白人海, 金瑜. 1992. 黑龙江省暴雨之研究. 北京: 气象出版社, 1-217. Bai R H, Jin Y. 1992. Study on Rainstorm in Heilongjiang Province. Beijing: China Meteorological Press, 1-217 (in Chinese)
|
|
|
|
蔡则怡, 周晓平. 1981. 关于暴雨预报的若干问题. 广西气象, (2): 1-7. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
丑纪范. 2002. 大气科学中的非线性与复杂性. 北京: 气象出版社, 149pp. Chou J F. 2002. The Nonlinearity and Complexity in Atmospheric Sciences. Beijing: China Meteorological Press, 149pp (in Chinese)
|
|
|
|
|
|
|
丁一汇. 1993. 1991年江淮流域持续性特大暴雨研究. 北京: 气象出版社, 1-253. Ding Y H. 1993. A Study of Sustained Heavy Rainfall in the Yangtze-Huai River Valleys in 1991. Beijing: China Meteorological Press, 1-253 (in Chinese)
|
丁一汇. 2005. 高等天气学. 2版. 北京: 气象出版社, 585pp. Ding Y H. 2005. Advanced Synoptic Meteorology. 2nd ed. Beijing: China Meteorological Press, 585pp (in Chinese)
|
丁一汇. 2015. 论河南“75.8”特大暴雨的研究: 回顾与评述. 气象学报, 73(3): 411-424. |
|
|
|
|
|
|
冯锡斌. 2019. 登陆我国热带气旋降水分布的演变及其环境场影响的机理分析[D]. 南京: 南京大学. Feng X B. 2019. The evolution of rainfall distribution and environmental impact on landfalling tropical cyclones over China [D]. Nanjing: Nanjing University (in Chinese)
|
傅慎明, 孙建华, 赵思雄等. 2011. 梅雨期青藏高原东移对流系统影响江淮流域降水的研究. 气象学报, 69(4): 581-600. |
|
|
|
|
何光碧. 2012. 西南低涡研究综述. 气象, 38(2): 155-163. |
何建中, 伍荣生. 1989. 边界层低空急流的数值研究. 气象学报, 47(4): 443-449. |
|
|
|
|
|
|
黄士松. 1986. 华南前汛期暴雨. 广州: 广东科技出版社, 244pp. Huang S. 1986. Heavy Rainfall over Southern China in the Pre-Summer Rainy Season. Guangzhou: Guangdong Science and Technology Press, 244pp (in Chinese)
|
|
|
|
|
蒋尚城, 张镡, 周鸣盛等. 1981. 登陆北上减弱的台风所导致的暴雨:半热带系统暴雨. 气象学报, 39(1): 18-27. |
|
|
|
|
|
|
|
|
|
李争辉. 2019. 华南前汛期降水及其天气背景的统计特征[D]. 北京: 中国气象科学研究院. Li Z H. 2019. Statistical characteristics of presummer rainfall over South China and associated synoptic conditions [D]. Beijing: Chinese Academy of Meteorological Science (in Chinese)
|
|
|
刘盎然, 郭大敏, 辛宝恒等. 1979. 关于“75.7”华北暴雨的水汽问题. 气象学报, 37(2): 79-82. |
|
|
|
|
|
刘屹岷, 吴国雄, 刘辉等. 1999a. 空间非均匀加热对副热带高压形成和变异的影响Ⅱ: 陆面感热与东太平洋副高. 气象学报, 57(4): 385-396. |
刘屹岷, 吴国雄, 刘辉等. 1999b. 空间非均匀加热对副热带高压形成和变异的影响Ⅲ: 凝结潜热加热与南亚高压及西太平洋副高. 气象学报, 57(5): 525-538. |
|
|
|
罗四维. 1992. 青藏高原及其邻近地区几类天气系统的研究. 北京: 气象出版社, 56-96. Luo S W. 1992. Study on Some Kinds of Weather Systems over and Around the Qinghai-Xizang Plateau. Beijing: China Meteo-rological Press, 56-96 (in Chinese)
|
|
|
|
蒙伟光, 张艳霞, 袁金南等. 2014. 华南沿海2011年7月15—18日持续暴雨过程中的季风槽与中尺度对流系统相互作用. 气象学报, 72(3): 508-525. |
|
|
倪允琪, 张人禾, 刘黎平等. 2013. 中国南方暴雨野外科学试验(SCHeREX). 北京: 气象出版社, 283pp. Ni Y Q, Zhang R H, Liu L P, et al. 2013. South China Heavy Rainfall Field Experiment (SCHeREX). Beijing: China Meteorological Press, 283pp (in Chinese)
|
秦大河. 2015. 中国极端天气气候事件和灾害风险管理与适应国家评估报告. 北京: 科学出版社. 120pp. Qin D H. 2015. National Assessment Report on Extreme Weather and Climate Events and Disaster Risk Management and Adaptation in China. Beijing: Science Press, 120pp (in Chinese)
|
任晨平, 崔晓鹏. 2014. 碧利斯(0604)暴雨增幅的云微物理成因. 中国科学: 地球科学, 44(9): 2077-2088. Ren C P, Cui X P. 2014. The cloud-microphysical cause of torrential rainfall amplification associated with Bilis(0604). Sci China Earth Sci, 57(9): 2100-2111
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
孙淑清, 翟国庆. 1980a. 低空急流的不稳定性及其对暴雨的触发作用. 大气科学, 4(4): 327-337. |
孙淑清, 赵思雄. 1980b. 盛夏大尺度低空急流及其与华北暴雨的关系∥中国科学院大气物理研究所集刊(第9号): 暴雨及强对流天气的研究. 北京: 科学出版社, 117-124. Sun S Q, Zhao S X. 1980b. The relationship between the Large scale low jet and heavy rainfalls during mid-summer in North China∥Institute of Atmospheric Physics, Chinese Academy of Sciences. Collected Papers of Institute of Atmospheric Physics, No. 9. Beijing: Science Press, 117-124 (in Chinese)
|
谈哲敏, 赵思雄, 孙建华等. 2013. 中国南方β中尺度强对流系统结构与机理. 北京: 气象出版社, 327pp. Tan Z M, Zhao S X, Sun J H, et al. 2013. Structure and Evolution Mechanism of Meso-β-Scale Strong Convective Systems in Southern China. Beijing: China Meteorological Press, 327pp (in Chinese)
|
|
陶诗言. 1963. 中国夏季副热带天气系统若干问题的研究. 北京: 科学出版社, 145pp. Tao S Y. 1963. Study on Some Issues of Summer Subtropical Weather System in China. Beijing: Science Press, 145pp (in Chinese)
|
陶诗言, 朱福康. 1964. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系. 气象学报, 34(4): 385-396. |
|
陶诗言. 1980. 中国之暴雨. 北京: 科学出版社, 225pp. Tao S Y. 1980. Rainstorms in China. Beijing: Science Press, 225pp (in Chinese)
|
陶诗言, 倪允琪, 赵思雄等. 2001. 1998夏季中国暴雨的形成机理与预报研究. 北京: 气象出版社, 184pp. Tao S Y, Ni Y Q, Zhao S X, et al. 2001. Study on the Formation Mechanism and Forecast of Chinese Summer Rainfall in 1998. Beijing: China Meteorological Press, 184pp (in Chinese)
|
陶祖钰. 1980. 湿急流的结构及形成过程. 气象学报, 38(4): 331-340. |
陶祖钰, 田佰军, 黄伟. 1994. 9216号台风登陆后的不对称结构和暴雨. 热带气象学报, 10(1): 69-77. |
|
|
王斌, 季仲贞. 1990. 显式完全平方守恒差分格式的构造及其初步检验. 科学通报, (10): 766-768. Wang B, Ji Z Z. 1990. The construction and preliminary test of the explicit complete square conservative difference schemes. Chinese Sci Bull, 35(20): 1724-1728
|
|
|
|
|
吴国雄. 2002. 副热带高压形成和变异的动力学问题. 北京: 科学出版社, 294pp. Wu G X. 2002. Dynamics of the Formation and Variation of Snbtropical Anticyclones. Beijing: Science Press, 294pp (in Chinese)
|
|
|
吴政谦, 徐海明, 王东海等. 2012. 中尺度多模式超级集合预报对2010年6月19—20日中国南方大暴雨过程的分析. 热带气象学报, 28(5): 653-663. |
谢义炳. 1956. 中国夏半年几种降水天气系统的分析研究. 气象学报, 27(1): 1-23. |
|
|
|
|
|
|
