[1] | |
|
[2] |
Savary S, Ficke A, Aubertot J N, et al. Crop losses due to diseases and their implications for global food production losses and food security[J]. Food Security, 2012, 4(4): 519-537. DOI:10.1007/s12571-012-0200-5 |
|
[3] |
康振生. 我国植物真菌病害的研究现状及发展策略[J]. 植物保护, 2010, 36(3): 9-12. Kang Z S. Current status and development strategy for research on plant fungal diseases in China[J]. Plant Protection, 2010, 36(3): 9-12 (in Chinese with English abstract). DOI:10.3969/j.issn.0529-1542.2010.03.003 |
|
[4] | |
|
[5] |
Fisher M C, Henk D A, Briggs C J, et al. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012, 484(7393): 186-194. DOI:10.1038/nature10947 |
|
[6] |
Keinan A, Clark A G. Recent explosive human population growth has resulted in an excess of rare genetic variants[J]. Science, 2012, 336(6082): 740-743. DOI:10.1126/science.1217283 |
|
[7] |
王桂荣, 王源超, 杨光富, 等. 农业病虫害绿色防控基础的前沿科学问题[J]. 中国科学基金, 2020, 34(4): 374-380. Wang G R, Wang Y C, Yang G F, et al. Frontiers in scientific issues of controlling agricultural pests and diseases by environmental-friendly methods[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(4): 374-380 (in Chinese with English abstract). |
|
[8] |
Chen T, Nomura K, Wang X L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere[J]. Nature, 2020, 580(7805): 653-657. DOI:10.1038/s41586-020-2185-0 |
|
[9] |
Wei Z, Gu Y A, Friman V P, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9): eaaw0759. DOI:10.1126/sciadv.aaw0759 |
|
[10] | |
|
[11] |
Legein M, Smets W, Vandenheuvel D, et al. Modes of action of microbial biocontrol in the phyllosphere[J]. Frontiers in Microbiology, 2020, 11: 1619. DOI:10.3389/fmicb.2020.01619 |
|
[12] |
Rahman S F S A, Singh E, Pieterse C M J, et al. Emerging microbial biocontrol strategies for plant pathogens[J]. Plant Science, 2018, 267: 102-111. DOI:10.1016/j.plantsci.2017.11.012 |
|
[13] | |
|
[14] |
Trdá L, Boutrot F, Claverie J, et al. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline[J]. Frontiers in Plant Science, 2015, 6: 219. |
|
[15] |
Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470-480. DOI:10.1038/s41564-018-0129-3 |
|
[16] |
Erken M, Lutz C, McDougald D. The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment[J]. Microbial Ecology, 2013, 65(4): 860-868. DOI:10.1007/s00248-013-0189-0 |
|
[17] |
Guerrero R, Pedros-Alio C, Esteve I, et al. Predatory prokaryotes: predation and primary consumption evolved in bacteria[J]. Proc Natl Acad Sci USA, 1986, 83(7): 2138-2142. DOI:10.1073/pnas.83.7.2138 |
|
[18] |
Pérez J, Moraleda-Muñoz A, Marcos-Torres F J, et al. Bacterial predation: 75 years and counting![J]. Environmental Microbiology, 2016, 18(3): 766-779. DOI:10.1111/1462-2920.13171 |
|
[19] | |
|
[20] |
Wang Z, Kadouri D E, Wu M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13[J]. BMC Genomics, 2011, 12: 453. DOI:10.1186/1471-2164-12-453 |
|
[21] |
李曙光. 黏细菌的环境分布、季节演替及其相互作用[D]. 济南: 山东大学, 2014. Li S G. Distribution, seasonal succession and intraspecies interactions of myxobacteria[D]. Jinan: Shandong University, 2014(in Chinese with English abstract).
