上海海洋大学学报  2017, Vol. 26 Issue (5): 706-715    PDF    
饲料中牛磺酸含量对淡水养殖凡纳滨对虾生长、体组成、消化酶活性及抗胁迫能力的影响
李航1, 黄旭雄1,2,3, 王鑫磊1, 闫明磊1, 郑晓龙1     
1. 农业部鱼类营养与环境生态研究中心, 上海 201306;
2. 上海市水产养殖工程技术研究中心, 上海 201306;
3. 水产科学国家及实验教学示范中心, 上海 201306
摘要:为探究饲料中牛磺酸含量对淡水养殖凡纳滨对虾(Litopenaeus vannamei)生长、消化酶活性及抗胁迫能力的影响,在10%鱼粉的基础上设计牛磺酸添加量分别为0(A组)、0.15%(B组)、0.30%(C组)、0.45%(D组)和0.60%(E组)的等氮等能饲料(A、B、C、D和E饲料中实测牛磺酸含量依次为1.42、3.07、4.37、5.79和7.48 mg/g饲料),分别投喂初始体质量(0.160±0.002)g的幼虾56 d。养殖实验结束后,测定对虾的生长性能、肌肉常规组成、肝胰腺消化酶活性。而后分别取各组对虾进行亚硝酸盐急性胁迫实验和耐低溶解氧胁迫实验。结果表明:饲料中牛磺酸含量对凡纳滨对虾的生长性能无显著影响(P>0.05)。随饲料牛磺酸含量的增加,对虾肌肉总脂肪含量逐渐升高,D组和E组显著高于其他各组(P < 0.05);肌肉水分含量逐渐下降,A、B和C组显著高于D和E组(P < 0.05);肌肉粗蛋白质及灰分含量各组之间无显著差异(P>0.05)。肝胰腺中蛋白酶及脂肪酶活性随饲料中牛磺酸含量的升高而升高,D和E组显著高于其他各组(P < 0.05)。在水体亚硝酸盐含量为8.5~9.0 mg/L条件下,D组在胁迫48、72和84 h后的累计死亡率低于其他各组。在低氧胁迫下,C组的致死溶氧低于其他各组。表明在淡水养殖条件下,低鱼粉饲料(鱼粉含量10%)中添加0.30%~0.45%的牛磺酸(实测含量4.37~5.79 mg/g饲料)在维持良好生长性能的同时可改善凡纳滨对虾的抗亚硝酸盐和耐低溶解氧胁迫的能力。
关键词凡纳滨对虾    牛磺酸    生长    亚硝酸盐胁迫    低溶解氧胁迫    

凡纳滨对虾(Litopenaeus vannamei)又名南美白对虾,原产于美洲太平洋沿岸水域[1],凭借其广盐性、生长速度快、出肉率高等特点,已经是我国乃至全世界养殖产量最高的甲壳类养殖产品[2]。凡纳滨对虾对饲料中的蛋白质需求量较高,鱼粉是凡纳滨对虾饲料中重要的优质蛋白源[3]。当前,一方面用植物蛋白部分替代鱼粉以降低凡纳滨对虾饲料中鱼粉的用量是虾类饲料研发的热点[4-5];另一方面,高密度养殖条件下环境胁迫引起的应激反应也越来越成为制约凡纳滨对虾养殖产业可持续发展的重要因素。因此,如何改善低鱼粉饲料养殖的凡纳滨对虾的抗胁迫能力,成为对虾养殖业者和科研人员关注的重点。以植物蛋白简单替代饲料鱼粉,通常面临饲料适口性降低、抗营养因子增加、营养素(如必需氨基酸和必需脂肪酸等)不平衡和功能性营养因子缺乏等问题。牛磺酸作为动物体内一种不可或缺的功能性氨基酸,主要存在于鱼粉等动物蛋白质中,多数植物中不含有牛磺酸[6]。水生动物自身合成的牛磺酸并不能完全满足生长发育的需要[7-8]。因此在特定条件下补充牛磺酸可改善动物的生长、增强消化酶(脂肪酶、蛋白酶、淀粉酶)活性、提高动物免疫力、抗氧化能力、抗应激能力等方面起着重要的作用[9-15]。同时牛磺酸在组织修复[16-17]、缓解金属毒性[18-19]和减轻细菌脂多糖引起的肝损伤[20]等方面也发挥着重要作用。其作用机理是:在炎症反应过程中[21-22],白细胞产生次氯酸(HOCl),HOCl是用于杀死病原体的细胞毒性氧化剂,但它对宿主细胞同样有毒。牛磺酸可以与HOCl反应产生牛磺酸氯胺(Tau-Cl),从而降低氧化应激。Tau-Cl可以调节炎症反应,通过抑制促炎介质TNF-α,PGE2和一氧化氮的产生,以及调节淋巴细胞的增殖和巨噬细胞、粒细胞、单核细胞的活性,并生产白细胞介素6和8[23-24]。研究表明,牛磺酸可以显著提高虹鳟(Oncorhynchus mykiss)的生长性能[25];显著提高草鱼(Ctenopharyngodon idellus)肝胰脏和肌肉中谷丙转氨酶(ALT)和谷草转氨酶(AST)的活性,提高蛋白质和氨基酸的代谢水平,提高蛋白质合成能力,增加氮在体内的蓄积[26];提高塞内加尔鳎(Solea senegalensis Kaup)仔鱼体内氨基酸保留率和蛋白质沉积,促进仔鱼生长[27];提高4周龄虹鳟仔鱼的机体免疫力[10]。在甲壳动物方面,刘媛等[28]报道了在饲料中添加0.4%~0.8%的牛磺酸,可以显著提高淡水养殖系统中日本沼虾(Macrobrachium nipponense)的增重率,同时增强了肌肉中酚氧化酶的活性,提高非特异性免疫力[28]。然而,刘兴旺等[29]研究表明,在鱼粉含量22%的饲料中添加不同梯度的牛磺酸对南美白对虾成活率、特定生长率和饲料转化率均无显著影响。有关饲料中牛磺酸含量对甲壳动物抗胁迫能力的研究尚未见报道。本文研究了在淡水养殖环境下,低鱼粉饲料中添加牛磺酸对凡纳滨对虾的生长、消化酶活性、体组成和抗胁迫能力的影响,以期为凡纳滨对虾低鱼粉饲料生产及对虾养殖提供指导。