薛纪善. 1999. 1994年华南夏季特大暴雨研究. 北京: 气象出版社, 185pp. Xue J S. 1999. The Great Rainstorm over South China during Summer in 1994. Beijing: China Meteorological Press, 185pp (in Chinese)
|
薛纪善, 陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社, 383pp. Xue J S, Chen D H. 2008. Scientific Design and Application of GRAPES Numerical Prediction System. Beijing: Science Press, 383pp (in Chinese)
|
|
|
|
叶笃正, 高由禧, 刘匡南. 1952. 1945—46年亚洲南部与美洲西南部急流进退之探讨. 气象学报, 23(1-2): 1-32. |
叶笃正, 顾震潮. 1955. 西藏高原对于东亚大气环流及中国天气的影响. 科学通报, (6): 29-33. |
叶笃正, 陶诗言, 李麦村. 1958a. 在六月和十月大气环流的突变现象. 气象学报, 29(4): 249-263. |
叶笃正, 朱抱真. 1958b. 大气环流的若干基本问题. 北京: 科学出版社, 159pp. Ye D Z, Zhu B Z. 1958b. Some Basic Problems of Atmospheric Circulation. Beijing: Science Press, 159pp (in Chinese)
|
叶笃正, 李麦村. 1964. 中小尺度运动中风场和气压场的适应. 气象学报, 34(4): 409-423. |
|
叶笃正, 高由禧. 1992. 青藏高原气象学. 北京: 科学出版社, 115-121. Ye D Z, Gao Y X. 1992. Meteorology of the Tibetan Plateau. Beijing: Science Press, 115-121 (in Chinese)
|
|
|
游景炎. 1965. 暴雨带内的中尺度系统. 气象学报, 35(3): 293-304. |
袁信轩. 1981. 我国江南西南风低空急流形成的天气学分析. 气象学报, 39(2): 245-251. |
|
曾庆存. 1963a. 大气中的适应过程和发展过程(一): 物理分析和线性理论. 气象学报, 33(2): 163-174. |
曾庆存. 1963b. 大气运动的特征参数和动力学方程. 气象学报, 33(4): 472-483. |
曾庆存. 1979a. 我国大气动力学和数值天气预报研究工作的进展. 大气科学, 3(3): 256-269. |
曾庆存. 1979b. 数值天气预报的数学物理基础, 第一卷. 北京: 科学出版社, 543pp. Zeng Q C. 1979b. Mathematical and Physical Basis of Numerical Weather Prediction, Volume Ⅰ. Beijing: Science Press, 543pp (in Chinese)
|
|
翟国庆, 丁华君, 孙淑清等. 1999. 与低空急流相伴的暴雨天气诊断研究. 大气科学, 23(1): 113-119. |
|
|
|
|
赵平, 孙健, 周秀骥. 2003. 1998年春夏南海低空急流形成机制研究. 科学通报, 48(6): 623-627. Zhao P, Sun J, Zhou X J. 2003. Mechanism of formation of low level jets in the South China Sea during spring and summer of 1998. Chinese Sci Bull, 48(12): 1265-1270
|
赵思雄, 刘苏红, 刘名扬. 1980. 夏季北京冷涡强对流天气的中尺度分析∥ 中国科学院大气物理所集刊(第9号): 暴雨及强对流天气的研究. 北京: 科学出版社, 151-160. Zhao S X, Liu S H, Liu M Y. 1980. The meso-scale analysis of cold vortex in Beijing in summer∥Study on Torrential Rain and Heavy Convective Weather. Beijing: Science Press, 151-160 (in Chinese)
|
赵思雄, 陶祖钰, 孙建华等. 2004. 长江流域梅雨锋暴雨机理的分析研究. 北京: 气象出版社, 281-282. Zhao S X, Tao Z Y, Sun J H, et al. 2004. Analysis and Research on the Rainstorm Mechanism of Meiyu Front in the Yangtze River Valleys. Beijing: China Meteorological Press, 281-282 (in Chinese)
|
|
|
|
郑秀雅, 张廷治, 白人海. 1992. 东北暴雨. 北京: 气象出版社, 299pp. Zheng X Y, Zhang T Z, Bai R H. 1992. Heavy Rainfall in Northeast China. Beijing: China Meteorological Press, 299pp (in Chinese)
|
|
中国科学院兰州高原大气物理研究所. 1977. 青藏高原东侧动力性低涡形成机制的分析. 气象科技, (S1): 54-65. |
|
|
|
|
周秀骥, 薛纪善, 陶祖钰等. 2003. '98华南暴雨科学试验研究HUAMEX. 北京: 气象出版社, 220pp. Zhou X J, Xue J S, Tao Z Y, et al. 2003. Heavy Rainfall Experiment in South China during Pre-summer Rainy Season (HUAMEX), 1998. Beijing: China Meteorological Press, 220pp (in Chinese)
|
|
|
Bai L Q, Meng Z Y, Huang L, et al. 2017. An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull Amer Meteor Soc, 98(12): 2619-2640. DOI:10.1175/BAMS-D-16-0015.1 |
Bao X H, Zhang F Q, Sun J H. 2011. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon Wea Rev, 139(9): 2790-2810. DOI:10.1175/MWR-D-11-00006.1 |
Bao X H, Luo Y L, Sun J X, et al. 2017. Assimilating Doppler radar observations with an ensemble Kalman filter for convection-permitting prediction of convective development in a heavy rainfall event during the pre-summer rainy season of South China. Sci China Earth Sci, 60(10): 1866-1885. DOI:10.1007/s11430-017-9076-9 |
Bei N F, Zhang F Q. 2007. Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart J Roy Meteor Soc, 133(622): 83-99. DOI:10.1002/qj.20 |
Bentzien S, Friederichs P. 2012. Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE. Wea Forecasting, 27(4): 988-1002. DOI:10.1175/WAF-D-11-00101.1 |
Bikos D, Lindsey D T, Otkin J, et al. 2012. Synthetic satellite imagery for real-time high-resolution model evaluation. Wea Forecasting, 27(3): 784-795. DOI:10.1175/WAF-D-11-00130.1 |
Blackadar A K. 1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Amer Meteor Soc, 38(5): 283-290. DOI:10.1175/1520-0477-38.5.283 |
Brennan M J, Lackmann G M, Mahoney K M. 2008. Potential vorticity(PV)thinking in operations: The utility of nonconservation. Wea Forecasting, 23(1): 168-182. DOI:10.1175/2007WAF2006044.1 |
|
Chen D H, Xue J S, Yang X S, et al. 2008. New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci Bull, 53(22): 3433-3445. |
Chen G J, Wei F Y, Zhou X J. 2014. Intraseasonal oscillation of the South China Sea summer monsoon and its influence on regionally persistent heavy rain over southern China. J Meteor Res, 28(2): 213-229. DOI:10.1007/s13351-014-3063-1 |
|
Chen G X, Lan R Y, Zeng W X, et al. 2018. Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J Climate, 31(5): 1703-1724. DOI:10.1175/JCLI-D-17-0373.1 |
Chen H, Zhang D L. 2013. On the rapid intensification of hurricane Wilma (2005). Part Ⅱ: Convective bursts and the upper-level warm core. J Atmos Sci, 70(1): 146-162. DOI:10.1175/JAS-D-12-062.1 |
Chen H M, Yu R C, Li J, et al. 2010. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J Climate, 23(4): 905-917. DOI:10.1175/2009JCLI3187.1 |
Chen J, Xue J S, Yan H. 2005. The uncertainty of mesoscale numerical prediction of heavy rain in South China and the ensemble simulations. Acta Meteor Sinica, 19(1): 1-18. |
|
