上海海洋大学学报  2022, Vol. 31 Issue (2): 336-343    PDF    
促肾上腺皮质激素释放激素对离体斑马鱼卵细胞类固醇激素合成的影响
李晓雪1,2, 吴楚楠1,2, 陈阿琴1,2, 吕为群1,2,3     
1. 上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;
2. 上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;
3. 上海海洋大学 海洋生物科学国际联合研究中心, 上海 201306
摘要:在硬骨鱼类中, 促肾上腺皮质激素释放激素(CRH)在内分泌、自主神经活动、免疫、渗透压和摄食活动中起着至关重要的作用, 但有关CRH是否对斑马鱼卵细胞类固醇激素合成的研究较少。以体外培养斑马鱼卵细胞为实验材料, 通过荧光定量PCR技术和放射性免疫方法, 检测CRHα和CRHβ处理后卵细胞中CRH受体(CRHR1CRHR2)及类固醇激素合成相关基因的表达变化, 并检测培养液中雌二醇和孕酮的含量。结果显示, 100 nmol/L CRHα和CRHβ处理后, 卵细胞中CRHR1基因表达量显著上调, CRHR2基因表达无显著变化。CRHβ显著增加卵细胞中cyp19a1a基因表达, CRHα和CRHβ对其他类固醇激素合成相关基因的表达无显著影响。添加CRHα和CRHβ后, 培养液中雌二醇的含量显著降低, 孕酮的含量无明显影响。提示CRH可能通过斑马鱼卵细胞中CRHR1调节雌激素合成相关基因的表达抑制雌激素的合成。
关键词斑马鱼    促肾上腺皮质激素释放激素    类固醇    卵细胞    

促肾上腺皮质激素释放激素(corticotropin-releasing harmone, CRH)最初是从绵羊下丘脑分离出的41个氨基酸的神经肽,是下丘脑-腺垂体-肾上腺轴的主要调节物[1-2]。在哺乳动物中,CRH参与内分泌、自主神经、免疫、行为应激反应和生殖系统的调节[3-6]。在硬骨鱼类中,由于其基因组的复制,硬骨鱼类中有2个CRH旁系同源物,即CRHα和CRHβ[7]。CRH通过与两种结构相似但功能不同的G蛋白偶联受体(CRHR1和CRHR2)结合而启动信号传导[8]。目前,已在哺乳动物的子宫、胎盘和卵巢中发现CRH及其受体的存在[9-12]。进一步研究[13]表明,CRH抑制小鼠窦前卵泡体外成熟以及其培养液中类固醇激素的合成。体外培养大鼠睾丸间质细胞以及人颗粒细胞,发现CRH抑制其类固醇激素的合成[14-16]。与此相似,CRH通过CRH受体或白介素-1受体抑制体外培养人颗粒黄体细胞的类固醇激素的生成[17]

机体稳态调节过程中性腺类固醇激素的合成对生殖机能调控发挥着重要的作用[18]。在包括硬骨鱼类在内的所有脊椎动物中,类固醇合成急性调节蛋白(StAR)是类固醇激素合成过程中的重要调节因子,StAR参与类固醇激素的前体胆固醇从线粒体外膜向内膜的转运过程,此过程是类固醇激素合成的限速步骤[19]。随后整个类固醇激素合成过程受各种类固醇激素生成酶基因的调控。在线粒体膜内,cyp11a1参与胆固醇向孕烯醇酮的转化[20],这一步对于类固醇激素的合成至关重要。孕烯醇酮既可以作为3-β羟基类固醇脱氢酶(hsd3b)的底物,将其转化为孕酮(P),也可以被cyp17a1酶转化为17α-羟基孕烯醇酮[21],这是类固醇激素生成的第二步,涉及17α-羟基孕酮和雄烯二酮的生产。17β-羟基类固醇脱氢酶(hsd17b)是产生睾酮和雌激素(E2)的关键酶[22]hsd17b多以亚型存在(hsd17b1hsd17b3hsd17b8hsd17b12),在大多数鱼类中,hsd17b3参与雄烯二酮向睾酮的转化,而hsd17b1则是在类固醇生成过程中将雌酮的非活性形式转化为能结合E2的活性受体[23]。E2是雌性生殖中必不可少的类固醇激素,在卵巢发育的所有阶段都起着至关重要的作用,被认为是调节雌性动物繁殖的关键因素之一[24]。芳香化酶(cyp19a1)是最保守的酶之一,cyp19a1a在硬骨鱼类控制卵巢的分化、发育和生长中起着将雄激素转化为雌激素的作用[25-26]。有研究[27]证实,CRH通过其受体减弱斑马鱼滤泡细胞雌激素的产生和合成。但到目前为止,有关CRH对斑马鱼卵细胞类固醇激素合成的研究较少。

