扩展功能
文章信息
- 卜荣平, 肖繁荣, 丁达尔, 史海涛
- BU Rongping, XIAO Fanrong, DING Daer, SHI Haitao
- 龟鳖动物体色研究进展
- A Review on the Study of Chelonian Coloration
- 四川动物, 2021, 40(4): 469-480
- Sichuan Journal of Zoology, 2021, 40(4): 469-480
- 10.11984/j.issn.1000-7089.20210009
-
文章历史
- 收稿日期: 2021-01-09
- 接受日期: 2021-04-12
体色是动物的主要形态特征之一,其形成是物种的内在因素(基因、遗传和母体效应等)和环境相互作用的结果(Robbins et al., 1993;Roulin & Ducrest,2013)。动物的体色可以随温度、光线、栖息地特征、猎物和捕食者的视觉和行为等因素而改变(Roulin,2004)。长期的选择压力导致动物形成多种多样的体色。体色具有多种功能:伪装、惊吓、体温调节、威慑、性选择信号和作为视觉诱惑等(Ortolani,1999;Ruxton et al., 2004;Trullas et al., 2007;Stevens & Merilaita,2009;Stevens,2013;White & Kemp,2015)。
研究体色可以揭示物种的进化适应,生存在不同基底颜色环境下的爬行动物种群常表现出丰富的体色变异,其体色变化的潜在机制具有多样性:爬行动物在不同环境下表现出不同的体色,且与环境颜色趋同(Rowe et al., 2014a, 2014b;Tong et al., 2019);爬行动物身上的部分色块可以作为性选择信号,导致物种内部和物种之间产生巨大的体色差异(Zucker,1989);体色还能影响爬行动物从环境吸收或反射热量的效率(Trullas et al., 2007;Langkilde & Boronow,2012)。爬行动物的体色可以通过遗传在种群水平上传代进化,可以由环境诱导发生缓慢的改变,也可以在较短的时间内发生个体水平的改变(Price,2006)。
长期以来,龟鳖动物的体色因其特殊的背腹甲结构而被研究者忽视(Parker,1948),直到Woolley(1957)研究蛇颈龟Chelodina longicollis的体色变化才开启了对龟鳖动物体色的研究。目前已知的356种龟鳖动物中(Rhodin et al., 2017),体色多种多样(Bagnara & Matsumoto,2007)。许多龟鳖动物种内具有多态体色,不同生境中的个体颜色不同(Lovich et al., 1990;McGaugh,2008),体色多态性的维持,可能是由于视觉捕食者的选择压力导致的局部生境匹配,有利于同种个体应对不同的生境和捕食者(Mayr,1963;Rand,1967;Endler,1978;Woolbright & Stewart,2008)。独特的体色对于个体生存和种群发展都有极其重要的作用,许多龟鳖动物体色单一,也有许多龟鳖动物具有条纹和斑纹(史海涛等,2011)。目前,龟鳖动物的体色研究集中在体色形成机理和体色功能(求偶、伪装、体温调节和社会交往)等方面。
1 龟鳖动物体色形成机理动物的体色可以分为生物色(Margareta,2002)和结构色(Ball,2012),前者是存在于动物皮肤、眼睛等部位不同的色素细胞中的极微小色素形成的体色,后者是因为动物体表细微的物理结构导致光波发生折射、衍射或干涉而产生的各种颜色。爬行动物皮肤斑块的颜色是生物色和结构色相互作用的结果(Saenko et al., 2013)。
体色形成的最常见机制是色素沉积,黑色素的密度和分布会影响动物的体色外貌,产生对伪装和交流都很重要的可见颜色变化(Aspengren et al., 2009)。黑色素有2种化学变体——真黑色素和褐黑素,真黑色素产生黑色或棕色,褐黑素产生淡黄色至红色(Thody et al., 1991)。生物体表现出的颜色和图案的多样性主要取决于体表各种色素特别是黑色素的含量和分布(Aspengren et al., 2009),色素选择性地吸收特定波长的光,同时允许其他波长的光被反射(Morehouse et al., 2007),颜色的变化可以通过改变色素数量和聚集或者含有色素的细胞器的分散或聚集而实现(Sköld et al., 2013)。而色素通过一系列复杂的化学变化,被色素沉着机制中涉及的不同的酶催化(Hou et al., 2000),这个过程由超过125种不同的基因调控(Bennett & Lamoreux,2003)。
龟鳖动物个体皮肤发生的颜色变化是由激素调节的色素沉着的缓慢过程所致(Bartley,1971;Alibardi, 2005, 2013)。Woolley(1957)发现,无论注射多少剂量的肾上腺素,都不会引起蛇颈龟黑色素细胞的变化;而注射垂体后叶素后,黑色素细胞发生变化,因此,他认为龟鳖类的体色只依赖于激素调节。Bartley(1971)在对鳖属Trionyx物种进行研究时发现,注射垂体后叶素时,黑色素扩散,注射褪黑激素时,黑色素聚集,进一步证实了龟鳖类的体色调节为单一的激素调节。通过显微镜和光谱法在红耳龟Trachemys scripta elegans的皮肤中发现了由表皮黑色素细胞、黄色素细胞或脂小体产生的黑色素、类胡萝卜素和蝶呤(Rowe et al., 2006a, 2009, 2013;Alibardi,2013;Steffen et al., 2015),其中,黑色素被认为有助于形成可见色素沉着图案的暗灰色色调,而类胡萝卜素和蝶呤则形成黄色和橙色色调(Bagnara & Matsumoto,2007)。Steffen等(2015)研究发现,锦龟Chrysemys picta和红耳龟通过类胡萝卜素产生包括红色、橙色、黄色和紫外体色。由于类胡萝卜素不能自身合成,食物组成会影响类胡萝卜素的可获得性而影响黄色素细胞的形成,从而影响体色(Cooper & Greenberg,1992;Ernst & Lovich,2009;Steffen et al., 2019)。Cao等(2018)研究红耳龟的黑色素控制基因表达与颜色形成的关系发现,黑色素沉着和黑色素控制基因在背甲、眼睛、皮肤和肌肉4种组织间的表达有显著差异,但在同一组织中不同颜色类型间无显著差异。Cao等(2019)针对平胸龟Platysternon megacephalum幼体的背甲颜色变化的研究发现,背甲颜色变深可能不是由于背甲黑色素含量的变化,而是由于背甲角质层黑色素的聚集和叠加。