Chen L S, Li Y, Cheng Z Q. 2010. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv Atmos Sci, 27(5): 967-976. DOI:10.1007/s00376-010-8171-y |
|
Chen X C, Zhao K, Xue M. 2014. Spatial and temporal characteristics of warm season convection over pearl river delta region, China, based on 3 years of operational radar data. J Geophys Res Atmos, 119(22): 12447-412465. DOI:10.1002/2014JD021965 |
Chen X C, Zhang F Q, Zhao K. 2016. Diurnal variations of the land-sea breeze and its related precipitation over South China. J Atmos Sci, 73(12): 4793-4815. DOI:10.1175/JAS-D-16-0106.1 |
Chen X C, Zhang F Q, Zhao K. 2017. Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the mei-yu season coastal rainfall over South China. J Atmos Sci, 74(9): 2835-2856. DOI:10.1175/JAS-D-17-0081.1 |
Chen Y, Zhai P M. 2015. Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart J Roy Meteor Soc, 141(689): 1389-1403. DOI:10.1002/qj.2448 |
|
Chen Y R X, Luo Y L. 2018. Analysis of paths and sources of moisture for the south China rainfall during the presummer rainy season of 1979-2014. J Meteor Res, 32(5): 744-757. DOI:10.1007/s13351-018-8069-7 |
|
|
Clark A J, Jirak I L, Dembek S R, et al. 2018. The Community Leveraged Unified Ensemble(CLUE)in the 2016 NOAA/hazardous weather testbed spring forecasting experiment. Bull Amer Meteor Soc, 99(7): 1433-1448. DOI:10.1175/BAMS-D-16-0309.1 |
Cui X P, Gao S T, Zong Z P, et al. 2005. Physical mechanism of formation of the bimodal structure in the Meiyu front system. Chinese Phys Lett, 22(12): 3218-3220. DOI:10.1088/0256-307X/22/12/066 |
Ding Y H. 1994. Monsoons Over China. Dordrecht: Springer, 419pp
|
|
Dong M Y, Chen L S, Li Y, et al. 2010. Rainfall reinforcement associated with landfalling Tropical Cyclones. J Atmos Sci, 67(11): 3541-3558. DOI:10.1175/2010JAS3268.1 |
Dorninger M, Gilleland E, Casati B, et al. 2018. The setup of the MesoVICT Project. Bull Amer Meteor Soc, 99(9): 1887-1906. DOI:10.1175/BAMS-D-17-0164.1 |
Dou J J, Wang Y C, Bornstein R, et al. 2015. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J Appl Meteor Climatol, 54(1): 94-105. DOI:10.1175/JAMC-D-13-0355.1 |
Du Y, Zhang Q H, Yue Y, et al. 2012. Characteristics of low-level jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J Meteor Soc Japan, 90(6): 891-903. DOI:10.2151/jmsj.2012-603 |
Du Y, Rotunno R. 2014a. A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J Atmos Sci, 71(10): 3674-3683. DOI:10.1175/JAS-D-14-0060.1 |
Du Y, Zhang Q H, Chen Y L, et al. 2014b. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J Climate, 27(15): 5747-5767. DOI:10.1175/JCLI-D-13-00571.1 |
Du Y, Rotunno R, Zhang Q H. 2015. Analysis of WRF-simulated diurnal boundary layer winds in eastern China using a simple 1D model. J Atmos Sci, 72(2): 714-727. DOI:10.1175/JAS-D-14-0186.1 |
Du Y, Chen G X. 2018a. Heavy rainfall associated with double low-level jets over Southern China. Part Ⅰ: Ensemble-based analysis. Mon Wea Rev, 146(11): 3827-3844. DOI:10.1175/MWR-D-18-0101.1 |
Du Y, Rotunno R. 2018b. Diurnal cycle of rainfall and winds near the south coast of China. J Atmos Sci, 75(6): 2065-2082. DOI:10.1175/JAS-D-17-0397.1 |
Du Y, Chen G X. 2019a. Heavy rainfall associated with double low-level jets over Southern China. Part Ⅱ: Convection initiation. Mon Wea Rev, 147(2): 543-565. DOI:10.1175/MWR-D-18-0102.1 |
Du Y, Chen G X. 2019b. Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J Climate, 32(24): 8813-8833. DOI:10.1175/JCLI-D-19-0306.1 |
Duan Y H, Gong J D, Du J, et al. 2012. An overview of the Beijing 2008 Olympics Research and Development Project (B08RDP). Bull Amer Meteor Soc, 93(3): 381-403. DOI:10.1175/BAMS-D-11-00115.1 |
Ebert E E, Damrath U, Wergen W, et al. 2003. The WGNE assessment of short-term quantitative precipitation forecasts. Bull Amer Meteor Soc, 84(4): 481-492. DOI:10.1175/BAMS-84-4-Ebert |
Ebert E E, Gallus Jr W A. 2009. Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea Forecasting, 24(5): 1401-1415. DOI:10.1175/2009WAF2222252.1 |
Fu S M, Sun J H, Zhao S X, et al. 2011. The energy budget of a southwest vortex with heavy rainfall over South China. Adv Atmos Sci, 28(3): 709-724. DOI:10.1007/s00376-010-0026-z |
Fu S M, Sun J H. 2012. Circulation and eddy kinetic energy budget analyses on the evolution of a Northeast China cold vortex (NCCV) in May 2010. J Meteor Soc Japan, 90(4): 553-573. DOI:10.2151/jmsj.2012-408 |
Fu S M, Yu F, Wang D H, et al. 2013. A comparison of two kinds of eastward-moving mesoscale vortices during the mei-yu period of 2010. Sci China Earth Sci, 56(2): 282-300. DOI:10.1007/s11430-012-4420-5 |
Fu S M, Li W L, Ling J. 2015. On the evolution of a long-lived mesoscale vortex over the Yangtze River Basin: Geometric features and interactions among systems of different scales. J Geophys Res Atmos, 120(23): 11889-11917. |
Fu S M, Sun J H, Ling J, et al. 2016a. Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season. J Geophys Res Atmos, 121(21): 12856-12876. DOI:10.1002/2016JD025446 |
Fu S M, Wang H J, Sun J H, et al. 2016b. Energy budgets on the interactions between the mean and eddy flows during a persistent heavy rainfall event over the Yangtze River valley in summer 2010. J Meteor Res, 30(4): 513-527. DOI:10.1007/s13351-016-5121-3 |