因此,本研究通过体外培养斑马鱼卵细胞,探究CRHα和CRHβ处理后卵细胞中CRH受体(CRHR1CRHR2),类固醇激素合成关键基因(StARcyp11a1cyp17a1hsd17b1hsd17b3hsd3b1)及芳香化酶(cyp19a1a)的表达变化,以及培养液中雌二醇和孕酮的含量,初步探讨CRH对斑马鱼卵细胞类固醇激素合成的影响,为了解应激对鱼类生殖的调控作用提供新的见解。

1 材料与方法 1.1 实验试剂

实验所需的斑马鱼CRHα和CRHβ由吉尔生化(上海)有限公司合成。将CRHα和CRHβ用二甲基亚砜(DMSO)溶解至10 μmol/L(原液浓度),于卵细胞培养前分别用培养液稀释至所需工作浓度(100 nmol/L),培养液中DMSO的终浓度为0.1%。雌二醇放射免疫分析药盒和碘[125I]孕酮放射免疫分析药盒购于北京北方生物技术研究所。

1.2 实验材料

实验斑马鱼于上海海洋大学水生动物适应生理实验室海圣自动循环水养殖系统中暂养。养殖水温为(28.0± 0.5)℃,光照周期定为14 h光照∶ 10 h黑暗,养殖期间早晚各投喂1次鲜活的卤虫,养殖至性成熟后用于后续实验,体质量为(0.38±0.04)g,体长为(3.46±0.05)cm。实验方案经上海海洋大学动物伦理委员会批准,并遵守中国科学技术部制定的《实验动物伦理待遇指南》。

1.3 斑马鱼卵细胞的分离与培养

雌雄斑马鱼在自动循环水养殖系统中饲养至少7 d,并定期交配3次以上(1个周期为7 d)。取样时,冷休克麻醉成年雌性斑马鱼,切除卵巢并将其立即置于60% Leibovitz L-15培养液中。根据不同发育时期卵细胞直径,将卵细胞分为:初级生长期(PG期,< 0.15 mm);卵黄发生前期(PV期,0.15~0.25 mm);卵黄发生早期(EV期,0.25~0.35 mm);卵黄发生中期(MV期,0.35~0.45 mm);充分生长未成熟期(FG期,0.45~0.65 mm)[28]。然后,在60%Leibovitz L-15培养液中仔细分离MV期卵细胞用于体外培养。先用60%Leibovitz L-15培养液清洗3次后,再转移到M199培养液中清洗3次。将卵细胞置于24孔无菌培养板中孵育,40个卵细胞/孔,1 mL M199培养液/孔,分别添加0、100 nmol/L CRHα、100 nmol/L CRHβ,在28 ℃恒温培养箱避光培养24 h。每个处理3个重复,实验重复3次。孵育结束后,收集卵细胞和培养液,并于-80 ℃保存,分别用于随后的RNA提取或激素测定。