对淡水龟来说,水中溶解质会影响龟甲色素沉积(Lovich et al., 1990)。基质颜色诱导体色在龟鳖动物中普遍存在,研究基质诱导体色变化多样性有助于确定龟鳖动物是否存在颜色变化的一般机制。Woolley(1957)发现了侧颈亚目Pleurodira动物生理颜色变化的证据,底物颜色引起的黑化可能在龟鳖动物中广泛存在。水生龟鳖动物维持在深色或浅色基质时,基质颜色诱导黑色素发生变化,灵活的黑化机制促进龟的背甲颜色和环境颜色趋同(Rowe et al., 2006b;McGaugh,2008;Rowe et al., 2009, 2014a, 2014b)。但基质颜色无法诱导陆生卡罗莱纳箱龟Terrapene carolina的体色发生变化(Rowe et al., 2014b)。这种基质诱导的黑化在比弗岛锦龟Chrysemys picta marginata幼龟中是可逆的,成体因在不同基质类型和颜色的栖息地之间迁移,这种不同基质诱导的黑化程度未知,但是当成年的比弗岛锦龟和红耳龟暴露于深色基质中时,色素分泌增加,当暴露于浅色基质中时,色素分泌减少(Rowe et al., 2009, 2014a)。虽然控制黑化程度的机制在物种间可能不同,但在一些龟鳖动物中,皮肤变黑可能是表型导致的(Alibardi,2013;Rowe et al., 2013),也可能是永久性的,仅可能随着年龄的增长而逐渐增加,这一过程通常需要几个月的时间(Lovich et al., 1990;Rowe et al., 2014a, 2014b;Cao et al., 2019)。例如,平胸龟在出生的第一年颜色多态,主要为黄褐色或橄榄绿,但随着年龄的增长,它的甲壳逐渐从黄褐色变成栗褐色,或从橄榄绿变成深棕色(Cao et al., 2019)。水生的龟鳖动物体色由黑色素控制基因控制黑色素沉积形成,同时受环境因素影响,水生龟鳖动物体色与环境颜色趋同,黑化程度也会随年龄的增长而逐渐增加。陆生龟鳖动物的体色受环境影响较小,或者需要更长的时间来诱导变化。
2 龟鳖动物体色的功能 2.1 求偶许多动物体色表现明显的性二态,雄性为了求偶炫耀,其体色较雌性更鲜艳或具有色斑,这些颜色或色斑在求偶交配过程中是一种重要的视觉信号(Mansfield et al., 1998;Rovero et al., 1999;Liu et al., 2008)。许多鸟类在性选择压力下,会进化出更鲜艳的颜色以获得竞争配偶优势(Prager & Andersson,2009);爬行动物的色块作为性选择信号在物种内部和物种之间产生巨大的体色变异(Zucker,1989)。在龟鳖动物中,体色性二态特征虽不如鸟类明显,但也普遍存在。Baker和Gillingham(1983)对欧洲池龟Emydoidea blandingii的繁殖行为进行研究,认为雄性个体的摇晃头部行为可能是为了向雌性个体展示身体上的某些特殊标志或色斑;Liu等(2008)研究四眼斑水龟Sacalia quadriocellata繁殖行为时也得到类似的结论。许多物种头部具有条纹、斑点和眼斑等,如布氏拟龟Emydoidea blandingii的头部腹面颜色鲜艳,这些头部特征可能是其为适应在水中求偶炫耀形成的(Rowe et al., 2017)。红耳龟具有紫外光性二态,雌龟通过眼后红斑、下颌黄色条纹、前肢的黄色和红色斑纹来评估雄龟的身体状况,对这些斑纹的差异具有性选择偏好(Polo-Cavia et al., 2013;汪继超等,2013;Ibañez et al., 2014)。性选择促进锦龟头部的彩色特征通过紫外线反射加强,使其对同种异性个体更加明显(Cooper & Greenberg,1992)。Moll等(1981)对同域分布的印度潮龟Batagur baska和咸水龟Callagur borneoensis的色型随季节发生的变化进行了研究,发现在繁殖季节2种龟的头部和背甲的颜色都会发生明显变化,类似的结果在淡黄动胸龟Kinosternon flavescens(Lardie,1975)和欧洲池龟(Rovero et al., 1999)中也有发现。
2.2 伪装 2.2.1 背景匹配动物伪装是一种可以减少被捕食者发现的概率的进化策略,许多动物体色都有伪装功能,以减少被视觉捕食者发现或识别的可能(Endler,1978;Stevens & Merilaita,2009)。龟鳖动物行动缓慢,主要依靠背景匹配来降低被捕食风险,即动物与生境的颜色相似以减少视觉捕食者对猎物的检测(Stevens & Merilaita,2011;Troscianko et al., 2016)。Mcgaugh(2008)研究了3种不同生境下角鳖Apalone spinifera的背甲颜色,发现从池塘到河流再到湖泊,其有逐渐变亮的趋势。幼年比弗岛锦龟在深色底栖环境中背甲深色,而在浅色底栖环境中背甲浅色,背甲颜色在同一个生境中趋于相同,从而促进与生境基质颜色的匹配(Rowe et al., 2006a, 2006b, 2009)。这些背甲颜色与选择生境基质颜色趋同的效应,可以提高龟背景匹配的伪装效果,降低被捕食的风险。但是这些研究只说明了不同环境下龟鳖动物的体色存在一定的差异,没有对同一生境下体色与生境颜色的匹配程度进行研究。Xiao等(2016)定量分析四眼斑水龟的体色和河流基质颜色,计算体色与背景颜色的匹配程度,结果表明,栖息在溪流中游个体的背甲与背景的颜色差、亮度差、色度差均显著低于栖息于上游和下游的个体,说明其可能通过选择与背甲颜色最匹配的微生境来提高伪装效果。
2.2.2 混隐色伪装不仅受到体表颜色的影响,还受到斑点或条纹图案的影响,这些对比明显的图案在动物身体内部形成假的边缘,或者破坏动物的轮廓,阻碍了捕食者的识别(Thayer,1909;Cott,1940;Cuthill et al., 2005;Stevens & Merilaita,2009),这种伪装策略被称为混隐色。许多龟背甲体色鲜艳,斑纹或辐射纹较多,如印度星龟Geochelone elegans、辐纹陆龟Astrochelys radiata、黄额闭壳龟Cuora galbinifrons和布氏闭壳龟C. bourreti等。陆地生境复杂,天敌较多,混隐色有利于伪装以躲避天敌,如黄额闭壳龟(Bu et al., 2020)。布氏拟龟Emydoidea blandingii和黄斑水龟Clemmys guttata的头部、背甲和四肢的条纹有利于其在水生植物中隐蔽(Ross & Lovich,1992)。这些物种背甲的条纹颜色与背景颜色形成强烈对比,但在其微生境中可以达到很好的伪装效果。