Fu S M, Zhang J P, Sun J H, et al. 2016c. Composite analysis of long-lived mesoscale vortices over the middle reaches of the Yangtze River valley: Octant features and evolution mechanisms. J Climate, 29(2): 761-781. DOI:10.1175/JCLI-D-15-0175.1 |
Fu S M, Liu R X, Sun J H. 2018. On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J Atmos Sci, 75(3): 907-925. DOI:10.1175/JAS-D-17-0294.1 |
Fu S M, Mai Z, Sun J H, et al. 2019. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J Atmos Sci, 76(12): 3803-3830. DOI:10.1175/JAS-D-18-0331.1 |
Fujiyoshi Y, Ding Y H, Zhang Y. 2006. Outline of GAME/HUBEX∥ Fujiyoshi Y, Ding Y H. Final Report of GAME/HUBEX. GAME Publication No. 43, 1-6
|
Gilbert K K, Craven J P, Novak D R, et al. 2015. An introduction to the national blend of global models project∥Proceedings of the 95th American Meteorological Society Annual Meeting. Special Symposium on Model Postprocessing and Downscaling. Phoenix, AZ: American Meteorological Society
|
Gilleland E, Ahijevych D A, Brown B G, et al. 2010. Verifying forecasts spatially. Bull Amer Meteor Soc, 91(10): 1365-1373. DOI:10.1175/2010BAMS2819.1 |
Gu W, Wang L, Hu Z Z, et al. 2018. Interannual variations of the first rainy season precipitation over South China. J Climate, 31(2): 623-640. DOI:10.1175/JCLI-D-17-0284.1 |
Guan W N, Hu H B, Ren X J, et al. 2019. Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Climate Dyn, 53(5): 3325-3344. |
Hamill T M, Whitaker J S, Mullen S L. 2006. Reforecasts: An important dataset for improving weather predictions. Bull Amer Meteor Soc, 87(1): 33-46. DOI:10.1175/BAMS-87-1-33 |
Hamill T M, Engle E, Myrick D, et al. 2017. The U.S. national blend of models for statistical postprocessing of probability of precipitation and deterministic precipitation amount. Mon Wea Rev, 145(9): 3441-3463. DOI:10.1175/MWR-D-16-0331.1 |
|
Hence D A, Houze Jr R A. 2012. Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar. J Atmos Sci, 69(9): 2644-2661. DOI:10.1175/JAS-D-11-0323.1 |
|
Hong W, Ren X J. 2013. Persistent heavy rainfall over South China during May-August: Subseasonal anomalies of circulation and sea surface temperature. Acta Meteor Sinica, 27(6): 769-787. DOI:10.1007/s13351-013-0607-8 |
Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc, 111(470): 877-946. DOI:10.1002/qj.49711147002 |
Hoskins B J. 1996. On the existence and strength of the summer subtropical anticyclones. Bull Amer Meteor Soc, 77(6): 1287-1292. |
Hu K X, Lu R Y, Wang D H. 2010. Seasonal climatology of cut-off lows and associated precipitation patterns over northeast China. Meteor Atmos Phys, 106(1-2): 37-48. DOI:10.1007/s00703-009-0049-0 |
Huang L, Luo Y L. 2017. Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season. J Geophys Res Atmos, 122(16): 8494-8516. DOI:10.1002/2017JD026512 |
Huang L, Luo Y L, Zhang D L. 2018. The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances. J Geophys Res Atmos, 123(7): 3395-3413. DOI:10.1002/2017JD028106 |
Huang Y J, Liu Y B, Liu Y W, et al. 2019. Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Obser-vation analysis and nested very large eddy simulation with the WRF model. J Geophys Res Atmos, 124(3): 1370-1391. DOI:10.1029/2018JD029668 |
IPCC. 2014. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergo-vernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535pp
|
Jiang X L, Luo Y L, Zhang D L, et al. 2020. Urbanization enhanced summertime extreme hourly precipitation over the yangtze river delta. J Climate, 33,5809-5826
|
Jiang X Y, Liu W D. 2007. Numerical simulations of impacts of urbanization on heavy rainfall in Beijing using different land-use data. Acta Meteor Sinica, 21(2): 245-255. |
Jiang Z N, Zhang D L, Xia R D, et al. 2017. Diurnal variations of presummer rainfall over southern China. J Climate, 30(2): 755-773. DOI:10.1175/JCLI-D-15-0666.1 |
Jin X, Wu T W, Li L. 2013. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dyn, 41(3-4): 977-994. DOI:10.1007/s00382-012-1521-y |
Johnson A, Wang X G. 2012. Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon Wea Rev, 140(9): 3054-3077. DOI:10.1175/MWR-D-11-00356.1 |
Joos H, Wernli H. 2012. Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case study with the limited-area model COSMO. Quart J Roy Meteor Soc, 138(663): 407-418. DOI:10.1002/qj.934 |
|
Lalaurette F. 2003. Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Quart J Roy Meteor Soc, 129(594): 3037-3057. DOI:10.1256/qj.02.152 |
Lamberson W S, Alcott T I, Kahler C. 2016. The ensemble situational awareness table: A tool to improve forecasts for extreme weather events∥Proceedings of the Sixth Conference on Transition of Research to Operations. New Orleans, LA: American Meteorological Society
|
Li H Q, Cui X P, Zhang D L. 2017a. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon Wea Rev, 145(1): 181-197. DOI:10.1175/MWR-D-16-0115.1 |
Li H Q, Cui X P, Zhang D L. 2017b. Sensitivity of the initiation of an isolated thunderstorm over the Beijing metropolitan region to urbanization, terrain morphology and cold outflows. Quart J Roy Meteor Soc, 143(709): 3153-3164. DOI:10.1002/qj.3169 |
Li M C, Luo Z X. 1988. Effects of moist process on subtropical flow patterns and multiple equilibrium states. Sci China Ser B, 31(11): 1352-1361. |
