-
项目名称
- 林业公益性行业科研专项项目"林业废弃物基质化研制技术与应用"(201504205)
-
第一作者简介
- 张乐 (1993-), 男, 硕士研究生。主要研究方向:土壤修复。E-mail:zlomusic@163.com
-
通信作者简介
- 李素艳 (1968-), 女, 博士, 副教授。主要研究方向:土壤改良与修复。E-mail:lisuyan@bjfu.edu.cn
-
文章历史
-
收稿日期:2016-09-21
修回日期:2016-03-16
土壤盐碱化是世界上许多国家面对的重要难题,其危害主要体现在影响植被生长,恶化生态环境。若能充分改良利用盐碱地资源,营造大面积的林分,对于提高森林覆盖率,减少水土流失及改善脆弱的生态环境即会产生巨大作用[1-2]。
目前,在滨海盐碱化土壤改良治理技术方面,开展了大量的研究工作[3-5]。其中,化学改良措施可以在一定程度上,增加土壤的孔隙度,减轻Na+毒害,增加土壤养分;但由于化学改良材料种类众多,许多化学改良剂存在对土壤造成污染的危险,寻找合适的改良材料,是目前的重要研究方向[6]。城市园林绿化的养护过程中,会产生大量的园林绿化废弃物[7],其消纳处理是一项亟需解决的问题。研究[8]发现,园林废弃物经过腐熟发酵后,可促进土壤团聚体的生成,改善土壤通透性[9];园林废弃物的惰化产品对土壤结构有很好的改良效果,它的吸附性对土壤环境也有多方面的积极影响[10]。磷石膏是磷酸工业废渣,大量堆积会对自然环境造成极大的污染,作为常用的盐碱土壤改良剂,能够有效降低土壤盐分及pH值[11-13]。
磷石膏与农业废弃物等结合施用,改良盐碱土已经有了一定的研究基础[14-15],但关于磷石膏结合园林废弃物的相关研究鲜有报道。笔者根据滨海盐碱地特点,研发了一种新型有机改良剂,由园林废弃物的堆肥和高温惰化产品,按照一定比例配制而成,通过有机改良剂与磷石膏结合,改良滨海盐土,以期为滨海盐碱地区的城市绿化,提供理论依据。
1 研究区概况研究区位于河北省沧州市渤海新区 (E117°24′~38′,N38°20′~28′),属暖温带半湿润大陆性季风型气候,年平均降雨量627 mm,75%集中在夏季,年平均蒸发量为降雨量的3倍多。研究区的浅层地下水埋藏深度较浅,雨季时,地下水深度仅为80 cm,平均矿化度为4 g/L,属强矿化度水。由于淡水资源紧缺,农业灌溉用水多混有浅层含盐地下水,极易造成土壤的盐渍化。
前期土壤调查表明,该区域的土壤母质主要为河流三角洲冲积物,土壤质地呈现出层状分布特征,0~20 cm为粉砂壤土,20~40 cm处可见黏土层,40~100 cm深度土层仍为粉砂壤土,土壤质地不均,且保水透气性差。土壤盐分的垂直分布特征呈现出明显的表聚性[16-17],以氯化物占绝对优势,其中,Cl-和Na+质量分数约占全盐质量分数的46.68%和37.02%。
2 材料与方法 2.1 供试材料有机改良剂 (CP):由园林废弃物堆肥产品[18](GWC) 和高温惰化产品[19](PG),按照质量比4:1配制而成。产品均购自园林绿化废弃物消纳中心。
无机改良剂:磷石膏 (Pg) 购自山东省华蓥商贸有限公司,pH值为2.5,主要成分为CaSO4·2H2O (约占总质量的94.6%),MgO、P2O5和Fe2O3比例依次为0.087%、2.06%和0.37%。
2.2 试验设计试验地位于沧州临港经济技术开发区学院路南侧绿化带。绿化施工时,采取客土抬高地面的工程措施,客土来自于附近的麦田。试验于工程结束半年后,在试验地内土壤盐渍化程度相同的区域进行,设置2个因素,分别为磷石膏 (Pg) 和有机改良剂 (CP);依据前期的研究结果,每个因素设置4个水平,其中:磷石膏施用量为0、1、2和3 kg/m2(即Pg-0、Pg-1、Pg-2、Pg-3),有机改良剂的施用量为待改良土方量体积的0、5%、10%和15%(即CP-0、CP-5、CP-10、CP-15);各因素的不同水平间两两组合,共计16个处理,每个处理为一个小区,其中,Pg-0和CP-0处理组合作为对照处理。
试验地土壤及供试有机改良剂,其基本理化性质如表 1所示。各处理随机分布,每个处理为一个试验小区,长×宽规格为12 m×6 m,相邻小区间距为3 m,且每个小区包含3棵国槐 (Sophora japonica),即试验重复3次。有机改良剂与磷石膏直接施入国槐栽植坑内,并与表层土壤 (0~20 cm) 混合均匀。试验期间,各处理采取相同的养护措施。
| 表 1 试验区土壤及有机改良剂理化性质 Table 1 Physico-chemical properties of the saline soil from the field site and the organic modifier (CP) applied to saline soil |
土壤样品采集按季度分别于2014年7月、2014年10月、2015年3月和2015年7月进行,每个处理中,随机选取3个点采集表层土壤 (0~20 cm)。