Bu等(2020)对黄额闭壳龟和平顶闭壳龟C. mouhotii的混隐色伪装进行研究发现,2种闭壳龟在草地、阔叶林、裸地和竹叶基质中均有一定的混隐色效果,这种效果是它们自身体色固有的特征,不依赖于基质。2种闭壳龟的混隐色伪装效果与基质选择相关。黄额闭壳龟的混隐色是2条黄色条纹分割背甲形成的表面破坏,而平顶闭壳龟背甲中部条纹与侧边条纹颜色均匀,但是亮度差异显著,造成了背甲的表面破坏,中部条纹在基质中突出显示,而侧边条纹匹配,捕食者容易在基质中将中部条纹检测出来,干扰了其对真实边缘的检测。无论是颜色的破坏还是结构的破坏,2种闭壳龟对基质的选择都给它们带来混隐色伪装优势。该研究首次对龟鳖动物的混隐色伪装进行了讨论,也首次在龟鳖动物中讨论了体形导致的混隐色伪装。
2.2.3 乔装动物体色的伪装功能往往要与它们的体形共同起作用,动物往往会因为与其生境中物体(石头、枯枝和落叶等)的颜色和形状相似而使捕食者识别错误,这种伪装方式被称为乔装(Stevens & Merilaita,2009;Skelhorn et al., 2010)。例如,泰坦竹节虫Acrophylla titan和刺蛾Selenia dentaria的幼虫与树枝的形状和颜色相似(陈树椿,1999;Skelhorn et al., 2010),圆网蛛Cyclosa ginnaga会模仿鸟粪(Liu et al., 2014),陶工黄蜂Minixi suffusum会将自己的巢穴乔装成鸟粪以防御天敌(Auko et al., 2015),头足类Cephalopods动物甚至能够改变它们的身体形状和图案来模仿附近的物体(Huffard et al., 2005;Barbosa et al., 2008;Allen et al., 2009)。龟鳖动物的体形常被描述为与生境中的石块相似(Mlynarski,1966;Bonnet et al., 2001;Willemsen & Hailey,2003),如沙漠陆龟Gopherus agassizii会选择与自身体色和体型相似的石头生境,这样可以减少捕食者的捕食(Nafus et al., 2015)。
四眼斑水龟因为与溪流中的石块相似,在海南被称为石龟(史海涛等,2002)。Xiao等(2021)研究了四眼斑水龟背甲与水中石头的形状相似度,发现在四眼斑水龟密度最高的中游生境中,龟背甲与基质中石头的形状相似度显著高于分布密度低的溪流上游和下游。而且,通过人眼识别实验证明,在缺乏经验和有经验的人类“捕食者”面前,龟在中游地区被错误识别的概率最高。龟背甲与石头相似度增加会增强乔装效果(Xiao et al., 2021):该研究首次分析了龟鳖动物的乔装,也提出了定量分析动物与生境中物体的形状相似度的方法,可以用来评估动物乔装的效果。
2.3 体温调节体温对外温动物的生理和行为表现有深远的影响(Huey & Kingsolver,1989;Peterson,1993),外温动物采取各种手段来调节体温。在恒温动物中,皮毛或羽毛的颜色可以改变维持恒定体温的生理成本(Heppner,1970;Hetem et al., 2009)。由于皮肤对太阳辐射的吸收,颜色会对生物体的热能平衡产生重要影响(Bartlett & Gates,1967)。黑色素在调节体温方面发挥着重要作用,深色的外壳有助于加热和保护组织免受紫外线的伤害(Porter & Norris,1969)。此外,在同样的太阳辐射下,深色个体的皮肤反射率较低,升温更快,比浅色个体在低温下更能保持最佳体温(Trullas et al., 2007)。因此,温度黑色素理论认为外温动物中肤色较深的个体可能比肤色较浅的在寒冷环境中的适合度更高(Trullas et al., 2007)。水生龟鳖动物的背甲颜色较深,有利于其在晒背行为中提高调节体温的效率,黑色的背甲有利于热量吸收,免受紫外线辐射的伤害(Rowland,2009;Stevens & Merilaita,2009;Bulté & Blouin-Demers,2010)。东非侧颈龟Pelusios subniger(Loveridge,1941)、恒河古鳖Aspideretes gangeticus(Minton,1966)、平胸龟(陶君等,2011)、红耳龟(马凯等,2015)等水生龟鳖动物都有明显的晒背行为。虽然黑色的背甲利于提高体温得到了普遍的接受,但是关于龟鳖动物体色与其体温调节的关系至今没有直接证据。
2.4 信息传递黑皮质素系统可以产生行为模式之间的相关性,即所谓的行为综合症。黑皮质素与5种黑皮质素受体结合,每一种受体都与不同的生理和行为功能有关。黑皮质素系统与黑色素生成有关,这增加了基于黑色素的颜色与这些生理和行为功能共变的可能性(Ducrest et al., 2008;Vercken & Clobert,2008)。一项对脊椎动物的经验文献的回顾显示,与颜色较浅的动物相比,颜色较深的真大洋动物通常更有攻击性,对各种压力来源也更有抵抗力(Ducrest et al., 2008)。因此,以黑色素为基础的颜色特征与社会支配地位具有相关性(Jawor & Breitwisch,2003)。行为与表型关联已在各种鱼类、鸟类、两栖动物和哺乳动物中得到证实,虽然黑色素调节攻击行为的特征显著(Cooper & Greenberg,1992),但在爬行动物中进行的研究很少(Auffenberg,1965;Lardie,1983;Kramer,1986;Vercken & Clobert,2008)。爬行动物个体的颜色在社会地位竞争中发挥重要作用,颜色传递了关于个体表型的重要信息(Amundsen et al., 1997;Sinervo et al., 2007)。在龟鳖动物中,红腿陆龟Chelonoidis carbonaria种群中占主导地位的雄性的头部比地位低的雄性有更多深的彩色斑点(黑色与红色、橙色、黄色或白色斑点),把地位低的斑点涂成黑色可以减少来自地位高的雄性个体攻击(Auffenberg,1965)。黑色皮肤的雄性红耳龟更具攻击性和争斗优势(Lardie,1983),同样的情况在橙腹伪龟Pseudemys nelsoni中也有发现,肤色较深的雄性会发起更具攻击性的对抗(Kramer,1986)。另外,体色较黑的赫尔曼陆龟Eurotestudo boettgeri个体在种内对抗中侵略性更强,对人类也更大胆(Mafli et al., 2011)。
