流失加剧。
2) 细沟侵蚀阶段为横垄坡面土壤侵蚀的主要阶段,溅蚀阶段侵蚀量在苗期随降雨强度增加而降低,其他生育期与之相反;玉米各生育期片蚀和细沟侵蚀阶段侵蚀量在2.0mm/min降雨强度条件下最大,玉米抽雄期侵蚀量最低。
3) 片蚀和细沟侵蚀阶段侵蚀量与初始地表糙度和地表糙度变幅显著相关,溅蚀阶段初始地表糙度、地表糙度变幅与侵蚀量关系受玉米生育期影响较大,且地表糙度变幅对侵蚀量预测效果较优。
| [1] |
郑子成, 秦凤, 李廷轩. 不同坡度下紫色土地表微地形变化及其对土壤侵蚀的影响[J].
农业工程学报, 2015, 31(8): 168.
ZHENG Zicheng, QIN Feng, LI Tingxuan. Changes in soil surface microrelief of purple soil under different slope gradients and its effects on soil erosion[J]. Transactions of the CSAE, 2015, 31(8): 168. |
| [2] |
MORENO R G, REQUEJO A S, ALTISENT J M D, et al. Significance of soil erosion on soil surface roughness decay after tillage operations[J].
Soil and Tillage Research, 2011, 117(8): 49.
|
| [3] |
VERMANG J, NORTON L D, BAETENS J M, et al. Quantification of soil surface roughness evolution under simulated rainfall[J].
Transactions of the Asabe, 2013, 56(2): 505.
DOI: 10.13031/2013.42670. |
| [4] |
李桂芳, 郑粉莉, 卢嘉, 等. 降雨和地形因子对黑土坡面土壤侵蚀过程的影响[J].
农业机械学报, 2015, 46(4): 147.
LI Guifang, ZHENG Fenli, LU jia, et al. Effects of rainfall and topography on soil erosion processes of black soil hillslope[J]. Transactions of the CSAM, 2015, 46(4): 147. |
| [5] |
王栋栋, 王占礼, 张庆玮, 等. 草地植被覆盖度坡度及雨强对坡面径流含沙量影响试验研究[J].
农业工程学报, 2017, 33(15): 119.
WANG Dongdong, WANG Zhanli, ZHANG Qingwei, et al. Experiment on influence of cover degree, slope and rainfall intensity on sediment concentration of slope runoff in rangeland[J]. Transactions of the CSAE, 2017, 33(15): 119. |
| [6] |
ZHAO Longshan, LIANG Xinlan, WU Faqi, et al. Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China[J].
Journal of Arid Land, 2014, 6(4): 400.
DOI: 10.1007/s40333-013-0246-z. |
| [7] |
牛耀彬, 高照良, 刘子壮, 等. 工程堆积体坡面工程措施减流减沙效应的试验研究[J].
南水北调与水利科技, 2015, 13(5): 1010.
NIU Yaobin, GAO Zhaoliang, LIU Zizhuang, et al. Experimental study on the effects of slope surface of engineering accumulation on overland flow and sediment reduction[J]. South to North Water Transfers and Water Science and Technology, 2015, 13(5): 1010. |
| [8] |
LIU Qianjin, ZHANG Hanyu, AN Juan, et al. Soil erosion processes on row side slopes within contour ridging systems[J].
Catena, 2014, 115(4): 11.
|
| [9] |
LIANG Xinlan, LU Pei, ZHAO Longshan, et al. The effect of different soil erosion stages on surface roughness under simulated rainfall[J].
Nature Environment and Pollution Technology, 2015, 14(1): 9.
|
| [10] |
聂小军, 苏艳艳. 川中丘陵区紫色土坡耕地土壤侵蚀特征[J].
生态环境学报, 2012, 21(4): 682.
NIE Xiaojun, SU Yanyan. Characteristics of soil erosion on sloping farmlands in a purple hilly region of the Sichuan Basin[J]. Ecology and Environment Sciences, 2012, 21(4): 682. DOI: 10.3969/j.issn.1674-5906.2012.04.016. |
| [11] |
林代杰, 郑子成, 张锡洲, 等. 玉米植株对降雨再分配过程的影响[J].
