上海海洋大学学报  2021, Vol. 30 Issue (4): 573-580    PDF    
斑马鱼nos2a基因的生长调控作用
高磊1,2, 黄亚娟1,2, PENGLEE Rachit1,2, 易欣鑫1,2, 鲍宝龙1,2     
1. 上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;
2. 上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306
摘要:为了在斑马鱼中探索诱导型一氧化氮合酶(Nos2)在生长调控中的作用,通过CRISPR/Cas9基因编辑技术,首次构建了可稳定遗传的nos2a缺失型(nos2a-/-)斑马鱼家系。通过监测其生长过程发现,nos2a-/-斑马鱼的整体生长趋势较nos2a正常型(nos2a+/+)斑马鱼偏低,且nos2a-/-成鱼的体型显著小于同期的nos2a+/+斑马鱼(P < 0.01):nos2a+/+成鱼体长(29.53±0.60) mm,nos2a-/-成鱼体长(26.34±0.69) mm;nos2a+/+成鱼体质量(512.80±30.75) mg,nos2a-/-成鱼体质量(394.40±16.91) mg;而在肌纤维密度(P=0.718)及躯椎骨的横截面积上(P=0.548)两者没有显著差异。qPCR检测发现,出膜8 d时,nos2a-/-斑马鱼的生长激素基因gh1的mRNA水平(P < 0.01)及类胰岛素生长因子基因igf1的mRNA水平(P < 0.001)均显著低于nos2a+/+斑马鱼;出膜68 d时,nos2a-/-斑马鱼的gh1(P < 0.000 1)和igf1(P < 0.000 1)的mRNA水平同样显著低于nos2a+/+斑马鱼。以上结果表明,斑马鱼中nos2a的功能缺失导致鱼体生长受到抑制,而gh1igf1 mRNA的水平下调是其潜在原因。
关键词一氧化氮合酶    斑马鱼    基因敲除    生长激素    生长    

一氧化氮(NO)是一种特殊的生物信号分子,广泛参与机体的生理调节,其中就包括对生长激素水平的调控[1-3]。机体的NO主要由一氧化氮合酶催化精氨酸产生。一氧化氮合酶是一种同工酶,具有3种亚型,分别为神经型(Nos1)、诱导型(Nos2)和内皮型(Nos3)[4],但斑马鱼中仅发现神经型及诱导型[5-6]

Nos1主要存在于神经细胞,通过调节NO的水平参与神经系统的调节[7],也发现Nos1参与机体的肌肉和骨骼发育的调节[8-12]。Nos2主要存在于巨噬细胞,并可以通过诱导表达促进合成大量的NO,进而参与机体的免疫调节[13-15]。研究发现,Nos2 在大脑多个区域的神经胶质细胞中都有表达[16],并且除了诱导性表达以外,也可以组成性地表达于机体的多数组织[17-18]。那么,同样存在于神经细胞并可以调节NO水平的Nos2是否也参与机体的生长发育调节呢?哺乳动物中的研究报道[19]指出在关节炎患者体内Nos2参与调控垂体生长激素的mRNA水平,而且Nos2敲除型小鼠的破骨细胞存在骨吸收功能缺陷[20]。可见Nos2与哺乳动物机体的生长发育存在一定联系,那么鱼类的生长发育调节中是否也有Nos2的参与呢?

本研究通过对模式生物斑马鱼(Danio rerio)进行nos2a基因敲除,首次构建了可稳定遗传的nos2a功能缺陷型(nos2a-/-)斑马鱼家系,并通过监测nos2a-/-斑马鱼的生长情况及生长相关激素水平的变化,对nos2a在斑马鱼生长发育中的作用进行探索。

1 材料与方法 1.1 斑马鱼饲养

本研究所用的斑马鱼为AB野生型斑马鱼[21],斑马鱼饲养于28 ℃恒温的循环水养殖系统内,每天早晚各饲喂1次,成年个体每周交配1次。受精卵及仔鱼于28.5 ℃恒温培养箱中进行孵育或饲养。