Li R C Y, Zhou W. 2015. Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background. Climate Dyn, 45(3-4): 1043-1057. DOI:10.1007/s00382-014-2347-6 |
Li T, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J Meteor Res, 31(6): 987-1006. DOI:10.1007/s13351-017-7147-6 |
Li X S, Luo Y L, Guan Z Y. 2014. The persistent heavy rainfall over southern China in June 2010: Evolution of synoptic systems and the effects of the Tibetan Plateau heating. J Meteor Res, 28(4): 540-560. DOI:10.1007/s13351-014-3284-3 |
Li Y, Chen L S. 2007a. Numerical study on impact of the boundary layer fluxes over wetland on sustention and rainfall of landfalling tropical cyclones. Acta Meteor Sinica, 21(1): 34-46. |
Li Y, Wang J Z, Chen L S, et al. 2007b. Study on wavy distribution of rainfall associated with typhoon Matsa (2005). Chinese Sci Bull, 52(7): 972-983. DOI:10.1007/s11434-007-0129-9 |
|
Li Z, Yan Z W, Tu K, et al. 2015. Changes of precipitation and extremes and the possible effect of urbanization in the Beijing Metropolitan Region during 1960-2012 based on homogenized observations. Adv Atmos Sci, 32(9): 1173-1185. DOI:10.1007/s00376-015-4257-x |
Li Z H, Luo Y L, Du Y, et al. 2020. Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J Meteor Soc Japan, 98(1): 213-233. DOI:10.2151/jmsj.2020-012 |
Liao H S, Wu Y C, Chen L, et al. 2015. A visual voting framework for weather forecast calibration∥Proceedings of 2015 IEEE Scientific Visualization Conference. Chicago, IL, USA: IEEE, 25-32
|
Lin R P, Zhu J, Zheng F. 2016. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Sci Rep, 6: 38546. DOI:10.1038/srep38546 |
Liu H B, He M Y, Wang B, et al. 2014. Advances in low-level jet research and future prospects. J Meteor Res, 28(1): 57-75. |
Liu X, Luo Y L, Guan Z Y, et al. 2018. An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J Geophy Res Atmos, 123(17): 9256-9278. DOI:10.1029/2018JD028418 |
Liu Y M, Hoskins B, Blackburn M. 2007. Impact of Tibetan orography and heating on the summer flow over Asia. J Meteor Soc Japan, 85B: 1-19. DOI:10.2151/jmsj.85B.1 |
|
|
Lu R Y. 2001. Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J Meteor Soc Japan, 79(3): 771-783. DOI:10.2151/jmsj.79.771 |
Lu R Y, Dong B W. 2001. Westward extension of North Pacific subtropical high in summer. J Meteor Soc Japan, 79(6): 1229-1241. DOI:10.2151/jmsj.79.1229 |
Luo Y L, Wang Y J, Wang H Y, et al. 2010. Modeling convective-stratiform precipitation processes on a Mei-Yu front with the weather research and forecasting Model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J Geophys Res Atmos, 115(D18): D18117. DOI:10.1029/2010JD013873 |
Luo Y L, Wang H, Zhang R H, et al. 2013. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai river basin. J Climate, 26(1): 110-132. DOI:10.1175/JCLI-D-12-00100.1 |
Luo Y L, Gong Y, Zhang D L. 2014. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon Wea Rev, 142(1): 203-221. DOI:10.1175/MWR-D-13-00111.1 |
Luo Y L, Chen Y R X. 2015. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J Geophys Res Atmos, 120(20): 10593-10618. DOI:10.1002/2015JD023584 |
Luo Y L, Wu M W, Ren F M, et al. 2016. Synoptic situations of extreme hourly precipitation over China. J Climate, 29(24): 8703-8719. DOI:10.1175/JCLI-D-16-0057.1 |
Luo Y L. 2017. Advances in understanding the early-summer heavy rainfall over South China∥Chang C P, Kuo H C, Lau N C, et al. The Global Monsoon System. 3rd ed. Singapore: World Scientific, 215-226
|
Luo Y L, Zhang R H, Wan Q L, et al. 2017. The southern China monsoon rainfall experiment(SCMREX). Bull Amer Meteor Soc, 98(5): 999-1013. DOI:10.1175/BAMS-D-15-00235.1 |
Luo Y L, Xia R D, Chan J C L. 2020. Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008-2019. J Meteor Soc Japan, 98(1): 19-42. DOI:10.2151/jmsj.2020-002 |
Mansfield D A. 2007. The use of potential vorticity as an operational forecast tool. Meteor Appl, 3(3): 195-210. DOI:10.1002/met.5060030301 |
Meng W G, Wang Y Q. 2016a. A diagnostic study on heavy rainfall induced by Typhoon Utor (2013)in South China: 1. Rainfall asymmetry at landfall. J Geophys Res Atmos, 121(21): 12781-12802. DOI:10.1002/2015JD024646 |
Meng W G, Wang Y Q. 2016b. A diagnostic study on heavy rainfall induced by landfalling Typhoon Utor (2013)in South China: 2. Postlandfall rainfall. J Geophys Res Atmos, 121(21): 12803-12819. DOI:10.1002/2015JD024647 |
Meng Z Y, Zhang Y J. 2012. On the squall lines preceding landfalling tropical cyclones in China. Mon Wea Rev, 140(2): 445-470. DOI:10.1175/MWR-D-10-05080.1 |
Miao S G, Chen F, Li Q C, et al. 2011. Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J Appl Meteor Climatol, 50(4): 806-825. DOI:10.1175/2010JAMC2513.1 |
Mu M, Duan W S, Chou J F. 2004. Recent advances in predictability studies in China (1999-2002). Adv Atmos Sci, 21(3): 437-443. DOI:10.1007/BF02915570 |
Neal R, Fereday D, Crocker R, et al. 2016. A flexible approach to defining weather patterns and their application in weather forecasting over Europe. Meteor Appl, 23(3): 389-400. DOI:10.1002/met.1563 |
Ninomiya K. 1984. Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J Meteor Soc Japan, 62(6): 880-894. DOI:10.2151/jmsj1965.62.6_880 |