1 材料与方法 1.1 实验饲料的制备

根据凡纳滨对虾的营养需求,按照表 1配制实验饲料,在秘鲁鱼粉使用量为10%的基础上,分别添加牛磺酸0(A组)、0.15%(B组)、0.30%(C组)、0.45%(D组)和0.60%(E组),制作5种不同牛磺酸含量的等氮等能饲料。将各饲料原料粉碎过80目筛,采取逐级扩大的方法按比例混匀原料,再添加油脂后加适量的纯净水和成面团,使用模板孔径为1.5 mm的绞肉机制成面条状,放入90 ℃的鼓风干燥箱中熟化20 min,在阴凉避光通风处晾干后破碎成适合实验用虾各个生长阶段摄食的粒径,真空包装后,放入-20 ℃冰箱保存。实验饲料各组常规组分及氨基酸组分分别见表 12

表 1 实验饲料配方(干物质基础)及概略成分 Tab.1 Diet ingredients and proximate compositions of the experimental diets for Litopenaeus vannamei(DM basis) %
表 2 各组实验饲料的氨基酸含量(mg/g饲料) Tab.2 The amino acid profiles on the experimental diets(mg/g diet)
1.2 实验用虾养殖管理

实验用凡纳滨对虾虾苗购自上海彰显渔业专业合作社的淡化虾苗(水体盐度为5),将买回的虾苗暂养在温室大棚的水池中,逐步淡化直至水体的表观盐度为0。暂养期间投喂商品虾苗及微颗粒饲料。虾苗暂养30 d后,挑选平均体质量为(0.160±0.002) g的1 000尾体质健康幼虾,随机分配到温室大棚中在同一个水泥池(5 m × 11 m × 1.2 m)的20个网箱(1 m × 1 m × 1.2 m)内,每个网箱50尾虾。养殖实验开始后,每天在05:30、10:30、16:30和22:30分别投喂5组实验饲料,每组4个平行组,每日投喂量为虾体质量的5%~10%,根据天气、水体质量、摄食情况对投喂量进行适当的调整。实验期间每5天换水一次,每次换水量小于总水体的1/3,维持水体透明度20~40 cm,实验用水泥池连续曝气使溶解氧>6 mg/L,每天检测水体氨氮<0.2 mg/L,pH为7.8~8.3,水温(30±2)℃,表观盐度为0。养殖实验持续56 d。

1.3 实验样品的采集及分析检测 1.3.1 实验用虾生长性能

养殖实验结束后,停食24 h,对每个网箱中存活的对虾进行称重和计数。然后从每个网箱中随机取8尾对虾,在托盘上快速解剖分别取肝胰腺和肌肉,保存于冰盒中带回实验室保存于-80 ℃冰箱中,用于肌肉常规组分和消化酶等分析。各生长指标的计算方法如下:

    (1)
    (2)
    (3)
    (4)

式中:FWB为终末体质量(g);SR为存活率;FCR为饵料系数;SGR为特定生长率;Nf为实验结束后一个网箱虾的尾数;Ni为实验开始时一个网箱虾的尾数;Wd为一个网箱整个养殖试验过程中所投喂饲料的干重(g);Wf为实验结束时一个网箱中虾总重(g);Wi为实验开始时一个网箱中虾总重(g);t为养殖天数(d)。

1.3.2 饲料及实验用虾肌肉常规分析

饲料和虾体肌肉中水分采用105 ℃烘箱干燥恒重法检测(GB 6435286);总脂肪采用氯仿-甲醇法检测;灰分采用550 ℃马福炉灼烧法检测(GB 6538286);粗蛋白质采用凯氏定氮仪法检测(KjeltecTM 2300, 瑞典) (GB 6432286)。氨基酸采用日立L-8800高速氨基酸自动分析仪测定。

1.3.3 肝胰腺中消化酶活性的检测

在-80 ℃冰箱中取出肝胰腺,立即称取适宜重量的样品,按1:9的重量(g)和体积(mL)比加入灭菌后的生理盐水,在冰水浴的条件下用匀浆机进行机械匀浆,将制备好的匀浆液2 500 r/min离心10 min, 取适量上清液待测。