1.2 nos2a基因缺失型斑马鱼家系构建

从加利福尼亚大学圣克鲁兹分校(UCSC)斑马鱼数据库中筛选出斑马鱼nos2a基因(NM_001104937)的敲除靶点(表 1),该靶点位于其第4号外显子上。以"T7启动子序列+靶点序列+支架蛋白序列"的结构设计引物(表 1),对连接靶向序列与Cas9蛋白的支架蛋白序列进行PCR扩增,再经转录获得靶向RNA(gRNA), Cas9 mRNA的制备则经pT3ts-nCas9n质粒线性化后转录获得,以上具体操作参考VASHNEY等[22]的步骤。

表 1 本研究用的DNA合成序列 Tab.1 DNA sequences used in the research

敲除中,将2种RNA(gRNA 100 pg, cas9 mRNA 500 pg)的混合液显微注射入1细胞期的野生斑马鱼受精卵中, 每颗受精卵的注射量为1.4 nL,注射后胚胎成活率约40%。经碱裂解法[23]提取受精卵或尾鳍DNA进行目的片段PCR扩增(引物见表 1),产物通过分子测序和短小串联重复序列(STR)检测[24-25],以检查nos2a序列的突变情况。成活的注射个体中,nos2a的有义突变率约28%。筛选1对发生相同有义突变的个体与野生型个体进行交配,获得杂合突变个体(nos2a+/-),再从杂合突变个体的交配后代中筛选出3对初代nos2a的纯合突变体和3对未突变体。通过初代纯合个体的繁育,分别构建可稳定遗传的nos2a纯合突变家系(nos2a-/-)以及具有相同遗传背景的对照组家系(nos2a+/+)。

1.3 斑马鱼生长检测

设置nos2a-/-斑马鱼和nos2a+/+斑马鱼各3个平行组(20尾/组)于统一环境中进行饲养。仔鱼用缸标准为柱形玻璃缸(内径10 cm,高5 cm,水位高3 cm),待生长至25 dph(days post hatching)时将其转至大缸(长×宽×高=27 cm×17 cm×15 cm,水位高7 cm)饲养。每天早上8:00和傍晚6:00分别投喂1次,每次投喂保证各缸饵料供给等量且充足,进食30 min后统一吸去残饵。每天换水1次。

分别在5、10、25、40、55、85和125 dph检测各组斑马鱼个体的体长。仔鱼由于尾部发育不全,在体视镜下测量其全长;20 dph后,测量个体的标准体长(自吻端至椎骨末端的直线长度)。待可以分辨雌雄时(70 dph),对雌雄个体加以区分,以排除性别差异对结果的干扰。

体质量检测时间点分别设置在30、50、85、110和125 dph进行,且统一在进食2 h之后开展。每次称量前,将加有适量水的容器在电子秤(精度0.001 g)上调零,再将斑马鱼用网兜兜起,甩水3次除去水分后迅速进行称量。前期鱼体较小,为减小误差多尾一起称量,再计算均值。大于70 dph的各组样本的检测统计,按雌雄分开进行,以排除性别影响。

1.4 肌肉及躯椎骨发育检测

肌肉检测中,各组随机选取3尾80 dph的斑马鱼,经梯度脱水及包埋后,沿斑马鱼背腹轴在其背鳍基部末端处,经冷冻切片机(Leica CM1860,德国)对鱼体进行横切,切片经H.E染色后镜检并对肌肉纤维密度进行检测。在20倍放大倍数下,对样本的相同位置进行拍照,然后在照片中以长边1/5为边长的正方形为界随机框选5处,对框选范围内的肌纤维数量进行统计。

躯椎骨检测中,各组随机选取5尾80 dph的斑马鱼,经茜素红进行骨骼染色后进行镜检[26],之后沿斑马鱼背腹轴在其背鳍末端处对鱼体进行横切,再镜检拍照并测量统计躯椎骨横切圆面的横、纵向径长及横剖面积,横剖面积的测量通过Photoshop软件先进行像素统计,再进行比例转换。

1.5 cDNA制备及qPCR

每组取8 dph及68 dph的斑马鱼不少于5尾,参照TRIzol试剂(Ambion, 美国)说明书中提供的方法提取组织RNA(8 dph样本取全组织,68 dph样本经MS-222试剂处理后取其脑组织)。用DNA酶去除基因组DNA后,将所得RNA利用M-MLV反转录酶试剂盒(Promega, 美国)进行处理合成样本的cDNA:以总RNA为模板,oligo(dT)为引物于72 ℃反应5 min,冰浴5 min,再于42 ℃反应1.5 h。