采回的土壤样品经自然风干后,碾碎过筛 (1 mm),并以水土比5:1制备土壤水溶液,以进行指标测定。土壤pH值使用通用型pH计 (OHAUS Starter 3C,美国) 测定;CO32-、HCO3-采用双指示剂-中和滴定法测定;Cl-采用硝酸银滴定法 (莫尔法) 测定;Ca2+、Mg2+采用EDTA滴定法测定;SO42-采用EDTA间接络合滴定法测定;K+、Na+采用火焰光度法 (FP6410,上海) 测定;全盐质量分数为上述8种离子质量分数之和[20]。
SAR简称钠吸附比,计算公式为
| $\text{SAR}=w\left( \text{N}{{\text{a}}^{+}} \right)/\sqrt{\left( w\left( \text{C}{{\text{a}}^{2+}} \right)+w\left( \text{M}{{\text{g}}^{2+}} \right) \right)/2}。$ |
数据采用Excel 2010及SPSS 18软件进行统计分析。其中,单因素方差分析 (one-way ANOVA) 比较不同处理间的差异,多重比较采用Duncan法检验。
3 结果与分析 3.1 土壤pH值变化试验进行约1年后,各处理表层土壤 (0~20 cm) 的pH值见图 1。可以看出,在磷石膏施用量一定的条件下 (Pg处理),施入有机改良剂 (CP处理),在一定程度上能够降低土壤的pH值,但是只有当有机改良剂施入量达到待改良土方量体积的15%时 (CP-15处理),土壤pH值才能显著低于CP-0处理 (图 1-A);在有机改良剂施入量一定的条件下,随着磷石膏施入量的增加,土壤pH值基本呈现显著降低趋势 (图 1-B)。
|
CP-0、CP-5、CP-10和CP-15分别是有机改良剂的施用量为待改良土方量体积的0、5%、10%和15%;Pg-0、Pg-1、Pg-2和Pg-3分别为磷石膏施用量为0、1、2和3 kg/m2的处理。各处理不同字母表示差异显著 (p<0.05),下同。 CP-0, CP-5, CP-10 and CP-15 refer to the applied amount of CP by 0, 5%, 10% and 15% of being-ameliorated soil volume, respectively. Pg-0, Pg-1, Pg-2 and Pg-3 refer to the treatment with 0, 1, 2, and 3 kg/m2 of phosphogypsum (Pg), respectively. Different letters represent significantly different at P < 0.05, the same below. 图 1 不同处理对土壤pH值的影响 Figure 1 Effects of different treatments on pH values of the saline soil |
施入磷石膏约1个月后,各处理的土壤pH值均显著低于Pg-0,由于土壤的缓冲性和磷石膏中的酸性物质在降水的作用下淋洗出土体,土壤pH值随着时间的变化有所回升。施入磷石膏的同时施入有机改良剂,可以使土壤pH值较快趋于稳定 (相邻采样日期间差异不显著,p>0.05)。未施入有机改良剂时 (图 2-A),施入磷石膏的各处理在改良的9个月之后,土壤pH值才能趋于稳定;而在有机改良剂施入时 (图 2-B,C和D),且磷石膏施入量适中 (Pg-1,Pg-2) 的条件下,仅4个月,土壤pH值即可趋于稳定。
|
图 2 不同处理下土壤pH值的动态变化 Figure 2 Dynamic of pH values of the saline soil under different treatments |
SAR简称钠吸附比,是评价土壤盐碱化程度的一个重要指标[21],该指标的变化表现在SAR越大,对土壤的有害性也相对越大。从单因素试验来看,如图 3-A(Pg-0) 所示,随着有机改良剂施入量的增加,土壤SAR呈现不同程度的降低,原因在于GWC分解产生的腐殖酸类物质,可以改善土壤结构,从而促进土壤盐分的淋洗,显著降低土壤中Na+质量分数;另外,PG也会吸附土壤中的Na+,如图 3-B(CP-0) 所示,随着磷石膏施入量的增加,土壤SAR均显著降低,原因在于加入磷石膏后,土壤中Ca2+质量分数显著增加,且Ca2+与Na+发生离子代换作用,导致土壤胶体吸附的Na+质量分数减少。2种因素交互作用下 (图 3-A),在不施入或施入较少的磷石膏时 (Pg-0、Pg-1),SAR随着有机改良剂施入量的增加而显著降低,而施入较多的磷石膏时 (Pg-2、Pg-3),随着有机改良剂施入量的增加,SAR降低不显著;如图 3-B,无论有机改良剂的水平如何,SAR随着磷石膏施入量的增加而显著降低。
|
图 3 不同处理对土壤SAR的影响 Figure 3 Effects of different treatments on SAR (Sodium Absorption Ratio) of the saline soil |