Novak D R, Bailey C, Brill K F, et al. 2014. Precipitation and temperature forecast performance at the Weather Prediction Center. Wea Forecasting, 29(3): 489-504. DOI:10.1175/WAF-D-13-00066.1 |
Pan H, Chen G X. 2019. Diurnal variations of precipitation over North China regulated by the mountain-plains solenoid and boundary-layer inertial oscillation. Adv Atmos Sci, 36(8): 863-884. DOI:10.1007/s00376-019-8238-3 |
Peixoto J P, Oort A H. 1992. Physics of Climate. New York: American Institute of Physics Press, 520pp
|
Petersen D, Brill K F, Bailey C, et al. 2014. The evolving role of the forecaster at the weather predication center∥Proceedings of World Weather Open Science Conference
|
|
Qian W H, Shi J. 2017. Tripole precipitation pattern and SST variations linked with extreme zonal activities of the western Pacific subtropical high. Int J Climatol, 37(6): 3018-3035. DOI:10.1002/joc.4897 |
|
Rautenhaus M, Böttinger M, Siemen S, et al. 2018. Visualization in meteorology: A survey of techniques and tools for data analysis tasks. IEEE Trans Vis Comput Graph, 24(12): 3268-3296. DOI:10.1109/TVCG.2017.2779501 |
Ren X J, Yang X Q, Sun X G. 2013. Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J Climate, 26(22): 8929-8946. DOI:10.1175/JCLI-D-12-00861.1 |
Sampe T, Xie S P. 2010. Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J Climate, 23(1): 113-134. DOI:10.1175/2009JCLI3128.1 |
Schwartz C S, Sobash R A. 2017. Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon Wea Rev, 145(9): 3397-3418. DOI:10.1175/MWR-D-16-0400.1 |
Shapiro A, Fedorovich E, Rahimi S. 2016. A unified theory for the Great Plains nocturnal low-level jet. J Atmos Sci, 73(8): 3037-3057. DOI:10.1175/JAS-D-15-0307.1 |
Shen Y A, Du Y, Chen G X. 2020. Ensemble sensitivity analysis of heavy rainfall associated with three MCSs coexisting over southern China. J Geophys Res Atmos, 125(2): e2019JD031266. |
Sloughter J M, Raftery A E, Gneiting T, et al. 2007. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon Wea Rev, 135(9): 3209-3220. DOI:10.1175/MWR3441.1 |
|
Sun J H, Zhang F Q. 2012. Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the Mei-yu front over the East China plains. Mon Wea Rev, 140(2): 379-397. DOI:10.1175/MWR-D-11-00041.1 |
Sun Y Q, Zhang F Q. 2016. Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J Atmos Sci, 73(3): 1419-1438. DOI:10.1175/JAS-D-15-0142.1 |
Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet)Plateau on the occurrence of heavy rain and severe convective storms in China. Bull Amer Meteor Soc, 62(1): 23-30. DOI:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2 |
Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China∥Chang C P, Krishnamurti T N. Monsoon Meteorology. London: Oxford University, 60-92
|
Tao W K, Shi J J, Lin P L, et al. 2011. High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part Ⅰ: Comparing the impact of microphysics and PBL parameterizations with observations. Terr Atmos Oceanic Sci, 22(6): 673-696. DOI:10.3319/TAO.2011.08.26.01(TM) |
Thaler E R, Nutter P. 2009. Moving quasigeostrophic theory into the 21st century∥Proceedings of the 23rd Conference on Weather Analysis and Forecasting. Omaha, NE: American Meteorological Society
|
|
|
Uccellini L W, Petersen R A, Kocin P J, et al. 1987. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon Wea Rev, 115(10): 2227-2261. DOI:10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2 |
Wan B C, Gao Z Q, Chen F, et al. 2017. Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China. Mon Wea Rev, 145(9): 3485-3505. DOI:10.1175/MWR-D-17-0061.1 |
|
Wang D H, Li X F, Tao W K, et al. 2009. Torrential rainfall processes associated with a landfall of severe tropical storm Bilis(2006): A two-dimensional cloud-resolving modeling study. Atmos Res, 91(1): 94-104. DOI:10.1016/j.atmosres.2008.07.005 |
|
Wang H, Luo Y L, Jou B J D. 2014. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J Geophys Res Atmos, 119(23): 13206-13232. DOI:10.1002/2014JD022339 |
Wang H, Kong F Y, Wu N G, et al. 2019. An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmos Res, 226: 171-180. DOI:10.1016/j.atmosres.2019.04.009 |
Wang L J, Lu S, Guan Z Y, et al. 2010. Effects of low-latitude monsoon surge on the increase in downpour from tropical storm Bilis. J Trop Meteor, 16(2): 101-108. |
Wang M J, Zhao K, Xue M, et al. 2016. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J Geophys Res Atmos, 121(20): 12415-12433. DOI:10.1002/2016JD025307 |
Wang P Y, Xu Z X, Pan Z T. 1990. A case study of warm sector rainbands in North China. Adv Atmos Sci, 7(3): 354-365. DOI:10.1007/BF03179767 |
Wang Q W, Tan Z M. 2014. Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J Geophys Res Atmos, 119(20): 11543-11561. DOI:10.1002/2014JD021898 |
Wang Y Q, Wang Y Q, Fudeyasu H. 2009. The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon Wea Rev, 137(11): 3699-3716. DOI:10.1175/2009MWR2933.1 |
Wei N, Li Y. 2013. A modeling study of land surface process impacts on inland behavior of Typhoon Rananim (2004). Adv Atmos Sci, 30(2): 367-381. DOI:10.1007/s00376-012-1242-5 |
Wen J, Zhao K, Huang H, et al. 2017. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J Geophys Res Atmos, 122(15): 8033-8050. DOI:10.1002/2016JD026346 |