对生长激素(gh1)及类胰岛素生长因子(lgf1)基因的mRNA水平进行定量分析,内参基因为β-actin。结合美国国家生物信息中心(NCBI)数据库提供的核酸序列,使用Primer premier 6软件设计qPCR引物(表 1)。qPCR反应按照HieffTM qPCR SYBR® Green Master Mix(翊圣生物科技有限公司,上海)说明进行,反应步骤:95 ℃,5 min;40×(95 ℃,10 s;54 ℃,30 s)。

1.6 数据分析

体长、体质量及肌肉纤维等相关数据以"平均值±标准差(Mean±SD)"在柱形图上显示;椎骨相关数据以"最大值、最小值、中位数及上下四分位数"在小提琴图中显示。相关数据的比较分析及制图通过Graph Pad软件完成:数据正态性通过Shapiro-Wilk检验;nos2a+/+nos2a-/-斑马鱼间的比较通过双尾独立t检验(方差不齐的经Welch校正)或曼-惠特尼(Mann-Whitney)独立检验进行。P<0.05, 差异显著;P<0.01, 差异极显著。

2 结果 2.1 nos2a基因敲除效果

通过敲除后的筛选及传代,构建nos2a-/-斑马鱼的稳定遗传家系:通过对nos2a基因进行测序发现,CRISPR/Cas9编辑导致nos2a的序列发生有义突变,造成5个碱基的缺失;荧光毛细管电泳检测呈单峰,说明该突变为纯合突变,并且nos2a序列碱基的缺失,导致氨基酸编码提前终止于第4号外显子,而主要功能结构域的缺失造成蛋白功能丧失(图 1)。

图 1 CRISPR/Cas9引发的nos2a基因突变 Fig. 1 Mutation of nos2a generated by CRISPR/Cas9
2.2 体长、体质量监测

经过持续的体长、体质量监测(图 2),发现nos2a-/-斑马鱼体型整体的增长趋势较野生型偏低,这种差异在出膜后2个月左右开始凸显,且在雌雄个体中均有发生;此外,至监测结束(125 dph),nos2a-/-斑马鱼的体长比nos2a+/+斑马鱼的短(P=0.006),体质量也比nos2a+/+斑马鱼的小(P=0.002)。

*.P<0.05;**.P<0.01. 图 2 生长过程中体长、体质量监测 Fig. 2 Body length and mass measurement
2.3 肌肉纤维密度对比

为了分析nos2a-/-nos2a+/+斑马鱼在肌纤维发育上的差异,对两组斑马鱼躯干背腹轴横切面上单位面积内的肌纤维数量的统计发现,nos2a-/-斑马鱼的单位面积肌纤维量与nos2a+/+斑马鱼的无显著差异(P=0.718,图 3)。

图 3 肌纤维密度比较 Fig. 3 Comparison of muscle fiber density
2.4 躯椎骨发育对比

由侧面及背面观察,nos2a-/-斑马鱼的躯椎骨发育较nos2a+/+斑马鱼无异常(图 4a)。躯椎骨横截面数据比对中,nos2a-/-斑马鱼在躯椎骨圆截面的横向径长W(P=0.548)、纵向径长H(P=0.817)及横截面积S(P=0.548)较nos2a+/+斑马鱼均具有增大的趋势,但差异未达到统计学意义上的显著水平(图 4b)。

图 4 躯椎骨发育对比 Fig. 4 Comparison of vertebrae development
2.5 生长激素相关基因表达水平

为了检测nos2a突变对斑马鱼生长激素mRNA水平的影响,通过基因的荧光定量技术分别对生长差异凸显前(8 dph)后(68 dph)斑马鱼的生长激素及类胰岛素生长激素基因(gh1igf1)进行检测(图 5),发现nos2a-/-斑马鱼基因的mRNA水平均显著低于nos2a+/+斑马鱼,8 dph:P(gh1)<0.01,P(igf1)<0.001;68 dph:P(gh1)<0.000 1,P(igf1)<0.000 1。