随着有机-无机改良剂施入量的增加,土壤中的SO42-质量分数呈显著增加 (图 4-B,4-D),而Cl-质量分数呈显著降低的趋势 (图 4-A,4-C)。原因在于园林废弃物分解产生的腐殖酸类物质,可以结合磷石膏释放的Ca2+,在试验地碱性土壤条件下,生成具有一定水稳性的腐殖酸钙[22],从而促进CaSO4溶解,间接增加了土壤中SO42-质量分数;此外,腐殖酸钙可以改善土壤物理性质,加速土壤盐分的淋洗作用,使土壤溶液中随水运移速度较快的Cl-随水淋洗排出土体。
|
图 4 不同处理对土壤Cl-及SO42-质量分数的影响 Figure 4 Effects of different treatments on Cl- and SO42- content of the saline soil |
试验地土壤盐分组成以Na+、Cl-以及SO42-为主,因此,土壤全盐质量分数的变化受以上几种离子变化的影响较为显著。如图 5所示,当未施入磷石膏时 (Pg-0),土壤的全盐质量分数显著降低,但是此时需要大量的施入有机改良剂 (CP-15),才能够取得较好的改良效果,成本较高;随着磷石膏施入量的增加,尤其是当磷石膏的施入量较大时 (Pg-2,Pg-3),施入较多的有机改良剂,反而会使土壤的全盐质量分数显著提高。因此,施入有机改良剂对土壤盐分的降低作用,在一定程度上取决于磷石膏的用量;当磷石膏用量为1 kg/m2(Pg-1) 时,施入不同用量的有机改良剂,均可以显著降低土壤全盐质量分数。
|
图 5 不同处理对土壤全盐质量分数的影响 Figure 5 Effects of different treatments on total salt content of the saline soil |
在未施用有机改良剂的条件下 (CP-0),施入不同用量的磷石膏,能够显著降低土壤的全盐质量分数,这是由于施入磷石膏,有利于将Na+从土壤胶体之中置换出来,并且能够促进土壤盐分的淋洗,降低土壤溶液中Na+和Cl-质量分数。随着有机改良剂施用量的增加,由于磷石膏与园林废弃物的相互作用,促进磷石膏中CaSO4的溶解,造成Ca2+和SO42-质量分数的显著增加;因此,当有机改良剂的施用量较高时 (CP-10,CP-15),增加磷石膏的施用量,会使土壤全盐质量分数反而显著高于未施用磷石膏的处理 (Pg-0)。
3.5 改良效果与成本简析由上可知,Pg-1、CP-5处理组合的改良效果较好。如表 2所示,与未施入任何土壤改良剂的Pg-0、CP-0处理组合,以及铺设于试验初期,以抬高地表的绿化客土相比,Pg-1、CP-5处理组合表层土壤全盐质量分数仍显著高于试验初期的绿化客土,但全盐质量分数仅增加1 g/kg左右;而与未采取土壤改良措施的Pg-0、CP-0处理组合相比,土壤全盐质量分数显著降低,降幅高达3 g/kg左右。此时的改良成本约为6.70元/m2(表 3)。
| 表 2 土壤改良效果 Table 2 Amelioration effects of saline soil |
| 表 3 推荐措施下的土壤改良成本 Table 3 The cost of saline soil amelioration under the recommend measure |
1) 施入有机改良剂以及磷石膏,均可有效降低土壤pH、SAR和Cl-质量分数,调整离子组成结构,降低单盐毒害作用,对植物生长有利。但是,由于磷土壤的pH变化过大,对植物产生不利影响;而在施入磷石膏的同时,施入有机改良剂,可以使土壤石膏多残留有硫酸,酸性较强,施入土壤后,pH值较快地趋于稳定。
2) 磷石膏施入土壤之后,会释放大量的SO42-。S作为一种有益元素,对植物的生长有促进作用,可以增加植物的抗逆性,但是磷石膏的施入量较大时 (Pg-2,Pg-3),SO42-质量分数就可高达2 g/kg,甚至4 g/kg以上,这会对栽植的园林绿化植物产生较大的盐胁迫作用,抑制植物生长。因此,对于园林生态用地,磷石膏的施用量要适当控制,相关部门在使用时,也要因地制宜。
3) 磷石膏与有机改良剂单施能够显著改善土壤的盐碱状况,二者配施的效果优于改良剂单施。此外,磷石膏中可能含有极其少量的重金属成分,而园林废弃物高温惰化产物作为一种环境友好型材料,对重金属具有一定的吸附性,从而降低植物的吸收,对植物生长有利。
4) 施入1 kg/m2的磷石膏及5%的有机改良剂时 (体积比,约3.35 kg/m2),能够取得较好的改良效果。采用该改良方案,能够在一定程度上抑制表层土壤返盐,适用于滨海地区受土壤盐渍化影响的老城区,以及其他不便进行大规模施工的区域,此方案可以作为一种可靠的改良措施,但其改良效果的长期性,仍然需要进一步的研究。
| [1] |
李二焕, 沈俊, 鞠靖, 等. 苏北滨海盐土区河流入海口土壤盐分及养分分布特征[J].
中国水土保持科学, 2016, 1: 79.
LI Erhuan, SHEN Jun, JU Jing, et al. Distribution characteristics of salinity and nutrient at the estuary in coastal saline soil of north Jiangsu[J]. Science of Soil and Water Conservation, 2016, 1: 79. |