|
|
[22] |
王春玲, 冯广达, 姚青, 等. 黏细菌基因组学研究进展[J]. 微生物学通报, 2019, 46(9): 2394-2403. Wang C L, Feng G D, Yao Q, et al. Research progress in genomics of myxobacteria[J]. Microbiology China, 2019, 46(9): 2394-2403 (in Chinese with English abstract). |
|
[23] |
Jurkevitch E. Predatory behaviors in bacteria: diversity and transitions[J]. Microbe Magazine, 2007, 2(2): 67-73. DOI:10.1128/microbe.2.67.1 |
|
[24] | |
|
[25] |
Li Z K, Ye X F, Chen P L, et al. Antifungal potential of Corallococcus sp. strain EGB against plant pathogenic fungi[J]. Biological Control, 2017, 110: 10-17. DOI:10.1016/j.biocontrol.2017.04.001 |
|
[26] |
Li Z K, Wang T, Luo X, et al. Biocontrol potential of Myxococcus sp. strain BS against bacterial soft rot of Calla lily caused by Pectobacterium carotovorum[J]. Biological Control, 2018, 126: 36-44. DOI:10.1016/j.biocontrol.2018.07.004 |
|
[27] |
Davidov Y, Huchon D, Koval S F, et al. A new alpha-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory[J]. Environmental Microbiology, 2006, 8(12): 2179-2188. DOI:10.1111/j.1462-2920.2006.01101.x |
|
[28] |
Zhang Y, Guzzo M, Ducret A, et al. A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus[J]. PLoS Genetics, 2012, 8(8): e1002872. DOI:10.1371/journal.pgen.1002872 |
|
[29] |
Beebe J M. Studies on the myxobacteria: Ⅰ, distribution in Iowa soils and description of a new species; Ⅱ, Myxobacteria as bacterial parasites; Ⅲ, the morphology and cytology of Myxococcus xanthus[D]. Iowa: Iowa State University, 1941.
|
|
[30] | |
|
[31] |
Pérez J, Jiménez-Zurdo J I, Martínez-Abarca F, et al. Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation[J]. Environmental Microbiology, 2014, 16(7): 2341-2350. DOI:10.1111/1462-2920.12477 |
|
[32] |
Zhang W C, Wang Y, Lu H N, et al. Dynamics of solitary predation by Myxococcus xanthus on Escherichia coli observed at the single-cell level[J]. Applied and Environmental Microbiology, 2019, 86(3): e02286-19. DOI:10.1128/AEM.02286-19 |
|
[33] |
McBride M J, Zusman D R. Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli[J]. FEMS Microbiology Letters, 1996, 137(2/3): 227-231. |
|
[34] | |
|
[35] |
Kaur R, Kumari A, Kaur R, et al. Myxobacteria: producers of enormous bioactive secondary metabolites[J]. International Journal of Research in Pharmaceutical Sciences, 2018, 9(1): 309-313. |
|
[36] |
Evans A G L, Davey H M, Cookson A, et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo[J]. Microbiology, 2012, 158(11): 2742-2752. DOI:10.1099/mic.0.060343-0 |
|
[37] |
Xiao Y, Wei X M, Ebright R, et al. Antibiotic production by myxobacteria plays a role in predation[J]. Journal of Bacteriology, 2011, 193(18): 4626-4633. DOI:10.1128/JB.05052-11 |
|
[38] |
代京莎, 李安章, 朱红惠. 黏细菌在植物病害生物防治中的作用[J]. 生物技术进展, 2016, 6(4): 229-234. Dai J S, Li A Z, Zhu H H. The function of myxobacteria in biological control of plant disease[J]. Current Biotechnology, 2016, 6(4): 229-234 (in Chinese with English abstract). DOI:10.3969/j.issn.2095-2341.2016.04.01 |
|
[39] |
Keane R, Berleman J. The predatory life cycle of Myxococcus xanthus[J]. Microbiology, 2016, 162(1): 1-11. DOI:10.1099/mic.0.000208 |
|
[40] |
Ensign J, Wolfe R. Characterization of a small proteolytic enzyme which lyses bacterial cell walls[J]. Journal of bacteriology, 1966, 91(2): 524-534. DOI:10.1128/JB.91.2.524-534.1966 |
|
[41] |
Livingstone P G, Millard A D, Swain M T, et al. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding[J]. Microbial Genomics, 2018, 4(2): e000152. |
|
[42] |
Hocking D, Cook F D. Myxobacteria exert partial control of damping-off and root disease in container-grown tree seedlings[J]. Canadian Journal of Microbiology, 1972, 18(10): 1557-1560. DOI:10.1139/m72-237 |
|
[43] |