*P<0.05;**P<0.01。 图 5 nos2a敲除导致斑马鱼生长激素mRNA水平下降 Fig. 5 Knockout of nos2a reduced the expression of growth hormones in brain
3 讨论

目前针对nos2的研究多集中于其对免疫系统的调控上[27],而对机体生长的影响鲜有报道, nos2基因的敲除也多见于对哺乳动物如小鼠的研究。利用CRISPR/Cas9技术构建了可稳定遗传的nos2a基因纯合突变型(nos2a-/-)斑马鱼家系(图 1)。

nos2a-/-斑马鱼的生长激素mRNA水平、体型增长趋势及肌肉、躯椎骨发育的特征进行分析,发现nos2a-/-斑马鱼与nos2a+/+斑马鱼的生长差异主要出现在出膜2个月后,并持续到生长停滞阶段(图 2)。生长类激素中,Gh由脑垂体分泌,Igf则在脑、肝脏、肌肉等多种组织中都有表达[28],两者与机体的骨骼和肌肉的生长调节密切相关,这不仅在哺乳动物中有许多研究[1, 29-30],在鱼类中同样得到了验证[31],有研究发现Gh对鱼类生长的促进作用部分是通过Igf传递的[32-35],而且Gh和Igf在刺激鱼类软骨发育中具有协同作用[36-37]。笔者发现,nos2a+/+斑马鱼的gh1igf1的mRNA水平显著高于nos2a-/-斑马鱼(图 5),这表明nos2a-/-斑马鱼的体型增长趋势受限(图 3)可能与其较低的生长类激素水平有关,并且从侧面印证了相关研究报道的NO在生长激素分泌和水平提升方面的促进作用[1-3];然而,具有较低的gh1igf1 mRNA水平的nos2a-/-斑马鱼在肌纤维密度及躯椎骨相关数据上较nos2a+/+斑马鱼无显著差异(图 34),考虑到nos2基因在斑马鱼中有2个拷贝(nos2anos2b)且同在大脑及肌肉等组织中表达[38],笔者猜测2个拷贝间可能存在功能补偿机制,且该机制可能是nos2a功能缺失未能引起肌肉和椎骨发育发生显著变化的原因,对此仍有待验证。此外考虑到激素调节的复杂性[39-42],在之后的研究中,有必要对相关激素调节通路上的激素受体及相关调节因子的水平及作用进行深入调查。研究还发现,突变斑马鱼生长相关激素的基因mRNA水平在8 dph和64 dph时均显著低于对照组,而两者生长上的差异则主要凸显于出膜后2个月附近,因此认为生长激素不足对生长的影响是一个效应累积的过程。不过考虑到本研究仅通过基因mRNA水平反映激素水平变化具有一定局限性,因此有待在今后的研究中从蛋白水平对其进行进一步验证。

此外,从躯椎骨数据的分布(图 4b)看,nos2a-/-斑马鱼在躯椎骨的发育上较nos2a+/+斑马鱼有增粗的趋势,这与nos2基因敲除型小鼠骨吸收功能缺陷[20]以及nos1基因敲除型小鼠表现出骨转换水平下降及骨量增加[12]的报道相吻合,可见骨骼生长发育不只受生长类激素的调控,还与成骨、骨更新等过程的相关调节密切相关。