| [2] |
范晓梅, 刘高焕, 唐志鹏, 等. 黄河三角洲土壤盐渍化影响因素分析[J].
水土保持学报, 2010, 24(1): 139.
FAN Xiaomei, LIU Gaohuan, TANG Zhipeng, et al. Analysis on main contributors influencing soil salinization of Yellow River delta[J]. Journal of Soil and Water Conservation, 2010, 24(1): 139. |
| [3] | GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153. DOI: 10.1007/s10533-004-0370-0. |
| [4] | LARRY K H, CONRAD H M, WILLIAM H S, et al. Influence of N source, N rate and K rate on the yield and mineral concentration of sweet potato[J]. J. Am. Soc. Hortic. Sci, 1984, 109(3): 294. |
| [5] |
殷小琳, 丁国栋, 张维城. 降雨及隔盐层对滨海盐碱地水盐运动的影响[J].
中国水土保持科学, 2011, 9(3): 40.
YIN Xiaolin, DING Guodong, ZHANG Weicheng. Effects of rainfall and salt layers on water and salt movement in coastal saline land[J]. Science of Soil and Water Conservation, 2011, 9(3): 40. |
| [6] |
刘莉萍, 刘兆普, 隆小华. 2种盐土改良剂对苏北滨海盐碱土壤盐分及植物生长的影响[J].
水土保持学报, 2014(2): 127.
LIU Liping, LIU Zhaopu, LONG Xiaohua. Effect of two soil ameliorant on soil salinity and plant in coastal saline-alkali soil of North Jiangsu Province[J]. Journal of Soil and Water Conservation, 2014(2): 127. |
| [7] |
于鑫. 北京市园林绿化废弃物再利用调查及堆肥实验研究[D]. 北京: 北京林业大学, 2010: 1.
YU Xin. Survey on the recycling status of Beijing garden waste and study on garden waste composing [D]. Beijing: Beijing Forest University, 2010:1. |
| [8] |
索琳娜, 金茂勇, 张宝珠. 农林有机废弃物生产花木栽培基质技术和前景[J].
北方园艺, 2009(4): 108.
SUO Linna, JIN Maoyong, ZHANG Baozhu. Studies on converting agriculture-forestry organic wastes into growing media on ornamentals technology and foreground[J]. Northern Horticulture, 2009(4): 108. |
| [9] |
王琳琳. 天津滨海盐土隔盐修复、有机改良及造林效果评估[D]. 北京: 北京林业大学, 2014: 87.
WANG Linlin. Application of salt-isolation measures and organic amendments to a coastal saline soil in Tianjin, China: effects on physical and chemical properties and afforestation [D]. Beijing: Beijing Forest University, 2014:87. |
| [10] | SUO Linna, SUN Xiangyang, LI Suyan. Use of organic agricultural wastes as growing media for the production of Anthurium andraeanum 'Pink Lady'[J]. The Journal of Horticultural Science & Biotechnology, 2011, 86(4): 366. |
| [11] |
王文成, 孙宇, 郭艳超, 等. 滨海泥质重盐碱地综合改良与植被构建关键技术研究[J].