3 存在的问题 3.1 龟鳖动物体表图案的形成机制研究缺乏Turing(1952)提出的反应扩散模型(reaction-diffusion model)以及以该模型为基础建立的浓度梯度模型(concentration gradient model)(Wolpert, 1969, 1981)、诱导模型(induction model)(Otaki,2011)和图纹混合模型(pattern blending model)(Miyazawa et al., 2010)能够解释很多动物身体的斑块和条纹的形成机制。例如,Miyazawa等(2010)将白点鲑Salvelinus leucomaenis与山女鳟Oncorhynchus masou masou进行杂交,后代的性状是亲本体色的中间类型,符合图纹混合模型。Ohno和Otaki(2012)证明变色连鳍Synchiropus picturatus的斑纹与蝴蝶眼斑的形成机制相似,符合诱导模型。龟鳖动物中,杂交后代的图案的形成符合图纹混合模型,例如黄额闭壳龟和平顶闭壳龟的杂交后代的体色是亲本体色的中间类型(Shi et al., 2005)。但是,在龟鳖动物中没有开展图案的形成机制的相关研究。
3.2 龟鳖动物的体色适应研究缺乏龟鳖动物的体色多样,陆生和水生、幼体和成体的体色也有很大差异,这些物种的体色都是在自然选择压力下,为了达到最大的繁殖成功率和减少被捕食风险的功能性适应。目前,动物体色量化的技术已经趋于成熟,数码摄影、光谱分析、色彩空间、边缘检测等分析技术也已经在动物体色量化中得以应用(Lovell et al., 2013;汪继超等,2013;Xiao et al., 2016)。关于龟鳖动物体色的研究发展缓慢,尽管对体色的形成和作用进行了大量的实验和理论研究,但体色的适应性机制尚未得到揭示。尽管龟鳖动物体色的求偶功能研究已经有了许多证据(Baker & Gillingham,1983;Liu et al., 2008;Rowe et al., 2017),但是对于它们如何通过视觉信息来捕捉这些颜色信号还没有相关研究。而且,龟鳖动物体色的种间信息传递没有得到关注。另外,虽然体色的反捕食适应得到了初步的研究,但都是以人为捕食者检测反捕食效果。捕食者感知颜色的方式是至少3个独立因素的函数:动物(或特定身体区域)的光谱反射率、光照环境和捕食者的视觉系统(Endler,1978;Lythgoe,1979)。因此,忽略捕食者的视觉系统,研究动物真实的反捕食效果往往会造成偏差。
3.3 龟鳖动物腹甲颜色被忽视长期以来,龟鳖动物体色的研究关注的是背甲、头部、四肢等,而腹甲颜色研究一直得不到重视,仅在物种的分类描述中有所涉及。陆生龟鳖动物的腹甲单一,因为其腹部几乎紧贴地面,不容易遭受攻击。大部分水生龟鳖动物的腹甲颜色较浅,因在水中活动时,腹甲会暴露于活动在深层的捕食者视野中,浅色的腹甲可能是为了达到反遮蔽伪装效果(Rowland,2009)。另外,相比陆生物种来说,水生物种的腹部在背景色为浅色时会出现一些斑纹或斑点,如眼斑水龟属Sacalia物种的腹甲密布斑点和斑纹,可能是应对水下捕食者压力的反捕食适应,但还没有相关的研究。
3.4 龟鳖动物的特殊体色功能不明龟鳖动物中的许多物种都进化出比较特殊的体色,如地龟Geoemyda spengleri头部白色的斑纹。虽然有研究表明,四眼斑水龟和眼斑水龟Sacalia bealei头部的眼斑可作为性选择信号吸引异性(Liu et al., 2008;汪继超等,2013),但是,这会增加捕食风险。无脊椎动物中已有许多研究,特别是在蝴蝶翅膀的眼斑研究中发现,这些眼斑有不同的功能,或恐吓捕食者,或转移捕食者的注意力,避免重要和脆弱的部位被攻击,也可能是为了增加捕食者视觉信号的混乱,为逃离增加时间(Kodandaramaiah,2011),但龟鳖动物特殊体色的功能没有得到关注。
3.5 尚需验证龟鳖动物体色是否符合葛洛格定律(Gloger's rule)葛洛格定律认为,生活在潮湿而温暖地区的动物体色较深,干旱而寒冷地区的动物体色较浅(Rensch,1936)。研究温湿度对动物体色影响的过程,有助于了解动物在过去和未来适应气候变化的模式。Delhey(2019)对271个研究案例进行分析,结果表明葛洛格定律的测试通常在种内或种间进行,动物体色会随着湿度增加或温度增高而变暗。然而,这些研究主要集中在鸟类和哺乳动物,而在爬行动物中的研究仅仅包括蛇和蜥蜴。葛洛格定律认为各种各样的黑色素随皮肤的温度和湿度增加而增加(Delhey,2017)。龟鳖动物个体皮肤发生的颜色变化主要受激素调节(Alibardi, 2005, 2013),可能是验证葛洛格定律理想的类群,但是在龟鳖动物中还没有相关的研究。
4 结语动物体色因其容易测量和变异大等特点,长期以来都是理解动物的进化和适应的重要内容。动物体色的研究近2个世纪,已在进化和适应方面取得了较大的突破。然而,龟鳖类的体色研究较少。目前的研究表明,龟鳖动物的体色主要由激素调节,水生龟鳖动物受环境颜色影响较大,陆生龟鳖动物体色受环境颜色影响较小。龟鳖动物体色的功能多样,包括求偶、反捕食伪装、体温调节和种内竞争等。未来的研究应该关注龟鳖动物的图案的形成、腹甲颜色和特殊体色的功能适应等,并且检验龟鳖动物的体色是否符合葛洛格定律,为理解龟鳖动物体色的生态适应和进化提供更多的研究证据。龟鳖动物体色的研究需要进一步完善相关理论和方法,多学科交叉融合,也需要在自然环境中检验动物体色的功能,为依赖自然环境伪装的濒危龟鳖动物的保护提供理论依据。
陈树椿. 1999. 竹节虫的生物学和生态学特性[J]. 生物学通报, 9: 11-13. |
马凯, 史海涛, 李闯. 2015. 红耳龟在其原产地的行为生态学研究[J]. 四川动物, 34(1): 155-160. |
史海涛, 符有利, 汪继超. 2002. 四眼斑水龟之谜[J]. 人与生物圈, 6: 35-41. |
史海涛, 侯勉, Peter P, 等. 2011. 中国贸易龟鳖检索图谱(修订版)[M]. 北京: 中国大百科全书出版社.