中国农业科学, 2011, 44(12): 2608.
LIN Daijie, ZHENG Zicheng, ZHANG Xizhou, et al. Study on the effect of maize plants on rainfall redistribution processes[J]. Scientia Agricultura Sinica, 2011, 44(12): 2608. DOI: 10.3864/j.issn.0578-1752.2011.12.025. |
| [12] |
焦银龙, 郑子成, 李廷轩, 等. 玉米季坡耕地地表糙度的变化及其对土壤溅蚀的影响[J].
水土保持学报, 2014, 28(6): 7.
JIAO Yinlong, ZHENG Zicheng, LI Tingxuan, et al. Changes of soil surface roughness and its effects on soil splash erosion in sloping cropland during maize growing season[J]. Journal of Soil and Water Conservation, 2014, 28(6): 7. |
| [13] |
SALEH A. Soil roughness measurement:Chain method[J].
Journal of Soil and Water Conservation, 1993, 48(6): 527.
|
| [14] |
马波, 李占斌, 马璠, 等. 模拟降雨条件下玉米植株对降雨再分配过程的影响[J].
生态学报, 2015, 35(2): 497.
MA Bo, LI Zhanbin, MA Fan, et al. Effects of maize plants on the redistribution of water under simulated rainfall conditions[J]. Acta Ecologica Sinica, 2015, 35(2): 497. |
| [15] |
郑子成, 何淑勤, 吴发启. 降雨条件下耕作方式对地表糙度的溅蚀效应[J].
农业工程学报, 2009, 25(11): 103.
ZHENG Zicheng, HE Shuqin, WU Faqi. Splash erosion effects of tillage practices on soil surface roughness under different rainfall conditions[J]. Transactions of the CSAE, 2009, 25(11): 103. DOI: 10.3969/j.issn.1002-6819.2009.11.019. |
| [16] |
郑子成, 何淑勤, 吴发启. 降雨条件下地表糙度对片蚀的影响及其变化[J].
农业工程学报, 2010, 26(1): 139.
ZHENG Zicheng, HE Shuqin, WU Faqi. Effects of soil surface roughness on sheet erosion and change under different rainfall conditions[J]. Transactions of the CSAE, 2010, 26(1): 139. |
| [17] |
马波, 马璠, 吴秋菊, 等. 玉米冠下溅蚀效应及其空间分布特征[J].
农业工程学报, 2012, 28(2): 135.
MA Bo, MA Fan, WU Qiuju, et al. Splash detachment effects and its spatial distribution under corn canopies[J]. Transactions of the CSAE, 2012, 28(2): 135. |
| [18] |
MA Bo, LIU Yuxin, LIU Xiaojun, et al. Soil splash detachment and its spatial distribution under corn and soybean cover[J].
Catena, 2015, 127(5): 142.
|
| [19] |
梁心蓝, 赵龙山, 吴佳, 等. 模拟条件下不同耕作措施和雨强对地表糙度的影响[J].
中国农业科学, 2014, 47(24): 4840.
LIANG Xinlan, ZHAO Longshan, WU Jia, et al. Effects of different tillage treatments and rainfall intensities on soil surface roughness under simulated condition[J]. Scientia Agricultura Sinica, 2014, 47(24): 4840. DOI: 10.3864/j.issn.0578-1752.2014.24.007. |
| [20] |
LUO Jian, ZHENG Zicheng, LI Tingxuan, et al. Spatial heterogeneity of microtopography and its influence on the flow convergence of slopes under different rainfall patterns[J].
Journal of Hydrology, 2017, 545(12): 88.
|
| [21] |
黄成龙, 何淑勤, 郑子成, 等. 紫色土区玉米季坡耕地片蚀过程研究[J].
水土保持学报, 2015, 29(1): 70.
HUANG Chenglong, HE Shuqin, ZHENG Zicheng, et al. Study on sheet erosion process of the purple soil area in sloping cropland during maize growing season[J]. Journal of Soil and Water Conservation, 2015, 29(1): 70. |
2018, Vol. 16 