肝胰腺蛋白酶活性采用Folin-酚法、脂肪酶活性采用对硝基苯酚法[30]、淀粉酶活性采用淀粉-碘比色法(南京建成试剂盒)。

1.4 亚硝酸盐急性胁迫实验

养殖实验结束后,每个实验饲料组随机选取对虾30尾,分3个平行,每平行10尾。根据文献[31-32]和预实验结果,将每个平行组对虾分别转移到水体亚硝酸盐含量为9.0 mg/L的同一个水泥池(2.8 m × 4.5 m × 1.5 cm)的15个网箱(50 cm × 30 cm × 80 cm)中。网箱内持续曝气,水温在27~28 ℃范围内,表观盐度为0。实验期间每6 h测定水体中亚硝态氮含量1次以保证其含量稳定在8.5~9.0 mg/L。连续观测各饲料组对虾的死亡情况,并统计各组实验用虾在24、36、48、72和84 h的累积死亡率。

1.5 低溶解氧胁迫实验

养殖实验结束后,从每个实验饲料组随机选取对虾4尾,分别置于5 L锥形瓶中,烧瓶中装有连续曝气的洁净养殖用水。将玻璃棒和溶解氧测定仪(YSI,美国)的探头一并放入烧瓶中,随后用液体石蜡封住瓶口。将实验装置置于恒温(29 ℃)环境中,连续观测烧瓶中对虾运动和死亡情况。当瓶中对虾侧躺不动并用玻棒触动无反应时,判定对虾死亡。记录每尾对虾死亡时的水体溶解氧含量。

1.6 数据处理

实验结果用平均数±标准差(Mean±SD)的方式表示,使用SPSS 17.0分析软件对实验结果进行单因素方差分析(one-Way ANOVA),若差异显著再进行多重比较(Duncan’procedure),P<0.05则表示差异显著。

2 结果 2.1 饲料中牛磺酸含量对凡纳滨对虾生长性能的影响

表 3可知,实验对虾的最大终末体质量和特定生长率均出现在C组(4.37 mg/g),但各组间差异均不显著(P>0.05)。各组饲料养殖的对虾的成活率均在90%以上,成活率和增重率最高均为D组(5.79 mg/g),且D组(5.79 mg/g)具有最小的饲料系数。但各组间对虾存活率、增重率和饲料系数也均无显著差异(P>0.05)。

表 3 低鱼粉饲料中添加牛磺酸对凡纳滨对虾幼虾生长性能的影响(Means ± SD, n=4) Tab.3 The growth performances of the white shrimp Litopenaeus vannamei treated with diets containing different contents of taurine (Means ± SD, n=4)
2.2 饲料中牛磺酸含量对凡纳滨对虾肌肉常规组成的影响

摄食含不同剂量牛磺酸饲料后,各组对虾肌肉粗蛋白和肌肉灰分含量无显著差异(P>0.05);随着饲料中牛磺酸含量的增加,D组(5.79 mg/g)和E组(7.48 mg/g)的对虾肌肉具有最低的水分含量(P<0.05) 和最高的粗脂肪含量(P<0.05),见表 4

表 4 饲料中牛磺酸含量对凡纳滨对虾肌肉常规组成的影响(Means ± SD, n=4) Tab.4 The effect of dietary taurine on the proximate composition in muscle of the white shrimp Litopenaeus vannamei(Means ± SD, n=4)
2.3 饲料中牛磺酸含量对凡纳滨对虾肝胰腺消化酶活力的影响

饲料中牛磺酸水平对凡纳滨对虾肝胰腺消化酶活性有显著影响(P < 0.05)。D组(5.79 mg/g)和E组(7.48 mg/g)对虾肝胰腺蛋白酶及脂肪酶活性显著高于其他各组(P < 0.05);淀粉酶活力总体上随着饲料牛磺酸含量的增加逐渐增加,D组(5.79 mg/g)和E组(7.48 mg/g)显著高于A组(1.42 mg/g)和C组(4.37 mg/g), 见表 5

表 5 饲料中牛磺酸含量对凡纳滨对虾肝胰腺消化酶活力的影响(Means ± SD, n=4) Tab.5 The effect of dietary taurine on digestive enzyme activities in hepatopancreas of the white shrimp Litopenaeus vannamei(Means ± SD, n=4)
2.4 饲料中牛磺酸含量对凡纳滨对虾抗亚硝酸盐胁迫能力的影响

在养殖水体亚硝酸盐含量为8.5~9.0 mg/L的胁迫条件下,各组凡纳滨对虾胁迫84 h内的累积死亡率曲线见图 1。各组对虾在胁迫24、48、72和84 h的累计死亡率均随着饲料中牛磺酸含量的增加呈先下降再上升的趋势,其中D组(5.79 mg/g)在各时间点累计死亡率均低于其他各组,但差异不显著(P>0.05)。

图 1 摄食含不同牛磺酸饲料的凡纳滨对虾经历亚硝酸盐胁迫后的死亡曲线 Fig. 1 The cumulative mortality curves of the white shrimp Litopenaeus vannamei fed diets containing different taurine contents when they experienced nitrite nitrogen stress(Means ± SD, n=3)
2.5 饲料中牛磺酸含量对凡纳滨对虾耐低溶解氧能力的影响

图 2所示,在低溶解氧胁迫下,各组对虾致死溶解氧含量随着饲料中牛磺酸添加量的增加呈先下降再上升的趋势,C组(4.37 mg/g)对虾的致死溶解氧水平低于其他各组,但各组间无显著性差异(P>0.05)。