综上,nos2a的功能缺失对斑马鱼生长激素、类胰岛素类生长因子的mRNA水平及斑马鱼的生长具有负面调节作用。

参考文献
[1]
CUNEO R C, SALOMON F, WILES C M, et al. Growth hormone treatment in growth hormone-deficient adults. I. Effects on muscle mass and strength[J]. Journal of Applied Physiology, 1991, 70(2): 688-694. DOI:10.1152/jappl.1991.70.2.688
[2]
RETTORI V, BELOVA N, YU WH, et al. Role of nitric oxide in control of growth hormone release in the rat[J]. Neuroimmunomodulation, 1994, 1(3): 195-200. DOI:10.1159/000097160
[3]
URETSKY A D, CHANG J P. Evidence that nitric oxide is involved in the regulation of growth hormone secretion in goldfish[J]. General and Comparative Endocrinology, 2000, 118(3): 461-470. DOI:10.1006/gcen.2000.7485
[4]
MITTAL A, KAKKAR R. Nitric oxide synthases and their inhibitors: a review[J]. Letters in Drug Design & Discovery, 2020, 17(3): 228-252.
[5]
ANDREAKIS N, D'ANIELLO S, ALBALAT R, et al. Evolution of the nitric oxide synthase family in metazoans[J]. Molecular Biology and Evolution, 2011, 28(1): 163-179. DOI:10.1093/molbev/msq179
[6]
HOLMQVIST B, EBBESSON L, ALM P. Nitric oxide and the zebrafish (Danio rerio): developmental neurobiology and brain neurogenesis[J]. Advances in Experimental Biology, 2007, 1: 229-273, 459-465.
[7]
KOUROSH-ARAMI M, HOSSEINI N, MOHSENZADEGAN M, et al. Neurophysiologic implications of neuronal nitric oxide synthase[J]. Reviews in the Neurosciences, 2020, 31(6): 617-636. DOI:10.1515/revneuro-2019-0111
[8]
SCHIAFFINO S, DYAR K A, CICILIOT S, et al. Mechanisms regulating skeletal muscle growth and atrophy[J]. Federation of European Biochemical Societies, 2013, 280(17): 4294-4314.
[9]
ITO N, RUEGG U T, KUDO A, et al. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy[J]. Nature Medicine, 2013, 19(1): 101-106. DOI:10.1038/nm.3019
[10]
SUZUKI N, MOTOHASHI N, UEZUMI A, et al. NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS[J]. Journal of Clinical Investigation, 2007, 117(9): 2468-2476. DOI:10.1172/JCI30654
[11]
SCHIAFFINO S, MAMMUCARI C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models[J]. Skeletal Muscle, 2011, 1(1): 4. DOI:10.1186/2044-5040-1-4
[12]
THOMAS A, ROSE L, RALSTON S H, et al. The neuronal NOS knockout bone phenotype is sex-dependent and hyper-sensitive to ovariectomy and estrogen[J]. Bone, 2009, 44(s2): S213.
[13]
BOGDAN C, RÖLLINGHOFF M, DIEFENBACH A. The role of nitric oxide in innate immunity[J]. Immunological Reviews, 2010, 173(1): 17-26.
[14]
LOWENSTEIN C J, PADALKO E. iNOS (NOS2) at a glance[J]. Journal of Cell Science, 2004, 117(14): 2865-2867. DOI:10.1242/jcs.01166
[15]
STUEHR D J, SANTOLINI J, WANG ZQ, et al. Update on mechanism and catalytic regulation in the NO synthases[J]. The Journal of Biological Chemistry, 2004, 279(35): 36167-36170. DOI:10.1074/jbc.R400017200
[16]
BUSKILA Y, ABU-GHANEM Y, LEVI Y, et al. Enhanced astrocytic nitric oxide production and neuronal modifications in the neocortex of a NOS2 mutant mouse[J]. PLoS One, 2007, 2(9): e843. DOI:10.1371/journal.pone.0000843
[17]
BUCHWALOW I B, SCHULZE W, KARCZEWSKI P, et al. Inducible nitric oxide synthase in the myocard[J]. Molecular and Cellular Biochemistry, 2001, 217(1/2): 73-82. DOI:10.1023/A:1007286602865
[18]
GUO F H, DE RAEVE H R, RICE T W, et al. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo[J]. Proceedings of the National Academy of Sciencesof the United States of America, 1995, 92(17): 7809-7813. DOI:10.1073/pnas.92.17.7809
[19]