|
陶君, 陈羽, 邓杰明, 等. 2011. 仿生态环境条件下平胸龟活动行为节律研究[C]. 浙江: 第七届全国野生动物生态与资源保护学术研讨会.
|
汪继超, 杨灿朝, 梁伟, 等. 2013. 光谱分析揭示红耳龟(Trachemys scripta)体色的两性异形[J]. 动物学研究, 34(5): 475-478. |
Alibardi L. 2005. Proliferation in the epidermis of chelonians and growth of the horny scutes[J]. Journal of Morphology, 265: 52-69. DOI:10.1002/jmor.10337 |
Alibardi L. 2013. Observations on the ultrastructure and distribution of chromatophores in the skin of chelonians[J]. Acta Zoologica, 94: 222-232. DOI:10.1111/j.1463-6395.2011.00546.x |
Allen JJ, Mthger LM, Barbosa A, et al. 2009. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage[J]. Journal of Comparative Physiology A, 195(6): 547-555. DOI:10.1007/s00359-009-0430-y |
Amundsen T, Forsgren E, Hansen LTT. 1997. On the function of female ornaments: male bluethroats prefer colourful females[J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 264: 1579-1586. DOI:10.1098/rspb.1997.0220 |
Aspengren S, Skld HN, Wallin M. 2009. Different strategies for color change[J]. Cellular and Molecular Life Sciences, 66(2): 187-191. DOI:10.1007/s00018-008-8541-0 |
Auffenberg W. 1965. Sex and species discrimination in two sympatric South American tortoises[J]. Copeia, 335. |
Auko TH, Trad BM, Silvestre R. 2015. Bird dropping masquerading of the nest by the potter wasp Minixi suffusum (Fox, 1899)(Hymenoptera: Vespidae: Eumeninae)[J]. Tropical Zoology, 29(1): 1-10. |
Bagnara JT, Matsumoto J. 2007. Comparative anatomy and physiology of pigment cells in nonmammalian tissues[M]//Nordlund JJ, Boissy RE, Hearing VJ, et al. The pigmentary system: physiology and pathophysiology, second edition. MA, USA: Blackwell Publishing Ltd.
|
Baker RE, Gillingham JC. 1983. An analysis of courtship behavior in Blanding's turtle, Emydoidea blandingi[J]. Herpetologica, 39: 166-173. |
Ball P. 2012. Nature's color tricks[J]. Scientific American, 306(5): 74-79. DOI:10.1038/scientificamerican0512-74 |
Barbosa A, Litman L, Hanlon RT. 2008. Changeable cuttlefish camouflage is influenced by horizontal and vertical aspects of the visual background[J]. Journal of Comparative Physiology A, 194(4): 415. DOI:10.1007/s00359-008-0320-8 |
Barlett PN, Gates DM. 1967. The energy budget of a lizard on a tree trunk[J]. Ecology, 48(2): 315-322. DOI:10.2307/1933120 |
Bartley JA. 1971. A histological and hormonal analysis of physiological and morphological chromatophore responses in the soft-shelled turtle Trionyx sp.[J]. Journal of Zoology, 163(1): 125-144. |
Bennett DC, Lamoreux ML. 2003. The color loci of mice-a genetic century[J]. Pigment Cell Research, 16(4): 333-344. DOI:10.1034/j.1600-0749.2003.00067.x |
Bonnet X, Lagarde F, Henen BT, et al. 2001. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility[J]. Biological Journal of the Linnean Society, 72(3): 357-372. DOI:10.1111/j.1095-8312.2001.tb01323.x |
Bu R, Xiao F, Lovell PG, et al. 2020. Structural and colored disruption as camouflage strategies in two sympatric Asian box turtle species (Cuora spp.)[J]. Global Ecology and Conservation, 24: e01361. DOI:10.1016/j.gecco.2020.e01361 |
Bulté G, Blouin-Demers G. 2010. Estimating the energetic significance of basking behaviour in a temperate-zone turtle[J]. Ecoscience, 17(4): 387-393. DOI:10.2980/17-4-3377 |
Cao D, Ge Y, Wei Y, et al. 2019. Observations on carapace color change in the juvenile big-headed turtle (Platysternon megacephalum)[J/OL]. PeerJ, 7: e7331[2020-10-10]. https://peerj.com/articles/7331/.
|
Cao D, Gong S, Yang J, et al. 2018. Melanin deposition ruled out as cause of color changes in the red-eared sliders (Trachemys scripta elegans)[J]. Comparative Biochemistry & Physiology Part B: Biochemistry & Molecular Biology, 217: 79-85. |
Cooper WE, Greenberg N. 1992. Reptilian coloration and behavior[M]//Gans C, Crews D. Biology of the reptilia, physiology E: hormones, brain and behavior. Chicago: University of Chicago Press.