Wen L, Zhao K, Zhang G F, et al. 2016. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 121(5): 2265-2282. DOI:10.1002/2015JD024160 |
Wernli H, Sprenger M. 2007. Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J Atmos Sci, 64(5): 1569-1586. DOI:10.1175/JAS3912.1 |
Wu C, Liu L P, Wei M, et al. 2018. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 35(3): 296-316. DOI:10.1007/s00376-017-6241-0 |
|
Wu G X, Chen S J. 1985. The effect of mechanical forcing on the formation of a mesoscale vortex. Quart J Roy Meteor Soc, 111(470): 1049-1070. DOI:10.1002/qj.49711147009 |
Wu G X, Zheng Y J, Liu Y M. 2013. Dynamical and thermal problems in vortex development and movement. Part Ⅱ: Generalized slantwise vorticity development. Acta Meteor Sinica, 27(1): 15-25. DOI:10.1007/s13351-013-0102-2 |
Wu L G, Wang C. 2015. Has the western Pacific subtropical high extended westward since the late 1970s?. J Climate, 28(13): 5406-5413. DOI:10.1175/JCLI-D-14-00618.1 |
Wu M W, Luo Y L. 2016. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in china mainland during pre-summer rainy season of 2015. J Meteor Res, 30(5): 719-736. DOI:10.1007/s13351-016-6089-8 |
Wu M W, Wu C C, Yen T H, et al. 2017. Synoptic analysis of extreme hourly precipitation in taiwan during 2003-12. Mon Wea Rev, 145(12): 5123-5140. DOI:10.1175/MWR-D-17-0230.1 |
Wu M W, Luo Y L, Chen F, et al. 2019. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J Appl Meteor Climatol, 58(8): 1799-1819. DOI:10.1175/JAMC-D-18-0284.1 |
Wu X, Fei J F, Huang X G, et al. 2011. Statistical classification and characteristics analysis of binary tropical cyclones over the western North Pacific Ocean. J Trop Meteor, 17(4): 335-344. |
Xia R D, Zhang D L. 2019. An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang Mountains in North China. Mon Wea Rev, 147(11): 4199-4220. DOI:10.1175/MWR-D-18-0402.1 |
Xu W X, Zipser E J, Liu C T. 2009. Rainfall characteristics and convective properties of mei-yu precipitation systems over South China, Taiwan, and the South China Sea. Part Ⅰ: TRMM observations. Mon Wea Rev, 137(12): 4261-4275. DOI:10.1175/2009MWR2982.1 |
Xu X D, Lu C, Xu H X, et al. 2011. A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot. Atmos Sci Lett, 12(3): 294-299. DOI:10.1002/asl.338 |
Xue M. 2016. Preface to the special issue on the "Observation, prediction and analysis of severe convection of China"(OPACC)national "973" project. Adv Atmos Sci, 33(10): 1099-1101. DOI:10.1007/s00376-016-0002-3 |
Xue M, Luo X, Zhu K F, et al. 2018. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J Geophys Res Atmos, 123(10): 5090-5115. DOI:10.1029/2018JD028368 |
Yang J, Bao Q, Wang B, et al. 2014. Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dyn, 42(5-6): 1469-1486. DOI:10.1007/s00382-013-1728-6 |
|
Yang S, Gao S T, Wang D H. 2007. Diagnostic analyses of the ageostrophic vector in the non-uniformly saturated, frictionless, and moist adiabatic flow. J Geophys Res Atmos, 112(D9): D09114. |
Yang S, Gao S T, Lu C G. 2014. A generalized frontogenesis function and its application. Adv Atmos Sci, 31(5): 1065-1078. DOI:10.1007/s00376-014-3228-y |
Yang S, Gao S T, Lu C G. 2015. Investigation of the Mei-yu front using a new deformation frontogenesis function. Adv Atmos Sci, 32(5): 635-647. DOI:10.1007/s00376-014-4147-7 |
Yang S, Tang X B, Zhong S X, et al. 2019. Convective bursts episode of the rapidly intensified Typhoon Mujigae (2015). Adv Atmos Sci, 36(5): 541-556. DOI:10.1007/s00376-019-8142-x |
Yang S, Zhang W, Chen B, et al. 2020. Remote moisture sources for 6-hour summer precipitation over the southeastern Tibetan Plateau and its effects on precipitation intensity. Atmos Res, 236: 104803. DOI:10.1016/j.atmosres.2019.104803 |
Ye T S, Zhi R, Zhao J H, et al. 2014. The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming. Chinese Phys B, 23(6): 069203. DOI:10.1088/1674-1056/23/6/069203 |
|
Yin J F, Zhang D L, Luo Y L, et al. 2020. On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part Ⅰ: Impacts of urbanization and orography. Mon Wea Rev, 148(3): 955-979. DOI:10.1175/MWR-D-19-0212.1 |
Yin S Q, Chen D L, Xie Y. 2009. Diurnal variations of precipitation during the warm season over China. Int J Climatol, 29(8): 1154-1170. DOI:10.1002/joc.1758 |
Yin S Q, Li W J, Chen D L, et al. 2011. Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Adv Atmos Sci, 28(4): 725-734. DOI:10.1007/s00376-010-9240-y |
|
Yu R C, Li J, Chen H M, et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China. J Meteor Res, 28(5): 877-902. DOI:10.1007/s13351-014-3272-7 |
Yu R C, Zhang Y, Wang J J, et al. 2019. Recent progress in numerical atmospheric modeling in China. Adv Atmos Sci, 36(9): 938-960. DOI:10.1007/s00376-019-8203-1 |
Yu Z F, Yu H, Gao S T. 2010. Terrain impact on the precipitation of landfalling Typhoon Talim. J Trop Meteor, 16(2): 115-124. |
Yu Z F, Wang Y Q, Xu H M, et al. 2017. On the relationship between intensity and rainfall distribution in Tropical Cyclones making landfall over China. J Appl Meteor Climatol, 56(10): 2883-2901. DOI:10.1175/JAMC-D-16-0334.1 |