DE CÁCERES I I, PRIEGO T, MARTÍN A I, et al. The inhibition of inducible nitric oxide synthase reverts arthritic-induced decrease in pituitary growth hormone mRNA but not in liver insulin-like growth factor Ⅰ mRNA expression[J]. Journal of Neuroendocrinology, 2003, 15(12): 1178-1184. DOI:10.1111/j.1365-2826.2003.01117.x
[20]
VAN'THOF R J, ARMOUR K J, SMITH L M, et al. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2000, 97(14): 7993-7998. DOI:10.1073/pnas.130511497
[21]
王燕飞, 徐义平, 鲍宝龙. 斑马鱼HCS基因全长cDNA序列及早期仔鱼阶段的空间表达[J]. 上海海洋大学学报, 2013, 22(3): 321-327.
WANG Y F, XU Y P, BAO B L. Cloning and expression of HCS gene in zebrafish larvae[J]. Journal of Shanghai Ocean University, 2013, 22(3): 321-327.
[22]
VARSHNEY G K, PEI W H, LAFAVE M C, et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9[J]. Genome Research, 2015, 25(7): 1030-1042. DOI:10.1101/gr.186379.114
[23]
YU C, ZHANG Y G, YAO S H, et al. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish[J]. PLoS One, 2014, 9(6): e98282. DOI:10.1371/journal.pone.0098282
[24]
CARRINGTON B, VARSHNEY G K, BURGESS S M, et al. CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNAactivity[J]. Nucleic Acids Research, 2015, 43(22): e157. DOI:10.1093/nar/gkv802
[25]
MANSFIELD E S, ROBERTSON J M, VAINER M, et al. Analysis of multiplexed short tandem repeat (STR) systems using capillary array electrophoresis[J]. Electrophoresis, 1998, 19(1): 101-107. DOI:10.1002/elps.1150190118
[26]
WALKER M B, KIMMEL C B. A two-color acid-free cartilage and bone stain for zebrafish larvae[J]. Biotechnic & Histochemistry, 2007, 82(1): 23-28.
[27]
BOYLAN M, O'BRIEN M B, BEYNON C, et al. 1, 25(OH)D vitamin D promotes NOS2 expression in response to bacterial and viral PAMPs in primary bovine salivary gland fibroblasts[J]. Veterinary Research Communications, 2020, 44(2): 83-88. DOI:10.1007/s11259-020-09775-y
[28]
林浩然. 鱼类生长和生长激素分泌活动的调节[J]. 动物学报, 1996, 42(1): 69-79.
LIN H R. The regulation of growth and growth hormone secretion in fish[J]. Acta Zoologica Sinica, 1996, 42(1): 69-79.
[29]
纪伟. 生长激素对牙和颅颌面结构发育的影响[J]. 国际口腔医学杂志, 2008, 35(3): 283-285.
JI W. Effects of growth hormone on odontogenesis and craniofacial structure development[J]. International Journal of Stomatology, 2008, 35(3): 283-285. DOI:10.3969/j.issn.1673-5749.2008.03.018
[30]
VENKEN K, MOVÉRARE-SKRTIC S, KOPCHICK J J, et al. Impact of androgens, growth hormone, and IGF-Ⅰ on bone and muscle in male mice during puberty[J]. Journal of Bone and Mineral Research, 2007, 22(1): 72-82.
[31]
李红霞, 刘楠楠, 浦天宁, 等. 建鲤IGF-Ia基因的SNPs位点筛选及其与增重的相关性分析[J]. 上海海洋大学学报, 2012, 21(1): 7-13.
LI H X, LIU N N, PU T N, et al. SNPs identification and the correlation analysis with weight gain of IGF-Ⅰa in Cyprinus carpio var. jian[J]. Journal of Shanghai Ocean University, 2012, 21(1): 7-13.
[32]
DUAN C. The insulin-like growth factor system and its biological actions in fish[J]. American Zoologist, 1997, 37(6): 491-503. DOI:10.1093/icb/37.6.491
[33]
MCCORMICK S D, KELLEY K M, YOUNG G, et al. Stimulation of coho salmon growth by insulin-like growth factor I[J]. General and Comparative Endocrinology, 1992, 86(3): 398-406. DOI:10.1016/0016-6480(92)90064-Q
[34]
MORIYAMA S, AYSON F G, KAWAUCHI H. Growth regulation by insulin-like growth factor-Ⅰ in fish[J]. Bioscience, Biotechnology, and Biochemistry, 2000, 64(8): 1553-1562. DOI:10.1271/bbb.64.1553
[35]