1.4 实时荧光定量PCR

在ABI 7500 Real Time PCR系统上进行实时荧光定量PCR(qPCR)分析。使用Primer-blast软件设计引物(表 1),以ef1α为内参基因,分析目标基因转录本的相对定量[29]。提取卵细胞总RNA,取1 μg总RNA用PrimeScriptTM RT试剂盒和gDNA Eraser处理反转录获得cDNA。使用The QuantiNova SYBR Green PCR Kit试剂盒进行qPCR分析,qPCR反应条件为95 ℃变性30 s;95 ℃ 5 s,60 ℃ 15 s进行40次循环;95 ℃ 15 s;60 ℃ 1 min;95 ℃ 15 s。qPCR数据结果使用2-ΔΔ Ct方法进行分析[30]

表 1 基因表达量分析所用的引物序列 Tab.1 Primer sequences for each gene used for gene transcription analyses
1.5 激素测定

使用雌二醇放射免疫分析药盒测定培养液中雌二醇,取100 μL的标准品、质控血清和孵育后的培养液样品加入到标记好的离心管中,分别加入125I-E2、蒸馏水和兔抗-E2抗体各100 μL,充分摇匀,在37 ℃的条件下温育1 h。再加入驴抗兔免疫分离剂500 μL,充分摇匀后,室温放置15 min,3 500 r/min离心15 min,吸弃上清液,测量各管沉淀的放射性计数(cpm)。以标准品的cpm对其质量浓度描点,并绘制标准曲线。直接从标准曲线读取样品质量浓度值。其灵敏度≤2 pg/mL,批内变异系数 < 10%,批间变异系数 < 15%。使用碘[125I]孕酮放射免疫分析药盒进行测定培养液孕酮,取50 μL的标准品、质控血清和孵育后的培养液样品加入到标记好的离心管中,分别加入125-I-P、蒸馏水和兔抗-P抗体各100 μL,充分摇匀,在37 ℃的条件下温育1 h。再加入驴抗兔免疫分离剂500 μL,充分摇匀后,室温放置15 min,3 500 r/min离心15 min,吸弃上清液,测量各管沉淀的放射性计数(cpm)。以标准品的cpm对其质量浓度描点,并绘制标准曲线。直接从标准曲线读取样品质量浓度值。其灵敏度 < 2 ng/mL,批内变异系数 < 10%,批间变异系数 < 15%。

1.6 数据分析

采用GraphPad Prism 6.0软件进行作图和数据分析。使用Shapiro-Wilk检验分析数据的正态性,并使用Levene检验分析方差齐性,当数据服从正态分布时,进行单因素方差分析,结果表示为平均值±标准误(Mean±SE)。P < 0.05,表示差异显著。

2 结果 2.1 CRH对斑马鱼卵细胞中CRH受体表达的影响

为说明CRH是否可能通过与其受体结合调节斑马鱼卵细胞类固醇激素合成,首先通过qPCR方法检测CRH受体在卵细胞中的表达水平。结果显示,CRHα和CRHβ处理均能显著提高CRHR1 mRNA表达水平且CRHβ处理后CRHR1表达量显著高于CRHα处理(P < 0.05),CRHR1的转录丰度高于CRHR2,而CRHR2 mRNA表达水平无明显变化(图 1)。

*.P < 0.05. 图 1 CRH对斑马鱼卵细胞中CRHR表达的影响 Fig. 1 Effects of CRHR mRNA levels in zebrafish follicles by in vitro CRH treatments
2.2 CRH对斑马鱼卵细胞中类固醇激素合成关键基因的影响

分析CRH处理后斑马鱼卵细胞中类固醇合成关键基因的表达变化,结果表明,与对照组相比: CRHα处理后StARcyp19a1ahsd17b1hsd17b3 mRNA表达呈现升高的趋势,cyp11a1hsd3b1 mRNA表达呈现降低的趋势,但均无显著性差异(图 2); CRHβ处理后,cyp19a1a mRNA表达显著增加(P < 0.05),StARcyp11a1cyp17a1hsd17b1hsd17b3 mRNA表达呈现升高的趋势,hsd3b1 mRNA表达呈现降低的趋势,但均无显著性差异(图 2)。