现代农业科技, 2014(4): 207.
WANG Wencheng, SUN Yu, GUO Yanchao, et al. Comprehensive improvement of coastal argillaceous saline-alkali soil and key techniques of vegetation construction[J]. Modern Agricultural Science and Technology, 2014(4): 207. |
| [12] |
李旭霖, 刘庆花, 柳新伟, 等. 不同改良剂对滨海盐碱地的改良效果[J].
水土保持通报, 2015, 35(2): 219.
LI Xulin, LIU Qinghua, LIU Xinwei, et al. Improving effect of different amendment treatments in coastal saline-alkali soil[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 219. |
| [13] |
刘易, 冯耀祖, 黄建, 等. 微咸水灌溉条件下施用不同改良剂对盐渍化土壤盐分离子分布的影响[J].
干旱地区农业研究, 2015, 33(1): 146.
LIU Yi, FENG Yaozu, HUANG Jian, et al. Effects of modifiers on saline soil salt distribution under brackish water irrigation conditions[J]. Agricultural Research in the Arid Areas, 2015, 33(1): 146. |
| [14] |
吴洪生, 陈小青, 周晓冬, 等. 磷石膏改良剂对江苏如东滨海盐土理化性状及小麦生长的影响[J].
土壤学报, 2012, 49(6): 1262.
WU Hongsheng, CHEN Xiaoqing, ZHOU Xiaodong, et al. Effects of soil amendment phosphogypsum on physical and chemical properties of and wheat growth in coastal saline soil in Rudong, Jiangsu[J]. Acta Pedologica Sinica, 2012, 49(6): 1262. DOI: 10.11766/trxb201111140443. |
| [15] |
刘易, 王新勇, 赵振勇, 等. 施用改良剂后盐渍化土壤养分和棉花产量变化[J].
中国农学通报, 2014, 30(12): 253.
LIU Yi, WANG Xinyong, ZHAO Zhenyong, et al. The analysis of the nutrient and cotton yield variation under the application of different soil modifier in saline soil[J]. Chinese Agricultural Science Bulletin, 2014, 30(12): 253. DOI: 10.11924/j.issn.1000-6850.2013-2093. |
| [16] |
李素艳, 翟鹏辉, 孙向阳, 等. 滨海土壤盐渍化特征及土壤改良研究[J].
应用基础与工程科学学报, 2014, 22(6): 1069.
LI Suyan, ZHAI Penghui, SUN Xiangyang, et al. Saline-alkali soil characteristics and improvement in coastal area[J]. Journal of Basic Science and Engineering, 2014, 22(6): 1069. |
| [17] |
王琳琳, 李素艳, 孙向阳, 等. 不同隔盐措施对滨海盐碱地土壤水盐运移及刺槐光合特性的影响[J].
生态学报, 2015, 35(5): 1388.
WANG Linlin, LI Suyan, SUN Xiangyang, et al. Application of salt-isolation materials to a coastal region: effects on soil water and salt movement and photosynthetic characteristics of Robinia pseudoacacia[J]. Acta Ecologica Sinica, 2015, 35(5): 1388. |
| [18] | ZHANG Lu, SUN Xiangyang, TIAN Yun, et al. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste[J]. Bioresource Technology, 2013, 131(3): 68. |
| [19] |
索琳娜. 几种农林生物质废弃物再利用生产无土栽培基质技术及应用[D]. 北京: 北京林业大学, 2012: 48.
SUO Linna. The conversion and application of several agro-forestry biomass residues into growing media [D]. Beijing: Beijing Forest University, 2012:48. |
| [20] |
鲍士旦.
土壤农化分析[M]. 北京: 中国农业出版社, 2000: 188.
BAO Shidan. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000: 188. |
| [21] |
孙在金. 脱硫石膏与腐植酸改良滨海盐碱土的效应及机理研究[D]. 北京: 中国矿业大学 (北京), 2013: 81.
SUN Zaijin. Research on effects and the mechanism of desulfurization gypsum and humic acid on coastal saline-alkali soil improvement [D]. Beijing: China University of Mining and Technology, 2012:48. |
| [22] |
孙向阳.
土壤学[M]. 北京: 中国林业出版社, 2004: 103.
SUN Xiangyang. Soil science[M]. Beijing: China Forestry Publishing House, 2004: 103. |
2017, Vol. 15 