|
Cott HB. 1940. Adaptive coloration in animals[M]. London: Methuen & Co. Ltd.
|
Cuthill IC, Stevens M, Sheppard J, et al. 2005. Disruptive coloration and background pattern matching[J]. Nature, 434(7029): 72-74. DOI:10.1038/nature03312 |
Delhey K. 2017. Gloger's rule[J]. Current Biology, 27: 681-701. DOI:10.1016/j.cub.2017.07.001 |
Delhey K. 2019. A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence[J]. Biological Reviews of the Cambridge Philosophical, 94(4): 1294-1316. |
Ducrest AL, Keller L, Roulin A. 2008. Pleiotropy in the melanocortin system, coloration and behavioural syndromes[J]. Trends in Ecology & Evolution, 23(9): 502-510. |
Endler JA. 1978. A predator's view of animal color patterns[J]. Evolutionary Biology, 11: 319-364. |
Ernst CH, Lovich JE. 2009. Turtles of the United States and Canada[M]. Baltimore: John Hopkins University Press.
|
Heppner F. 1970. The metabolic significance of differential absorption of radiant energy by black and white birds[J]. The Condor, 72(1): 50-59. DOI:10.2307/1366474 |
Hetem RS, de Witt BA, Fick LG, et al. 2009. Body temperature, thermoregulatory behaviour and pelt characteristics of three colour morphs of springbok (Antidorcas marsupialis)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152(3): 379-388. |
Hou L, Panthier JJ, Arnheiter H. 2000. Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF[J]. Development, 127: 5379-5389. DOI:10.1242/dev.127.24.5379 |
Huey RB, Kingsolver JG. 1989. Evolution of thermal sensitivity of ectotherm performance[J]. Trends in Ecology & Evolution, 4(5): 131-135. |
Huffard CL, Boneka F, Full RJ. 2005. Underwater bipedal locomotion by octopuses in disguise[J/OL]. Science, 307: 1927[2020-10-01]. https://doi.org/10.1126/science.1109616.
|
Ibañez A, Polo-Cavia N, Lopez P, et al. 2014. Honest sexual signaling in turtles: experimental evidence of a trade-off between immune response and coloration in red-eared sliders Trachemys scripta elegans[J]. Naturwissenschaften, 101: 803-811. DOI:10.1007/s00114-014-1219-6 |
Jawor JM, Breitwisch R. 2003. Melanin ornaments, honesty, and sexual selection[J]. Auk, 120: 249-265. DOI:10.1093/auk/120.2.249 |
Kodandaramaiah U. 2011. The evolutionary significance of butterfly eyespots[J]. Behavioral Ecology, 22(6): 1264-1271. DOI:10.1093/beheco/arr123 |
Kramer M. 1986. Field studies on a freshwater Florida turtle, Pseudemys nelson[M]//Drickamer LC. Behavioral ecology and population biology. Toulouse: Privat, I.E.C.
|
Langkilde T, Boronow KE. 2012. Hot boys are blue: temperature-dependent color change in male eastern fence lizards[J]. Journal of Herpetology, 46(4): 461-465. DOI:10.1670/11-292 |
Lardie RL. 1975. Courtship and mating behavior in the yellow mud turtle, Kinosternon flavescens flavescens[J]. Journal of Herpetology, 9(2): 223-227. DOI:10.2307/1563041 |
Lardie RL. 1983. Aggressive interactions among melanistic males of the red-eared slider, Pseudemys scripta elegans (Wied)[J]. Bulletin of the Oklahoma Herpetological Society, 8: 105-117. |
Liu MH, Blamires SJ, Liao CP, et al. 2014. Evidence of bird dropping masquerading by a spider to avoid predators[J/OL]. Scientific Reports, 4(1): 5058[2020-10-01]. https://doi.org/10.1038/srep05058.
|
Liu YX, He B, Shi HT, et al. 2008. An analysis of courtship behaviour in the four-eyed spotted turtle, Sacalia quadriocellata (Reptilia: Testudines: Geoemydidae)[J]. Amphibia-Reptilia, 29(2): 185-195. DOI:10.1163/156853808784124901 |
Lovell PG, Ruxton GD, Langridge KV, et al. 2013. Egg-laying substrate selection for optimal camouflage by quail[J]. Current Biology, 23(3): 260-264. DOI:10.1016/j.cub.2012.12.031 |
Loveridge A. 1941. Revision of the African terrapin of the family Pelomedusidae[J]. Geobios, 17(2): 133-154. |
Lovich JE, McCoy CJ, Garstka WR. 1990. The development and significance of melanism in the slider turtle[M]//Gibbons JW. Life history and ecology of the slider turtle. Washington: Smithsonian Institution Press.
|
Lythgoe JN. 1979. Ecology of vision[M]. Oxford: Clarendon Press.
|
Mafli A, Wakamatsu K, Roulin A. 2011. Melanin-based coloration predicts aggressiveness and boldness in captive eastern Hermann's tortoises[J]. Animal Behaviour, 81(4): 859-863. DOI:10.1016/j.anbehav.2011.01.025 |
Mansfield P, Strauss EG, Auger PJ. 1998. Using decoys to capture spotted turtles (Clemmys guttata) in water funnel traps[J]. Herpetological Review, 29(3): 157-158. |
Margareta W. 2002. Nature's palette: how animals, including humans, produce colours[J]. Bioscience-explained, 1(2): 1-12. |
Mayr E. 1963. Animal species and evolution[M]. Cambridge: Harvard University Press.
|
McGaugh ES. 2008. Color variation among habitat types in the spiny softshell turtles (Trionychidae: Apalone) of Cuatrociénegas, Coahuila, Mexico[J]. Journal of Herpetology, 42(2): 347-353. DOI:10.1670/07-176.1 |
Minton SA. 1966. A contribution to the herpetology of west Pakistan[M]. New York: American Museum of Natural History.
|
Miyazawa S, Okamoto M, Kondo S. 2010. Blending of animalcolour patterns by hybridization[J/OL]. Nature Communications, 1(6): 66[2020-11-01]. https://www.nature.com/articles/ncomms1071.