*.P < 0.05. 图 2 CRH对斑马鱼卵细胞中类固醇激素合成关键基因表达的影响 Fig. 2 Effects of basal expression of rate-limiting enzymes related to steroidogenesis in zebrafish follicles by in vitro CRH treatments
2.3 CRH对斑马鱼卵细胞中雌二醇和孕酮合成的影响

CRH处理后培养液中雌二醇和孕酮的质量浓度结果表明,经CRHα和CRHβ处理均显著降低了培养液中雌二醇的质量浓度[P < 0.05,图 3(a)],而培养液中孕酮的质量浓度有下降的趋势,但无明显差异[P < 0.05,图 3(b)]。

图 3 CRH对斑马鱼卵细胞中雌二醇和孕酮质量浓度的影响 Fig. 3 Regulation of E2 and P mass concentration in zebrafish follicles by in vitro CRH treatments
3 讨论

本研究主要探讨了CRH对斑马鱼卵细胞类固醇激素合成的影响。结果表明,100 nmol/L CRHα和CRHβ处理后,卵细胞中CRHR1基因表达量显著上调,CRHR2基因表达无显著变化。CRHβ显著增加cyp19a1a基因表达,CRHα和CRHβ对其他类固醇激素合成相关基因的表达无显著影响。CRHα和CRHβ均抑制斑马鱼卵细胞雌二醇的合成。体外培养卵细胞实验结果提示,CRH可能通过CRHR1调节雌激素合成相关基因的表达,抑制雌激素的合成。

应激影响动物的繁殖和卵子发育,其中下丘脑-腺垂体-肾上(间)腺(HPA/HPI)轴与下丘脑-腺垂体-性腺(HPG)轴间的相互作用备受关注[31]。CRH由下丘脑分泌调节腺垂体分泌促肾上腺皮质激素,多项研究表明CRH参与HPG轴的调控,进而在生殖功能过程中发挥重要作用。在大鼠(Rattus norvegicus)[10]、人(Homo sapiens)[32]、慈鲷鱼(Astatotilapia burtoni)[33]和河豚(Fugu rubripes)[34]卵巢组织中检测到CRH免疫阳性及其受体的高表达,以及在人[12]和猕猴(Macaca mulatta)[35]卵巢的滤泡细胞和颗粒细胞中也检测到CRHR1的表达。本实验室前期研究[27]表明,在斑马鱼不同发育阶段的卵细胞中均检测到CRHCRHR mRNA的表达,且CRHβCRHR2的转录丰度高于CRHαCRHR1。在本研究中,CRHα和CRHβ显著提高斑马鱼卵细胞中CRHR1 mRNA表达水平且CRHβ处理后CRHR1表达量显著高于CRHα处理,但对CRHR2 mRNA表达无明显影响。这与在小鼠中的实验结果相似,即CRH通过与CRHR1受体途径调节小鼠卵母细胞成熟[36]。这提示在斑马鱼卵细胞中CRH可能通过CRHR1受体发挥其生物学功能,但其具体作用途径需进一步研究。