DUAN C, HIRANO T. Effects of insulin-like growth factor-Ⅰ and insulin on the in-vitro uptake of sulphate by eel branchial cartilage: evidence for the presence of independent hepatic and pancreatic sulphationfactors[J]. Journal of Endocrinology, 1992, 133(2): 211-219. DOI:10.1677/joe.0.1330211
[36]
CHENG C M, CHEN T T. Fish growth hormone stimulation of sulfate uptake by common carp branchial cartilage maintained in culture with the presence of bovine IGF-I[J]. Aquaculture, 1995, 135(1/3): 239.
[37]
MARCHANT T A, MOROZ B M. Hormonal influences on in vitro[35S]-sulfate uptake by gill arches from the goldfish (Carassius auratus L.)[J]. Fish Physiology and Biochemistry, 1993, 11(1/6): 393-399.
[38]
LEPILLER S, FRANCHE N, SOLARY E, et al. Comparative analysis of zebrafish nos2a and nos2b genes[J]. Gene, 2009, 445(1/2): 58-65.
[39]
SUGAWARA J, SUH D S, FAESSEN G H, et al. Regulation of insulin-like growth factor-binding protein-1 by nitric oxide under hypoxic conditions[J]. The Journal of Clinical Endocrinology & Metabolism, 2000, 85(8): 2714-2721.
[40]
刘士力, 贾永义, 刘加林, 等. 翘嘴鲌两种生长激素受体基因结构及微卫星多态性与生长性状的相关性[J]. 水产学报, 2020, 44(6): 894-906.
LIU S L, JIA Y Y, LIU J L, et al. Molecular characterization of two growth hormone receptor genes, and association analysis between microsatellite polymorphism and growth traits in the topmouth culter (Culter alburnus)[J]. Journal of Fisheries of China, 2020, 44(6): 894-906.
[41]
DONAGHY A J, DELHANTY P J D, HO K K, et al. Regulation of the growth hormone receptor/binding protein, insulin-like growth factor ternary complex system in human cirrhosis[J]. Journal of Hepatology, 2002, 36(6): 751-758. DOI:10.1016/S0168-8278(02)00049-1
[42]
李晋南, 徐奇友, 王常安, 等. 不同糖及糖水平对松浦镜鲤GH/IGF-Ⅰ基因表达和鱼体组成的影响[J]. 上海海洋大学学报, 2015, 24(4): 489-495.
LI J N, XU Q Y, WANG C A, et al. Effects of different dietary carbohydrates and carbohydrate levels on GH/IGF-Ⅰ mRNA expression and the fish body composition of juvenile mirrorcarp (Cyprinus carpio)[J]. Journal of Shanghai Ocean University, 2015, 24(4): 489-495.
Role of nos2a in regulating the growth of zebrafish (Danio rerio)
GAO Lei1,2, HUANG Yajuan1,2, PENGLEE Rachit1,2, YI Xinxin1,2, BAO Baolong1,2     
1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract: To explore the role of inducible nitric oxide synthase (Nos2) in fish growth regulation, we generated nos2a deficient (nos2a-/-) zebrafish using CRISPR/Cas9 technology for the first time. By monitoring their growth process, we found the growth trend of nos2a-/-zebrafish was slower than nos2a+/+zebrafish, and the adult body size of nos2a-/-zebrafish was smaller than that of nos2a+/+zebrafish (P < 0.01): the mean length and weight of nos2a+/+zebrafish were 29.53 mm and 512.8 mg, respectively, that of nos2a-/-zebrafish was 26.34 mm and 394.4 mg. Additionally, there was no notable difference in the density of muscle fibers (P=0.718) and sectional area of vertebrae (P=0.548)between nos2a+/+ and nos2a-/-zebrafish. Moreover, compared with nos2a+/+zebrafish at 8 dph (days post hatching), the mRNA level of growth hormone (gh1, P < 0.01) and insulin-like growth factor-1 (igf1, P < 0.001) of nos2a-/-zebrafish at 8 dph were lower significantly; and it was the same as that at 68 dph: gh1, P < 0.000 1; igf1, P < 0.000 1. These findings indicate that the defect of nos2a negatively affected zebrafish growth, and the reduced gene mRNA level of growth hormone was the potential factor.
Key words: nitric oxide synthase     zebrafish     knockout     growth hormone     growth    
斑马鱼nos2a基因的生长调控作用
高磊, 黄亚娟, PENGLEE Rachit, 易欣鑫, 鲍宝龙