Yuan C X, Liu J Q, Luo J J, et al. 2019. Influences of tropical Indian and Pacific oceans on the interannual variations of precipitation in the early and late rainy seasons in South China. J Climate, 32(12): 3681-3694. DOI:10.1175/JCLI-D-18-0588.1 |
Yuan F, Wei K, Chen W, et al. 2010. Temporal variations of the frontal and monsoon storm rainfall during the first rainy season in South China. Atmos Oceanic Sci Lett, 3(5): 243-247. DOI:10.1080/16742834.2010.11446876 |
Yuan W H, Yu R C, Chen H M, et al. 2010. Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J Climate, 23(24): 6684-6695. DOI:10.1175/2010JCLI3805.1 |
Yuan W H, Yu R C, Zhang M H, et al. 2012. Regimes of diurnal variation of summer rainfall over subtropical East Asia. J Climate, 25(9): 3307-3320. DOI:10.1175/JCLI-D-11-00288.1 |
|
Zeng W X, Chen G X, Du Y, et al. 2019. Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon Wea Rev, 147(11): 3981-4004. DOI:10.1175/MWR-D-19-0131.1 |
Zhang D L, Lin Y H, Zhao P, et al. 2013. The Beijing extreme rainfall of 21 July 2012: "Right results" but for wrong reasons. Geophys Res Lett, 40(7): 1426-1431. DOI:10.1002/grl.50304 |
Zhang F Q, Sun Y Q, Magnusson L, et al. 2019. What is the predictability limit of midlatitude weather?. J Atmos Sci, 76(4): 1077-1091. DOI:10.1175/JAS-D-18-0269.1 |
Zhang H, Zhai P M. 2011. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv Atmos Sci, 28(5): 1177-1183. DOI:10.1007/s00376-011-0020-0 |
Zhang H B, Chen J, Zhi X F, et al. 2015. Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv Atmos Sci, 32(8): 1143-1155. DOI:10.1007/s00376-015-4232-6 |
Zhang M R, Meng Z Y. 2019. Warm-Sector heavy rainfall in southern China and its WRF simulation evaluation: A low-level-jet perspective. Mon Wea Rev, 147(12): 4461-4480. DOI:10.1175/MWR-D-19-0110.1 |
Zhang R H, Ni Y Q, Liu L P, et al. 2011. South China heavy rainfall experiments (SCHeREX). J Meteor Soc Japan, 89A: 153-166. DOI:10.2151/jmsj.2011-A10 |
Zhang S J, Chen L S, Li Y. 2012. Statistical analysis and numerical simulation of Poyang Lake's influence on tropical cyclones. J Trop Meteor, 18(2): 249-262. |
Zhang X B, Luo Y L, Wan Q L, et al. 2016. Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea Forecasting, 31(4): 1271-1292. DOI:10.1175/WAF-D-15-0156.1 |
Zhang X B. 2018. Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX. Quart J Roy Meteor Soc, 144(717): 2842-2862. DOI:10.1002/qj.3411 |
Zhang X B. 2019. Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon Wea Rev, 147(1): 291-310. DOI:10.1175/MWR-D-18-0218.1 |
Zhang Y, Li J, Yu R C, et al. 2019. A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. J Adv Model Earth Syst, 11(6): 1685-1714. DOI:10.1029/2018MS001539 |
Zhang Y C, Zhang F Q, Sun J H. 2014a. Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains. Atmos Chem Phys, 14(19): 10741-10759. DOI:10.5194/acp-14-10741-2014 |
Zhang Y C, Sun J H, Fu S M. 2014b. Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices East of the Tibetan Plateau during the Mei-yu season. Adv Atmos Sci, 31(1): 139-153. DOI:10.1007/s00376-013-2052-0 |
Zhang Y C, Sun J H, Fu S M. 2017. Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River-Huaihe River Basin. Adv Atmos Sci, 34(2): 129-143. DOI:10.1007/s00376-016-6117-8 |
Zhang Y C, Zhang F Q, Davis C A, et al. 2018. Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-yu front over the East China Plains. J Atmos Sci, 75(3): 1005-1025. DOI:10.1175/JAS-D-17-0197.1 |
Zhang Y H, Xue M, Zhu K F, et al. 2019. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer Low-Level Jet inertial oscillations. J Geophys Res Atmos, 124(5): 2643-2664. DOI:10.1029/2018JD029834 |
Zhao S X, Sun J H. 2007. Study on cut-off low-pressure systems with floods over northeast Asia. Meteor Atmos Phys, 96(1-2): 159-180. DOI:10.1007/s00703-006-0226-3 |
Zhao Y C. 2012. Numerical investigation of a localized extremely heavy rainfall event in complex topographic area during midsummer. Atmos Res, 113: 22-39. DOI:10.1016/j.atmosres.2012.04.018 |
Zheng Y G, Xue M, Li B, et al. 2016. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv Atmos Sci, 33(11): 1218-1232. DOI:10.1007/s00376-016-6128-5 |
Zheng Y J, Wu G X, Liu Y M. 2013. Dynamical and thermal problems in vortex development and movement. Part Ⅰ: A PV-Q view. Acta Meteor Sinica, 27(1): 1-14. DOI:10.1007/s13351-013-0101-3 |
Zhong L Z, Mu R, Zhang D L, et al. 2015. An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J Geophys Res Atmos, 120(8): 3274-3291. DOI:10.1002/2014JD022686 |
Zhou F F, Cui X P. 2015. The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China. Atmos Sci Let, 16(4): 485-491. DOI:10.1002/asl.586 |
Zhou T J, Yu R C, Chen H M, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J Climate, 21(16): 3997-4010. DOI:10.1175/2008JCLI2028.1 |
Zhou T J, Yu R C, Zhang J, et al. 2009. Why the western Pacific subtropical high has extended westward since the late 1970s. J Climate, 22(8): 2199-2215. DOI:10.1175/2008JCLI2527.1 |
Zhu P J, Zheng Y G, Zhang C X, et al. 2005. A study of the extratropical transformation of typhoon Winnie (1997). Adv Atmos Sci, 22(5): 730-740. DOI:10.1007/BF02918716 |
Zhu Y J, Luo Y. 2015. Precipitation calibration based on the Frequency-Matching method. Wea Forecasting, 30(5): 1109-1124. DOI:10.1175/WAF-D-13-00049.1 |