促性腺激素诱导类固醇激素的生成则是通过类固醇合成基因的变化而发生。外源添加CRHα和CRHβ后,斑马鱼卵细胞中StARcyp19a1ahsd17b1hsd17b3 mRNA水平有上升的趋势,hsd3b1 mRNA水平呈下降的趋势,而cyp17a1 mRNA表达在CRHα作用后无明显变化,CRHβ处理后cyp11a1 mRNA表达出现上调趋势。但是,对斑马鱼FG期卵细胞的研究[37]发现,CRH处理3 h和6 h后StAR mRNA表达出现下调。这说明,CRH对StAR基因的调节可能具有卵细胞发育阶段特异性。在日本鳗鲡中,cyp11a mRNA的表达对促性腺激素具有依赖性[38]。同时小鼠的研究[38-39]结果表明应激促进CRH的产生,进而抑制GnRH和LH分泌。CRHα降低cyp11a1 mRNA水平,CRHβ促进cyp11a1 mRNA的表达,这说明CRH不同配体在合成孕烯醇酮的过程中可能发挥不同的生理功能。孕烯醇酮在hsd3b1酶的作用下转化为孕酮,也可以在cyp17a1酶作用下逐步转化为雄烯二酮。hsd3b1 mRNA的表达水平下降,cyp17a1 mRNA的表达水平上升。这说明StAR使胆固醇转化为孕烯醇酮从而引起下游一系列类固醇激素的变化进而产生各种反应。

在哺乳动物中,CRH对类固醇激素的合成具有抑制作用。CRH阻断FSH诱导的雌激素的增加,并显著降低了大鼠颗粒细胞中芳香酶活性[40]。同样,CRH抑制人颗粒细胞和小鼠窦前卵泡的培养液中雌激素和孕酮的含量[13-14, 17]。在斑马鱼中,CRH抑制滤泡细胞中类固醇激素合成基因的表达(cyp19a1ahsd17b1, hsd17b3),并抑制培养液中雌激素的产生[27]。卵细胞经CRHα和CRHβ处理后,培养液中雌激素的含量显著降低,孕酮的含量有下降的趋势,这与已有的研究结果相似。但有趣的是,本实验中cyp19a1ahsd17b1hsd17b3 mRNA的表达呈现相反的结果。由于CRH的半衰期是1 h,猜测在经过24 h体外培养后,培养液中CRH的含量降低反而促进了雌二醇合成相关基因的表达。已有研究[41]表明,在斑马鱼卵巢中,促肾上腺皮质激素(ACTH)抑制斑马鱼卵细胞中人绒毛膜促性腺激素(hCG)诱导的E2产生。本实验室前期的实验[27]结果表明,斑马鱼卵巢中CRH受体随卵泡发育而变化。因此,添加外源CRH后,斑马鱼卵巢能否合成ACTH并产生皮质醇,从而发挥作用还不得而知,具体的调控机制也有待进一步探讨。此外,CRH在人胎盘滋养层细胞以剂量依赖性的方式促进雌激素的生成[42],这说明CRH对类固醇激素的合成具有物种差异性,并且同一物种的类固醇合成调控也随细胞类型的不同存在差异。

总的来说,本实验初步研究了CRH调控斑马鱼卵细胞类固醇激素合成的作用。但值得注意的是,CRH受体在斑马鱼卵巢中的表达定位,以及CRH通过其受体作用的具体路径还不清楚,需进一步深入探讨。