|
Mlynarski M. 1966. Morphology of the shell of Agrionemys horsfieldii (Gray, 1844)(Testudines, Reptilia)[J]. Acta Biologica Cracoviensia, 9: 219-223. |
Moll EO, Matson KE, Krehbiel EB. 1981. Sexual and seasonal dichromatism in the Asian river turtle Callagur borneoensis[J]. Herpetologica, 37(4): 181-194. |
Morehouse NI, Vukusic P, Rutowski R. 2007. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies[J]. Proceedings of the Royal Society B: Biological Sciences, 274(1608): 359-366. DOI:10.1098/rspb.2006.3730 |
Nafus MG, Germano JM, Perry JA, et al. 2015. Hiding in plain sight: a study on camouflage and habitat selection in a slow-moving desert herbivore[J]. Behavioral Ecology, 26(5): 1389-1394. DOI:10.1093/beheco/arv096 |
Ohno Y, Otaki JM. 2012. Eyespot colour pattern determination by serial induction in fish: mechanistic convergence with butterfly eyespots[J/OL]. Scientific Reports, 2: 290[2020-11-01]. https://doi.org/10.1038/srep00290.
|
Ortolani A. 1999. Spots, stripes, tail tips and dark eyes: predicting the function of carnivore color patterns using the comparative method[J]. Biological Journal of the Linnean Society, 67(4): 433-476. DOI:10.1111/j.1095-8312.1999.tb01942.x |
Otaki JM. 2011. Artificially induced changes of butterfly wingcolour patterns: dynamic signal interactions in eyespot development[J/OL]. Scientific Reports, 1(1): 111[2020-11-01]. https://www.nature.com/articles/srep00111.
|
Parker GH. 1948. Animal colour changes and their neurohumours: a survey of investigations 1910-1943[M]. Cambridge: Cambridge University Press.
|
Peterson CR. 1993. Snake thermal ecology: the causes and consequences of body-temperature variation[J]. Snakes, Ecology and Behavior, 241. |
Polo-Cavia N, Lopez P, Martin J. 2013. Head coloration reflects health state in the red-eared slider Trachemys scripta elegans[J]. Behavioral Ecology and Sociobiology, 67: 153-162. DOI:10.1007/s00265-012-1435-z |
Porter WP, Norris KS. 1969. Lizard reflectivity change and its effect on light transmission through body wall[J]. Science, 163: 482-484. DOI:10.1126/science.163.3866.482 |
Prageer M, Andersson S. 2009. Phylogeny and evolution of sexually selected tail ornamentation in widowbirds and bishops (Euplectes spp.)[J]. Journal of Evolutionary Biology, 22(10): 2068-2076. DOI:10.1111/j.1420-9101.2009.01818.x |
Price TD. 2006. Phenotypic plasticity, sexual selection and the evolution of colur patterns[J]. Journal of Experimental Biology, 209(12): 2368-2376. DOI:10.1242/jeb.02183 |
Rand AS. 1967. Predator-prey interactions and the evolution of aspect diversity[J]. Atos do Simposio sobre a Biota Amazonica, 5: 73-83. |
Rensch B. 1936. Some problems of geographical variation and species-formation[J]. Proceedings of the Linnean Society of London, 150: 275-285. |
Rhodin AGJ, Iverson JB, Bour R, et al. 2017. Turtles of the world: annotated checklist and atlas of taxonomy, synonymy, distribution, and conservation status (8th Ed.)[EB/OL]//Rhodin AGJ, Iverson JB, van Dijk PP, et al. Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. Chelonian Research Monographs, 7: 1-292[2020-10-10]. https://doi.org/10.3854/crm.7.checklist.atlas.v8.2017.
|
Robbins LS, Nadeau JH, Johnson KR, et al. 1993. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter msh receptor function[J]. Cell, 72(6): 827-834. DOI:10.1016/0092-8674(93)90572-8 |
Ross DA, Lovich JE. 1992. Does the color pattern of two species of turtles imitate duckweed?[J]. Journal of the Pennsylvania Academy of Science, 66(1): 39-42. |
Roulin A, Ducrest AL. 2013. Genetics of colouration in birds[J]. Seminars in Cell & Developmental Biology, 24(6): 594-608. |
Roulin A. 2004. The evolution, maintenance and adaptive function of genetic colour polymorphism in birds[J]. Biological Reviews, 79(4): 815-848. DOI:10.1017/S1464793104006487 |
Rovero F, Lebboroni M, Chelazzi G. 1999. Aggressive interactions and mating in wild populations of the European pond turtle Emys orbicularis[J]. Journal of Herpetology: 258-263. |
Rowe JW, Bunce CF, Clark DL. 2014a. Spectral reflectance and substrate color-induced melanization in immature and adult midland painted turtles (Chrysemys picta marginata)[J]. Amphibia-Reptilia, 35: 149-159. DOI:10.1163/15685381-00002934 |
Rowe JW, Clark DL, Colleen R, et al. 2006a. Effect of substrate color on pigmentation in midland painted turtles (Chrysemys picta marginata) and red-eared slider turtles (Trachemys scripta elegans)[J]. Journal of Herpetology, 40: 358-364. DOI:10.1670/0022-1511(2006)40[358:EOSCOP]2.0.CO;2 |
Rowe JW, Clark DL, Porter M. 2006b. Shell color variation of midland painted turtles (Chrysemys picta marginata) living in habitats with variable substrate colors[J]. Herpetological Review, 37: 293-298. |
Rowe JW, Clark DL, Price M, et al. 2009. Reversible melanization following substrate color reversal in midland painted turtles (Chrysemys picta marginata) and red-eared sliders (Trachemys scripta elegans)[J]. Journal of Herpetology, 43: 402-408. DOI:10.1670/08-047R2.1 |
Rowe JW, Clark DL, Shaw DM, et al. 2013. Histological basis of substrate color-induced melanization and reversal of melanization in painted turtles (Chrysemys picta marginata)[J]. Chelonian Conservation and Biology, 12: 246-251. DOI:10.2744/CCB-0922.1 |
Rowe JW, Martin CE, Kamp KR, et al. 2017. Spectral reflectance of Blanding's turtle (Emydoidea blandingii) and substrate color-induced melanization in laboratory-reared turtles[J]. Herpetological Conservation and Biology, 12(2): 576-584. |
Rowe JW, Miller BJ, Stuart MA, et al. 2014b. Substrate color-induced melanization in eight turtle species from four chelonian groups[J]. Zoology, 117: 245-252. DOI:10.1016/j.zool.2014.04.003 |
Rowland HM. 2009. From Abbot Thayer to the present day: what have we learned about the function of countershading?[J]. Philosophical Transactions of The Royal Society B: Biological Sciences, 364(1516): 519-527. DOI:10.1098/rstb.2008.0261 |
Ruxton GD, Sherratt TN, Speed MP. 2004. Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry[M]. Oxford: University of Oxford Press.