图 2 摄食不同牛磺酸含量饲料的凡纳滨对虾在低溶解氧胁迫下的致死溶解氧水平 Fig. 2 Lethal dissolved oxygen concentration to the white shrimp Litopenaeus vannamei treated with different dietary taurine when they experienced hypoxia stress(Means ± SD, n=4)
3 讨论 3.1 饲料中牛磺酸含量对凡纳滨对虾生长性能的影响

低鱼粉饲料是以植物蛋白为主要蛋白源的饲料,但是植物蛋白源中几乎不含有牛磺酸[33]。牛磺酸普遍存在于除原生动物外的各种动物体内[34],并发挥着重要作用。在动物体内,牛磺酸以半胱胺、半胱氨酸、胱氨酸、蛋氨酸等物质为原料,主要在肝脏、心脏和大脑中经过复杂的酶促反应合成[35]。在水产动物中,牛磺酸的合成涉及半胱次磺酸脱羧酶和半胱胺双加氧酶两种限速酶[7, 36]。不同的水产动物中这两种酶的活性差异较大。虹鳟(Oncorhynchus mykiss)和罗非鱼(Oreochromis niloticus)肝脏中半胱次磺酸脱羧酶的活性最高,牙鲆(Paralichthys olivaceus)次之,鲤(Cyprinus carpio)、金枪鱼(Thunnus thynnus)几乎没有[36]。大太阳鱼(Lepomis gibbosus)和真鲷(Pagrosomus major)的肝脏半胱胺双加氧酶的活性最高,牙鲆次之,鲤和虹鳟几乎没有[7]。研究还发现,牛磺酸主要在动物幼体发育阶段发挥着重要的生理作用[10, 37-40],牛磺酸对水产动物生长性能的影响主要体现在诱食和提高消化酶的活性、摄食率以及饲料利用率等方面[41]。如在只有植物蛋白源的饲料中分别添加5和10 g/kg牛磺酸可显著提高虹鳟的生长性能[25];在低鱼粉饲料中添加浓度为0.1%牛磺酸可以提高青鱼幼鱼的生长表现[37];在低鱼粉饲料中添加0.99%的牛磺酸对海鲈(Lateolabrax japonicus)幼鱼的生长有促进作用[37];低鱼粉饲料中添加1.5%的牛磺酸对银鳕鱼(Anoplopoma fimbria)幼鱼的生长也起到了促进作用[42]。饲料中牛磺酸含量对虾类生长性能的影响也有报道:在饲料中添加0.4%~0.8%的牛磺酸,可以使淡水养殖系统中的日本沼虾的增重率显著增加,但过量的牛磺酸对日本沼虾的生长性能有抑制作用[28]。刘兴旺等[29]用添加0、500、1 000和2 000 mg/kg牛磺酸的鱼粉用量为22%的4种饲料养殖凡纳滨对虾,对虾的存活率、特定生长率以及饲料利用率均无显著影响[29]。本次研究中,用牛磺酸实际含量为1.42、3.07、4.37、5.79和7.48 mg/g的5种低鱼粉饲料喂养淡水环境下的凡纳滨对虾,虽然4.37和5.79 mg/g组对虾的生长性能略好,但与其他组差异不显著。表明本实验条件下饲料中添加牛磺酸未能对凡纳滨对虾的生长性能有明显促进作用。推测一方面或许凡纳滨对虾具有较强的合成牛磺酸的能力;另一方面,凡纳滨对虾在淡水养殖条件下对牛磺酸的需求量低。

3.2 饲料中牛磺酸含量对凡纳滨对虾肌肉常规组成及消化酶活力的影响

牛磺酸对不同动物的肌肉常规组成的影响不尽相同。徐奇友等发现在鱼粉含量为66%的饲料中添加0.05%和0.1%的牛磺酸时,虹鳟的鱼体水分下降,体蛋白出现提高的趋势,添加0.15%牛磺酸体脂肪含量显著下降[10]。但GAYLORD等报道高植物蛋白饲料中添加0.5%~1.5%的牛磺酸对虹鳟鱼的脂肪含量没有影响[43]。在草鱼(Ctenopharyngodon idellus)饲料中添加0.02%~0.14%的牛磺酸时鱼体水分含量下降,但粗蛋白和粗脂肪含量显著增加[26]。以鱼粉和大豆浓缩蛋白为基础的饲料中添加牛磺酸对牙鲆肝脏和肌肉脂肪的代谢没有产生影响[44]。本研究中,随着饲料中牛磺酸含量的增加肌肉中水分含量显著降低,饲料中牛磺酸含量较高的D组(5.79 mg/g)和E组(7.48 mg/g)肌肉粗脂肪含量、肝胰腺脂肪酶活性均显著高于其他各组(P<0.05),推测可能是牛磺酸促进三碘甲腺原氨酸的分泌,而三碘甲腺原氨酸是调节戊糖磷酸循环关键酶即1, 6-磷酸脱氢酶的因素之一,它可增强碳水化合物的利用,促进脂肪酸合成及关键酶的转录,继而促进脂肪合成,使体脂增高[45]。但是,也有研究发现在鱼粉含量为16.5%的饲料中补充0.1%的牛磺酸降低了大西洋鲑幼鱼的体脂含量[46]