参考文献
[1]
VALE W, SPIESS J, RIVIER C, et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin[J]. Science, 1981, 213(4514): 1394-1397. DOI:10.1126/science.6267699
[2]
LU W Q, DOW L, GUMUSGOZ S, et al. Coexpression of corticotropin-releasing hormone and urotensin i precursor genes in the caudal neurosecretory system of the euryhaline flounder (Platichthys flesus): a possible shared role in peripheral regulation[J]. Endocrinology, 2004, 145(12): 5786-5797. DOI:10.1210/en.2004-0144
[3]
STENGEL A, TACHÉ Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress[J]. Frontiers in Neuroscience, 2014, 8: 52.
[4]
CHEN S J, YANG J F, KONG F P, et al. Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36): 13199-13204. DOI:10.1073/pnas.1404493111
[5]
CROFFORD L J, SANO H, KARALIS K, et al. Local secretion of corticotropin-releasing hormone in the joints of Lewis rats with inflammatory arthritis[J]. The Journal of Clinical Investigation, 1992, 90(6): 2555-2564. DOI:10.1172/JCI116150
[6]
ERDEN H F, ZWAIN I H, ASAKURA H, et al. Corticotropin-releasing factor inhibits luteinizing hormone-stimulated P450c17 gene expression and androgen production by isolated thecal cells of human ovarian follicles[J]. Journal of Clinical Endocrinology & Metabolism, 1998, 83(2): 448-452.
[7]
GRONE B P, MARUSKA K P. A second corticotropin-releasing hormone gene (CRH2) is conserved across vertebrate classes and expressed in the hindbrain of a basal neopterygian fish, the spotted gar (Lepisosteus oculatus)[J]. The Journal of Comparative Neurology, 2015, 523(7): 1125-1143. DOI:10.1002/cne.23729
[8]
HWANG J I, MOON M J, PARK S, et al. Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication[J]. Molecular Biology and Evolution, 2013, 30(5): 1119-1130. DOI:10.1093/molbev/mst031
[9]
GRINO M, CHROUSOS G P, MARGIORIS A N. The corticotropin releasing hormone gene is expressed in human placenta[J]. Biochemical and Biophysical Research Communications, 1987, 148(3): 1208-1214. DOI:10.1016/S0006-291X(87)80261-9
[10]
MASTORAKOS G, WEBSTER E L, FRIEDMAN T C, et al. Immunoreactive corticotropin-releasing hormone and its binding sites in the rat ovary[J]. The Journal of Clinical Investigation, 1993, 92(2): 961-968. DOI:10.1172/JCI116672
[11]
MASTORAKOS G, SCOPA C D, VRYONIDOU A, et al. Presence of immunoreactive corticotropin-releasing hormone in normal and polycystic human ovaries[J]. The Journal of Clinical Endocrinology & Metabolism, 1994, 79(4): 1191-1197.
[12]
ASAKURA H, ZWAIN I H, YEN S S C. Expression of genes encoding corticotropin-releasing factor (CRF), type 1 CRF receptor, and CRF-binding protein and localization of the gene products in the human ovary[J]. The Journal of Clinical Endocrinology & Metabolism, 1997, 82(8): 2720-2725.
[13]
DINOPOULOU V, PARTSINEVELOS G A, MAVROGIANNI D, et al. The effect of CRH and its inhibitor, antalarmin, on in vitro growth of preantral mouse follicles, early embryo development, and steroidogenesis[J]. Endocrinology, 2013, 154(1): 222-231. DOI:10.1210/en.2012-1838
[14]
MURASE M, UEMURA T, KONDOH Y, et al. Role of corticotropin-releasing hormone in ovarian steroidogenesis[J]. Endocrine, 2002, 18(3): 255-260. DOI:10.1385/ENDO:18:3:255
[15]
ULISSE S, FABBRI A, DUFAU M L. Corticotropin-releasing factor receptors and actions in rat Leydig cells[J]. Journal of Biological Chemistry, 1989, 264(4): 2156-2163. DOI:10.1016/S0021-9258(18)94155-4
[16]
FABBRI A, TINAJERO J C, DUFAU M L. Corticotropin-releasing factor is produced by rat Leydig cells and has a major local antireproductive role in the testis[J]. Endocrinology, 1990, 127(3): 1541-1543. DOI:10.1210/endo-127-3-1541
[17]