|
Saenko SV, Teyssier J, Marel DVD, et al. 2013. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards[J/OL]. BMC Biology, 11: 105[2020-10-20]. https://bmcbiol.biomedcentral.com/articles/10.1186/1741-7007-11-105.
|
Shi HT, Parham JF, Simison WB, et al. 2005. A report on the hybridization between two species of threatened Asian box turtles (Testudines: Cuora) in the wild on Hainan Island (China) with comments on the origin of 'serrata'-like turtles[J]. Amphibia-Reptilia, 26(3): 377-381. DOI:10.1163/156853805774408487 |
Sinervo B, Heulin B, Surget-Groba Y, et al. 2007. Models of density-dependent genic selection and a new rock-paper-scissors social system[J]. American Naturalist, 170(5): 663-680. DOI:10.1086/522092 |
Skelhorn J, Rowland HM, Speed MP, et al. 2010. Masquerade: camouflage without crypsis[J/OL]. Science, 327: 51[2020-10-06]. https://doi.org/10.1126/science.1181931.
|
Sköld NH, Aspengren S, Wallin M. 2013. Rapid color change in fish and amphibians-function, regulation, and emerging applications[J]. Pigment Cell & Melanoma Research, 26(1): 29-38. |
Steffen JE, Hultberg J, Drozda S. 2019. The effect of dietary carotenoid increase on painted turtle spot and stripe color[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 229: 10-17. DOI:10.1016/j.cbpb.2018.12.002 |
Steffen JE, Learn KM, Drumheller JS, et al. 2015. Carotenoid composition of colorful body stripes and patches in the painted turtle (Chrysemys picta) and red-eared slider (Trachemys scripta)[J]. Chelonian Conservation and Biology, 14(1): 56-63. DOI:10.2744/ccab-14-01-56-63.1 |
Stevens M, Merilaita S. 2011. Animal camouflage: mechanisms and function[M]. Cambridge: Cambridge University Press.
|
Stevens M. 2013. Sensory ecology, behaviour and evolution[M]. Oxford: University of Oxford Press.
|
Stevens M, Merilaita S. 2009. Defining disruptive coloration and distinguishing its functions[J]. Philosophical Transactions of The Royal Society B: Biological Sciences, 364(1516): 481-488. DOI:10.1098/rstb.2008.0216 |
Thayer GH. 1909. Concealing-coloration in the animal kingdom: an exposition of the laws of disguise through color and pattern: being a summary of Abbott H. Thayer's discoveries[M]. New York: Macmillan.
|
Thody AJ, Higgins EM, Wakamatsu K, et al. 1991. Pheomelanin as well as eumelanin is present in human epidermis[J]. Journal of Investigative Dermatology, 97(2): 340-344. DOI:10.1111/1523-1747.ep12480680 |
Tong H, Li J, Wo Y, et al. 2019. Effects of substrate color on intraspecific body color variation in the toad-headed lizard, Phrynocephalus versicolor[J]. Ecology and Evolution, 9(18): 1-10. |
Troscianko J, Wilson-Aggarwal J, Stevens M, et al. 2016. Camouflage predicts survival in ground-nesting birds[J/OL]. Scientific Reports, 6(1): 19966[2020-10-20]. https://doi.org/10.1038/srep19966.
|
Trullas SC, van Wyk JH, Spotila JR. 2007. Thermal melanism in ectotherms[J]. Journal of Thermal Biology, 32(5): 235-245. DOI:10.1016/j.jtherbio.2007.01.013 |
Turing AM. 1952. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 237(641): 37-72. |
Vercken E, Clobert J. 2008. Ventral colour polymorphism correlates with alternative behavioural patterns in female common lizards (Lacerta vivipara)[J]. Ecoscience, 15(3): 320-326. DOI:10.2980/15-3-3135 |
White TE, Kemp DJ. 2015. Technicolour deceit: a sensory basis for the study of colour-based lures[J]. Animal Behaviour, 105: 231-243. DOI:10.1016/j.anbehav.2015.04.025 |
Willemsen RE, Hailey A. 2003. Sexual dimorphism of body size and shell shape in European tortoises[J]. Journal of Zoology, 260(4): 353-365. DOI:10.1017/S0952836903003820 |
Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation[J]. Journal of Theoretical Biology, 25(1): 1-47. DOI:10.1016/S0022-5193(69)80016-0 |
Wolpert L. 1981. Positional information and pattern formation[J]. Philosophical Transactions of The Royal Society B: Biological Sciences, 295: 441-450. |
Woolbright LL, Stewart MM. 2008. Spatial and temporal variation in color pattern morphology in the tropical frog, Eleutherodactylus coqui[J]. Copeia, 2008(2): 431-437. DOI:10.1643/CG-06-092 |
Woolley P. 1957. Colour change in a Chelonian[J]. Nature, 179: 1255-1256. DOI:10.1038/1791255a0 |
Xiao FR, Bu RP, Shi HT. 2021. Quantifying shape similarity between prey and uninteresting models to study animal masquerade[J]. Behaviour, 158: 1-18. |
Xiao FR, Yang CC, Shi HT, et al. 2016. Background matching and camouflage efficiency predict population density in four-eyed turtle (Sacalia quadriocellata)[J]. Behavioural Processes, 131: 40-46. DOI:10.1016/j.beproc.2016.08.007 |
Zucker N. 1989. Dorsal darkening and territoriality in a wild population of the tree lizard, Urosaurus ornatus[J]. Journal of Herpetology, 14: 389-398. |