3.3 饲料中牛磺酸含量对凡纳滨对虾抗胁迫能力的影响

近年来随着集约养殖规模的增加,养殖水体中残饵和粪便的积累,对养殖水体管理不当,使水体中氨氮和亚硝酸盐水平超出了水体的自净能力,对养殖凡纳滨对虾构成了威胁[47]。研究发现对虾长期生活在亚硝酸盐过高的水体中,会使对虾体内的超氧化物歧化酶(SOD)、酚氧化酶(PO)、溶菌酶的活力下降,使虾体内自由基增多[48],活性氧和超氧阴离子水平升高[49],造成机体氧化损伤[50]。本次研究发现,在养殖水体中亚硝酸盐含量为8.5~9.0 mg/L的胁迫条件下,各组对虾在胁迫24、48、72和84 h的累计死亡率均随着饲料中牛磺酸含量的增加呈先下降再上升的趋势,其中D组(5.79 mg/g)在各时间点累计死亡率低于其他各组。推测与饲料中牛磺酸水平有关。已证实饲料中添加牛磺酸可以通过提高鲤血清和肝胰脏的过氧化氢酶(CAT)活力和SOD活力,降低鲤血清和肝胰脏中的丙二醛(MDA)含量,增强了鲤的抗氧化能力,减轻鱼体的脂质过氧化作用[9]。饲料中牛磺酸可以提高淡水鲶鱼(Clarias batrachus)肝脏、肾脏、红细胞中CAT活力和SOD活力,降低脂质过氧化物的浓度,减少组织中镉的积累和氧化应激[51]

养殖过程中,水体溶氧量不足造成养殖动物缺氧的情况是时有发生的。现有报道显示,牛磺酸可以提高青鳉(Oryzias latipe)[52]、鲫(Carassius auratus)[53-54]、麦穗鱼(Pseudorasbora parva)[55]、泥鳅(Misgurnus anguillicaudatus)[56]、黄河鲤(Cyprinus carpio)[15]的抗缺氧能力。本次研究中,各组对虾致死溶解氧含量随着饲料中牛磺酸含量的增加呈先下降再上升的趋势,C组(4.37 mg/g)的致死溶氧低于其他各组。可见,牛磺酸对凡纳滨对虾耐低氧有帮助,但作用机理还有待进一步研究。已发现在鱼类中,牛磺酸使鱼血液中的红细胞稳定,可能使血红蛋白含量增加,提高对氧的运输能力,或在氧分压下降时提高血红蛋白与氧的亲和力,因而提升鱼耐低溶解氧的能力[55]

4 结论

综上所述:淡水养殖条件下,低鱼粉饲料(鱼粉含量10%)中添加7.48 mg/g以下的牛磺酸对凡纳滨对虾的生长性能无显著影响(P>0.05),饲料中牛磺酸含量为4.37 mg/g ~ 5.79 mg/g可在维持良好生长性能的同时改善凡纳滨对虾幼虾的抗亚硝酸盐和低氧胁迫能力。