GHIZZONI L, MASTORAKOS G, VOTTERO A, et al. Corticotropin-releasing hormone (CRH) inhibits steroid biosynthesis by cultured human granulosa-lutein cells in a CRH and interleukin-1 receptor-mediated fashion[J]. Endocrinology, 1997, 138(11): 4806-4811. DOI:10.1210/endo.138.11.5474
[18]
ORLANDO E F, KOLOK A S, BINZCIK G A, et al. Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow[J]. Environmental Health Perspectives, 2004, 112(3): 353-358. DOI:10.1289/ehp.6591
[19]
STOCCO D M. StAR protein and the regulation of steroid hormone biosynthesis[J]. Annual Review of Physiology, 2001, 63(1): 193-213. DOI:10.1146/annurev.physiol.63.1.193
[20]
MILLER W L, BOSE H S. Early steps in steroidogenesis: intracellular cholesterol trafficking[J]. Journal of Lipid Research, 2011, 52(12): 2111-2135. DOI:10.1194/jlr.R016675
[21]
LEE-ROBICHAUD P, WRIGHT J N, AKHTAR M E, et al. Modulation of the activity of human 17 α-hydroxylase-17, 20-lyase (CYP17) by cytochrome b5: endocrinological and mechanistic implications[J]. Biochemical Journal, 1995, 308(3): 901-908. DOI:10.1042/bj3080901
[22]
ADAMSKI J, JAKOB F J. A guide to 17β-hydroxysteroid dehydrogenases[J]. Molecular and Cellular Endocrinology, 2001, 171(1/2): 1-4.
[23]
MINDNICH R, DELUCA D, ADAMSKI J. Identification and characterization of 17 β-hydroxysteroid dehydrogenases in the zebrafish, Danio rerio[J]. Molecular and Cellular Endocrinology, 2004, 215(1/2): 19-30.
[24]
DORRINGTON J H, MOON Y S, ARMSTRONG D T. Estradiol-17 βbiosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone[J]. Endocrinology, 1975, 97(5): 1328-1331. DOI:10.1210/endo-97-5-1328
[25]
INGS J S, VAN DER KRAAK G J. Characterization of the mRNA expression of StAR and steroidogenic enzymes in zebrafish ovarian follicles[J]. Molecular Reproduction and Development, 2006, 73(8): 943-954. DOI:10.1002/mrd.20490
[26]
LUBZENS E, YOUNG G, BOBE J, et al. Oogenesis in teleosts: how fish eggs are formed[J]. General and Comparative Endocrinology, 2010, 165(3): 367-389. DOI:10.1016/j.ygcen.2009.05.022
[27]
ZHOU H, CHEN A Q, LU W Q. Corticotropin-releasing hormone reduces basal estradiol production in zebrafish follicular cells[J]. Molecular and Cellular Endocrinology, 2021, 527: 111222. DOI:10.1016/j.mce.2021.111222
[28]
WANG Y J, GE W. Developmental profiles of activin beta A, beta B, and follistatin expression in the zebrafish ovary: Evidence for their differential roles during sexual maturation and ovulatory cycle[J]. Biology of Reproduction, 2004, 71(6): 2056-2064. DOI:10.1095/biolreprod.104.032649
[29]
LIU K C, LIN S W, GE W. Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane[J]. Endocrinology, 2011, 152(11): 4418-4430. DOI:10.1210/en.2011-1065
[30]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ Ct Method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
[31]
LUDWIG B, ROY B, DWIVEDI Y. Role of HPA and the HPG axis interaction in testosterone-mediated learned helpless behavior[J]. Molecular Neurobiology, 2019, 56(1): 394-405. DOI:10.1007/s12035-018-1085-x
[32]
MURAMATSU Y, SUGINO N, SUZUKI T, et al. Urocortin and corticotropin-releasing factor receptor expression in normal cycling human ovaries[J]. The Journal of Clinical Endocrinology & Metabolism, 2001, 86(3): 1362-1369.
[33]
CHEN C C, FERNALD R D. Sequences, expression patterns and regulation of the corticotropin-releasing factor system in a teleost[J]. General and Comparative Endocrinology, 2008, 157(2): 148-155. DOI:10.1016/j.ygcen.2008.04.003
[34]
CARDOSO J C R, POWER D M, ELGAR G, et al. Isolation and characterisation of the corticotropin releasing factor receptor 1 (CRFR1) gene in a teleost fish, Fugu rubripes[J]. DNA Sequence, 2003, 14(3): 215-218. DOI:10.1080/1042517031000112624
[35]
XU J, XU F H, HENNEBOLD J D, et al. Expression and role of the corticotropin-releasing hormone/urocortin-receptor-binding protein system in the primate corpus luteum during the menstrual cycle[J]. Endocrinology, 2007, 148(11): 5385-5395. DOI:10.1210/en.2007-0541
[36]
KIAPEKOU E, ZAPANTI E, VOUKELATOU D, et al. Corticotropin-releasing hormone inhibits in vitro oocyte maturation in mice[J]. Fertility and Sterility, 2011, 95(4): 1497-1499. DOI:10.1016/j.fertnstert.2010.12.023
[37]
TREVOR P. Characterization of the ovarian corticotropin-releasing factor system and its anti-steroidogenic effects in zebrafish[D]. Canada: University of Guelph, 2017.
[38]
KAZETO Y, IJIRI S, ADACHI S, et al. Cloning and characterization of a cDNA encoding cholesterol side-chain cleavage cytochrome P450 (CYP11A1): tissue-distribution and changes in the transcript abundance in ovarian tissue of Japanese eel, Anguilla japonica, during artificially induced sexual development[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2006, 99(2/3): 121-128.
[39]
RAFTOGIANNI A, ROTH L C, GARCÍA-GONZÁLEZ D, et al. Deciphering the contributions of CRH receptors in the brain and pituitary to stress-induced inhibition of the reproductive axis[J]. Frontiers in Molecular Neuroscience, 2018, 11: 305. DOI:10.3389/fnmol.2018.00305
[40]
CALOGERO A E, BARRECA A, BURRELLO N, et al. Corticotrophin-releasing hormone inhibits insulin-like growth factor-I release from primary cultures of rat granulosa cells[J]. Journal of Endocrinology, 2002, 174(3): 493-498. DOI:10.1677/joe.0.1740493
[41]
ALSOP D, INGS J S, VIJAYAN M M. Adrenocorticotropic hormone suppresses gonadotropin-stimulated estradiol release from zebrafish ovarian follicles[J]. PLoS One, 2009, 4(7): e6463. DOI:10.1371/journal.pone.0006463
[42]
YOU X J, YANG R F, TANG X L, et al. Corticotropin-releasing hormone stimulates estrogen biosynthesis in cultured human placental trophoblasts[J]. Biology of Reproduction, 2006, 74(6): 1067-1072. DOI:10.1095/biolreprod.105.049361
Effects of corticotropin-releasing hormone on the in vitro follicle steroidogenesis in zebrafish
LI Xiaoxue1,2, WU Chunan1,2, CHEN Aqin1,2, LYU Weiqun1,2,3     
1. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
2. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
3. International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
Abstract: Corticotropin-releasing hormone (CRH) plays a key regulatory role in coordinating the regulation of endocrine, autonomic nervous activity, immunity, osmoregulation and food intake in teleost. However, a direct effect of CRH on steroidogenesis in follicles of zebrafish remains unkown. Here, the expression of CRH receptors (CRHRs) and genes related to steroidogenesis in cultured zebrafish ovarian follicles were analyzed by real-time quantitative PCR. The contents of estradiol and progesterone in culture medium were analyzed by radioimmunoassay, respectively. The mRNA levels of CRHR1, but not CRHR2, were significantly up-regulated in both CRHα and CRHβ treatments compared with control group. Treatment with CRHβ stimulated the expression of cyp19a1a. However, other genes related to steroidogenesis had no apparent changes after being treated with CRHα and CRHβ. The protein levels of estradiol were significantly decreased after CRHα or CRHβ treatments, but no effect was found on progesterone. Taken together, these results suggested that CRH might reduce the synthesis of estradiol by regulating the expression of genes related to steroidogenesis through CRHR1.
Key words: Danio rerio     corticotropin-releasing hormone     steroidogenesis     follicles