参考文献
[1] 张伟权. 世界重要养殖品种——南美白对虾生物学简介[J]. 海洋科学, 1990, 14(3): 69–73.
ZHANG W Q. The world important aquaculture species-Biology of Penaeus vannamei[J]. Marine Science, 1990, 14(3): 69–73.
[2] 赵永锋, 宋迁红. 南美白对虾养殖概况及病害防控措施[J]. 科学养鱼, 2014: 13–17.
ZHAO Y F, SONG Q H.. General situation and disease control of Litopenaeus vannamei[J]. Scientific Fish Farming, 2014: 13–17.
[3] NUTRITION N C C O A. Nutrient Requirements of Fish[M]. : National Academy Press, 1993.
[4] 艾庆辉, 谢小军. 水生动物对植物蛋白源利用的研究进展[J]. 中国海洋大学学报(自然科学版), 2005, 35(6): 929–935.
AI Q H, XIE X J. Advance in utilization of plant proteins by aquatic animals[J]. Periodical of Ocean University of China, 2005, 35(6): 929–935.
[5] 周歧存, 麦康森, 刘永坚, 等. 动植物蛋白源替代鱼粉研究进展[J]. 水产学报, 2005, 29(3): 404–410.
ZHOU Q C, MAI K S, LIU Y J, et al. Advances in animal and plant protein sources in place of fish meal[J]. Journal of Fisheries of China, 2005, 29(3): 404–410.
[6] PASANTES-MORALES H, QUESADA O, ALCOCER L, et al. Taurine content in foods[J]. Nutrition Reports International, 1989, 40(4): 793–801.
[7] GOTO T, TIBA K, SAKURADA Y, et al. Determination of hepatic cysteinesulfinate decarboxylase activity in fish by means of OPA-prelabeling and reverse-phase high-performance liquid chromatographic separation[J]. Fisheries Science, 2001, 67(3): 553–555. DOI:10.1046/j.1444-2906.2001.00271.x
[8] YOKOYAMA M, TAKEUCHI T, PARK G S, et al. Hepatic cysteinesulphinate decarboxylase activity in fish[J]. Aquaculture Research, 2001, 32(S1): 216–220.
[9] 邱小琮, 赵红雪, 王远吉, 等. 牛磺酸对鲤非特异性免疫及抗氧化能力的影响[J]. 上海水产大学学报, 2008, 17(4): 429–434.
QIU S Z, ZHAO H X, WANG Y J, et al. Effect of taurine on the non-specific immunity and antioxidative competence of carp[J]. Journal of Shanghai Fisheries University, 2008, 17(4): 429–434.
[10] 徐奇友, 许红, 郑秋珊, 等. 牛磺酸对虹鳟仔鱼生长、体成分和免疫指标的影响[J]. 动物营养学报, 2007, 19(5): 544–548.
XUE Q Y, XU H, ZHENG Q S, et al. Effects of taurine on growth, body composition and immunity of rainbow trout juvenile[J]. Acta Zoonutrimenta Sinica, 2007, 19(5): 544–548.
[11] KIM S K, TAKEUCHI T, YOKOYAMA M, et al. Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus[J]. Aquaculture, 2006, 250(3/4): 765–774.
[12] QI G S, AI Q H, MAI K S, et al. Effects of dietary taurine supplementation to a casein-based diet on growth performance and taurine distribution in two sizes of juvenile turbot (Scophthalmus maximus L.)[J]. Aquaculture, 2012, 358(359): 122–128.
[13] MATSUNARI H, HAMADA K, MUSHIAKE K, et al. Effects of taurine levels in broodstock diet on reproductive performance of yellowtail Seriola quinqueradiata[J]. Fisheries Science, 2006, 72(5): 955–960. DOI:10.1111/fis.2006.72.issue-5
[14] CHATZIFOTIS S, POLEMITOU I, DIVANACH P, et al. Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet[J]. Aquaculture, 2008, 275(1/4): 201–208.
[15] 张书松, 王春秀, 高春生. 牛磺酸对黄河鲤鱼抗缺氧能力的影响[J]. 饲料研究, 2008: 56–57.
ZHANG S S, WANG C X, GAO C S. Effect of taurine on anti-anoxia ability of carp of the Yellow River (Cyprinus carpio)[J]. Feed Research, 2008: 56–57.
[16] SAHIN M A, YUCEL O, GULER A, et al. Is there any cardioprotective role of Taurine during cold ischemic period following global myocardial ischemia[J]. Journal of Cardiothoracic Surgery, 2011, 6: 31. DOI:10.1186/1749-8090-6-31
[17] ZHANG F, MAO Y H, QIAO H Q, et al. Protective effects of taurine against endotoxin-induced acute liver injury after hepatic ischemia reperfusion[J]. Amino Acids, 2010, 38(1): 237–45. DOI:10.1007/s00726-009-0233-z
[18] BOSGELMEZⅱ, S YLEMEZOĞLU T, GVVENDIK G. The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue[J]. Biological Trace Element Research, 2008, 125(1): 46–58. DOI:10.1007/s12011-008-8154-3
[19] GULYASAR T, AYDOGDU N, CAKINA S, et al. Trace elements in a rat model of cadmium toxicity:the effects of taurine, melatonin and N-Acetylcysteine[J]. Medical Journal of Trakya University, 2010, 27(1): 23–27.
[20] KIM S K, KIM Y C. Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats[J]. Food and Chemical Toxicology, 2002, 40(4): 545–549. DOI:10.1016/S0278-6915(01)00102-8
[21] REDMOND H P, STAPLETON P P, NEARY P, et al. Immunonutrition:the role of taurine[J]. Nutrition, 1998, 14(7/8): 599–604.
[22] SCHULLER-LEVIS G B, PARK E. Taurine and its chloramine:modulators of immunity[J]. Neurochemical Research, 2004, 29(1): 117–126. DOI:10.1023/B:NERE.0000010440.37629.17
[23] PARK E, JIA J H, QUINN M R, et al. Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes[J]. Clinical Immunology, 2002, 102(2): 179–184. DOI:10.1006/clim.2001.5160
[24] WANG L, ZHAO N, ZHANG F, et al. Effect of taurine on leucocyte function[J]. European Journal of Pharmacology, 2009, 616(1/3): 275–280.
[25] GAYLORD T G, BARROWS F T, TEAGUE A M, et al. Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2007, 269(1/4): 514–524.
[26] 罗莉, 文华, 王琳, 等. 牛磺酸对草鱼生长、品质、消化酶和代谢酶活性的影响[J]. 动物营养学报, 2006, 18(3): 166–171.
LUO L, WEN H, WANG L, et al. Effects of taurine on growth performance, quality, digestive and metabolic enzyme activity of grass carp (Ctenopharyngodon idellus)[J]. Acta Zoonutrimenta Sinica, 2006, 18(3): 166–171.
[27] PINTO W, FIGUEIRA L, RIBEIRO L, et al. Dietary taurine supplementation enhances metamorphosis and growth potential of Solea senegalensis larvae[J]. Aquaculture, 2010, 309(1/4): 159–164.
[28] 刘媛, 王维娜, 王安利, 等. 牛磺酸对日本沼虾生长及酚氧化酶活性的影响[J]. 淡水渔业, 2005, 35(2): 28–30.
LIU Y, WANG W N, WANG A L, et al. Effects of taurine on growth of Macrobrachium nipponense and activity of phenoloxidase[J]. Freshwater Fishery, 2005, 35(2): 28–30.
[29] 刘兴旺, 李晓宁, 朱琳. 南美白对虾饲料中添加牛磺酸效果的研究[J]. 中国饲料, 2011: 35–36. DOI:10.3969/j.issn.1004-3314.2011.21.014
LIU X W, LI X N, ZHU L. Feed effects of taurine supplemented in diets on growth performance in Penaeus vannamei[J]. China Feed, 2011: 35–36. DOI:10.3969/j.issn.1004-3314.2011.21.014
[30] 尚宪明. 南极大磷虾脂肪酶提取纯化及其酶学性质研究[D]. 青岛: 中国海洋大学, 2014.
SHANG X M. Studies on purification and enzyme characterization of lipases from antarctic krill[D]. Qingdao:Ocean University of China, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10423-1014204026.htm
[31] 王鑫磊, 李航, 黄旭雄, 等. 饲料中胆固醇含量对淡水养殖凡纳滨对虾生长性能、抗弧菌和抗亚硝态氮胁迫能力的影响[J]. 动物营养学报, 2016, 28(8): 2639–2649.
WANG X L, LI H, HUANG X X, et al. Effects of dietary cholesterol content on growth performance, Vibrio and Nitrite Nitrogen stress resistant abilities of Litopenaeus vannamei cultured in freshwater[J]. Acta Zoonutrimenta Sinica, 2016, 28(8): 2639–2649.
[32] CHENG S Y, CHEN J C. Effects of nitrite exposure on the hemolymph electrolyte, respiratory protein and free amino acid levels and water content of Penaeus japonicus[J]. Aquatic Toxicology, 1998, 44(1/2): 129–139.
[33] YAMAMOTO T, SUZUKI N, FURUITA H, et al. Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss[J]. Fisheries Science, 2007, 73(1): 123–131. DOI:10.1111/fis.2007.73.issue-1
[34] JACOBSEN J G, SMITH L H. Biochemistry and physiology of taurine and taurine derivatives[J]. Physiological Reviews, 1968, 48(2): 424–511.
[35] 贠彪. 在高植物蛋白饲料中添加胆固醇、牛磺酸和大豆皂甙对大菱鲆生长性能和胆固醇代谢的影响[D]. 青岛: 中国海洋大学, 2012.
YUN B. Effects of dietary cholesterol, taurine and soya saponins on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein Abstract.[D]. Qingdao:Ocean University of China, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10423-1012505796.htm
[36] YOKOYAMA M, KANENIWA M, SAKAGUCHI M. Metabolites of L-[35S] cysteine injected into the peritoneal cavity of rainbow trout[J]. Fisheries Science, 1997, 63(1): 799–801.
[37] JIRSA D, DAVIS D A, SALZE G P, et al. Taurine requirement for juvenile white seabass (Atractoscion nobilis) fed soy-based diets[J]. Aquaculture, 2014, 422.
[38] KIM S K, TAKEUCHI T, YOKOYAMA M, et al. Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus[J]. Aquaculture, 2005, 250(3/4): 765–774.
[39] MATSUNARI H, FURUITA H, YAMAMOTO T, et al. Effect of dietary taurine and cystine on growth performance of juvenile red sea bream Pagrus major[J]. Aquaculture, 2008, 274(1): 142–147. DOI:10.1016/j.aquaculture.2007.11.002
[40] YUN B, AI Q H, MAI K S, et al. Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets[J]. Aquaculture, 2012, 324-325: 85–91. DOI:10.1016/j.aquaculture.2011.10.012
[41] 王清滨. 牛磺酸对投喂高脂饲料草鱼幼鱼生长、抗氧化能力及脂质代谢的影响[D]. 长春: 吉林农业大学, 2014.
WANG Q B. Effects of taurine on growth performance, antioxidant capacity and lipid metabolism of juvenile grass carp (Ctenopharyngodon idella) fed high-fat diets[D]. Changchun:Jilin Agricultural University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10193-1014053323.htm
[42] JOHNSON R B, KIM S K, WATSON A M, et al. Effects of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria) fed plant based feeds[J]. Aquaculture, 2015, 445: 79–85. DOI:10.1016/j.aquaculture.2015.03.030
[43] GAYLORD T G, TEAGUE A M, BARROWS F T. Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss)[J]. Journal of the World Aquaculture Society, 2006, 37(4): 509–517. DOI:10.1111/jwas.2006.37.issue-4
[44] CHATZIFOTIS S, POLEMITOU I, DIVANACH P, et al. Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet[J]. Aquaculture, 2008, 275(1/4): 201–208.
[45] 何天培, 呙于明, 周毓平. 牛黄酸对肉仔鸡卵黄囊吸收及甲状腺激素代谢的影响[J]. 动物营养学报, 2000, 12(1): 38–41.
HE T P, WO Y M, ZHOU Y P. Effect of taurine on absorption of yolk sac and metabolism of thyroid hormone in broilers[J]. Acta Zoonutrimenta Sinica, 2000, 12(1): 38–41.
[46] ESPE M, RUOHONEN K, EL-MOWAFI A. Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar)[J]. Aquaculture Research, 2011, 43(3): 349–360.
[47] 黄翔鹄, 李长玲, 郑莲, 等. 亚硝酸盐氮对凡纳滨对虾毒性和抗病相关因子影响[J]. 水生生物学报, 2006, 30(4): 466–471.
HUANG X G, LI C L, ZHENG L, et al. The toxicity of NO2-N on Litopenaeus vannamei and effects of NO2-N on factors relating to the anti-disease ability[J]. Acta Hydrobiologica Sinica, 2006, 30(4): 466–471.
[48] 吴中华, 刘昌彬, 刘存仁, 等. 中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究[J]. 华中师范大学学报(自然科学版), 1999, 33(1): 119–122.
WU Z H, LIU C B, LIU C R, et al. Histopathological research on chronic poisoning of Penaeus chinensis by nitrite and ammonia[J]. Journal of Central China Normal University, 1999, 33(1): 119–122.
[49] HSU S W, CHEN J C. The immune response of white shrimp Penaeus vannamei and its susceptibility to Vibrio alginolyticus under sulfide stress[J]. Aquaculture, 2007, 271(1/4): 61–69.
[50] WANG W N, WANG A L, ZHANG Y J, et al. Effects of nitrite on lethal and immune response of Macrobrachium nipponense[J]. Aquaculture, 2004, 232(1/4): 679–686.
[51] KUMAR P, PRASAD Y, PATRA A K, et al. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)[J]. Science of the Total Environment, 2009, 407(18): 5024–5030. DOI:10.1016/j.scitotenv.2009.05.030
[52] 魏智清, 杨涓, 邱小琮, 等. GABA、牛磺酸及枸杞子水浸液对青鳉抗缺氧能力的影响[J]. 水利渔业, 2006, 26(2): 1–3.
WEI Z Q, YANG J, QIU X Z, et al. Effects of GABA, taurine and medlar on the resistance ability of Oryzias latipes to oxygen depletion[J]. Reservoir Fisheries, 2006, 26(2): 1–3.
[53] 魏智清, 杨涓, 赵红雪, 等. 牛磺酸、γ-氨基丁酸对鲫抗缺氧能力的影响[J]. 淡水渔业, 2006, 36(1): 7–10.
WEI Z Q, YANG J, ZHAO H X, et al. Effects of taurine and gamma-amino-butyric acid on the antianoxia capacity of crucian carp[J]. Freshwater Fisheries, 2006, 36(1): 7–10.
[54] 邱小琮, 赵红雪, 魏智清. 牛磺酸对鲫鱼密闭缺氧存活时间和血红蛋白含量的影响[J]. 信阳师范学院学报(自然科学版), 2006, 19(2): 179–184.
QIU X Z, ZHAO H X, WEI Z Q. The effect of taurine on survival time and content of hemoglobin of crucian crap[J]. Journal of Xinyang Normal University (Natural Science Edition), 2006, 19(2): 179–184.
[55] 魏智清, 于洪川, 吴润. 牛磺酸对麦穗鱼抗缺氧能力的影响[J]. 氨基酸和生物资源, 2004, 26(1): 27–29.
WEI Z Q, YU H C, WU R. Effect of taurine on anti-anoxia capacity of Pseudorasbora parva[J]. Amino Acids & Biotic Resources, 2004, 26(1): 27–29.
[56] 魏智清, 于洪川, 邱小琮, 等. 牛磺酸对泥鳅、麦穗鱼抗缺氧能力的影响[J]. 黑龙江畜牧兽医, 2005: 72–73.
WEI Z Q, YU H C, QIU X Z, et al. The influence of taurine on Misgurnus anguillicaudatus, Pseudorasbora parva anoxia resistance[J]. Heilongjiang Animal Husbandry and Veterinary, 2005: 72–73.
Effect of dietary taurine supplementation on the growth, body composition, digestive enzyme activity and anti-stress ability of Litopenaeus vannamei in freshwater culture
LI Hang1, HUANG Xuxiong1,2,3, WANG Xinlei1, YAN Minglei1, ZHENG Xiaolong1     
1. Centre for Research on Environmental Ecology and Fish Nutrion of the Ministry of Agriculture, Shanghai 201306, China;
2. Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China;
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai 201306, China
Abstract: In order to assess the effect of dietary taurine supplementation on the growth, body composition, digestive enzyme activity and stress resistance of Litopenaeus vannamei in freshwater, five isonitrogenous and isoenergetic experimental diets based on 10% fish meal formula, supplemented 0% (A), 0.15% (B), 0.30% (C), 0.45% (D)and 0.60% (E)taurine respectively (The taurine contents were orderly 1.42, 3.07, 4.37, 5.79 and 7.48 mg/g diet), were fed to the juvenile shrimp (initial body weight 0.160±0.002 g) for 56 days. Then the growth performance, proximate composition of muscle and hepatopancreas digestive enzyme activity were investigated. The nitrite acute stress test and hypoxia stress test were also conducted. The results showed that: The dietary taurine content had no significant effect on the growth performance of the white shrimp L. vannamei (P > 0.05). The muscular total lipid content of shrimp increased and moisture declined along with the increasing dietary taurine level.The muscular total lipid contents in D and E treatments were significantly higher than those in other treatments (P < 0.05). Muscular moisture in A, B and C treatments were significantly higher than those in D and E (P < 0.05); There was no significant difference in muscular crude protein and ash between the treatments (P > 0.05).The activities of protease and lipase in hepatopancreas increased with the increase of dietary taurine content. D and E treatments displayed significantly higher protease and lipase activities than other treatments (P < 0.05). Stressed with 8.5-9.0 mg/L nitrite, D treatment displayed lower cumulative mortality at 48 h, 72 h and 84 h than other treatments. Under hypoxia stress, C treatment had lower lethal dissolved oxygen concentration than other treatments. It is therefore suggested that supplementation of 0.30%-0.45% taurine in diet containing 10% fish meal (the dietary taurine was between 4.37 and 5.79 mg/g diet) could improve the nitrite tolerance and hypoxia tolerance of the white shrimp L. vannamei in freshwater culture condition.
Key words: Litopenaeus vannamei     taurine     growth performance     nitrite stress     hypoxia stress