Li Z K, Xia C Y, Wang Y X, et al. Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties[J]. International Journal of Biological Macromolecules, 2019, 132: 1235-1243. DOI:10.1016/j.ijbiomac.2019.04.056 |
|
[44] |
Zhou J, Chen J H, Li Z K, et al. Enzymatic properties of a multi-specific β-(1,3)-glucanase from Corallococcus sp. EGB and its potential antifungal applications[J]. Protein Expression and Purification, 2019, 164: 105481. DOI:10.1016/j.pep.2019.105481 |
|
[45] |
Kunze B, Steinmetz H, Höfle G, et al. Cruentaren, a new antifungal salicylate-type macrolide from Byssovorax cruenta (Myxobacteria) with inhibitory effect on mitochondrial ATPase activity[J]. The Journal of Antibiotics, 2006, 59(10): 664-668. DOI:10.1038/ja.2006.89 |
|
[46] |
Swain D M, Yadav S K, Tyagi I, et al. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi[J]. Nature Communications, 2017, 8(1): 1-9. DOI:10.1038/s41467-016-0009-6 |
|
[47] |
Trunk K, Peltier J, Liu Y C, et al. The type Ⅵ secretion system deploys antifungal effectors against microbial competitors[J]. Nature Microbiology, 2018, 3(8): 920-931. DOI:10.1038/s41564-018-0191-x |
|
[48] |
Li Z K, Ye X F, Liu M X, et al. A novel outer membrane β-1,6-glucanase is deployed in the predation of fungi by myxobacteria[J]. The ISME Journal, 2019, 13(9): 2223-2235. DOI:10.1038/s41396-019-0424-x |
|
[49] |
Rutten L, Mannie J P B A, Stead C M, et al. Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium[J]. Proc Natl Acad Sci USA, 2009, 106(6): 1960-196. DOI:10.1073/pnas.0813064106 |
|
[50] |
Fairman J W, Noinaj N, Buchanan S K. The structural biology of β-barrel membrane proteins: a summary of recent reports[J]. Current Opinion in Structural Biology, 2011, 21(4): 523-531. DOI:10.1016/j.sbi.2011.05.005 |
|
[51] |
Müller S, Strack S N, Hoefler B C, et al. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus[J]. Applied and Environmental Microbiology, 2014, 80(18): 5603-5610. DOI:10.1128/AEM.01621-14 |
|
[52] |
Bills G F, Gloer J B. Biologically active secondary metabolites from the fungi[J]. Microbiology Spectrum, 2016, 4(6): 1-32. |
|
[53] |
Müller S, Strack S N, Ryan S E, et al. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures[J]. Applied and Environmental Microbiology, 2015, 81(1): 203-210. DOI:10.1128/AEM.02448-14 |
|
[54] |
Depas W H, Syed A K, Sifuentes M, et al. Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus[J]. Applied and Environmental Microbiology, 2014, 80(22): 7079-7087. DOI:10.1128/AEM.02464-14 |
|
[55] |
Wang C, Liu X, Zhang P, et al. Bacillus licheniformis escapes from Myxococcus xanthus predation by deactivating myxovirescin A through enzymatic glucosylation[J]. Environmental Microbiology, 2019, 21(12): 4755-4772. DOI:10.1111/1462-2920.14817 |
|
[56] |
Nair R R, Vasse M, Wielgoss S, et al. Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences[J]. Nature Communications, 2019, 10(1): 1-10. DOI:10.1038/s41467-018-07882-8 |
|
[57] |
Maddi A, Dettman A, Fu C, et al. WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa[J]. PLoS One, 2012, 7(8): e42374. DOI:10.1371/journal.pone.0042374 |
|
[58] |
Jousset A. Ecological and evolutive implications of bacterial defences against predators[J]. Environmental Microbiology, 2012, 14(8): 1830-1843. DOI:10.1111/j.1462-2920.2011.02627.x |
|
[59] | |
|
[60] |
Lueders T, Kindler R, Miltner A, et al. Identification of bacterial micropredators distinctively active in a soil microbial food web[J]. Applied and Environmental Microbiology, 2006, 72(8): 5342-5348. DOI:10.1128/AEM.00400-06 |
|
[61] |
Zhou X W, Li S G, Li W, et al. Myxobacterial community is a predominant and highly diverse bacterial group in soil niches[J]. Environmental Microbiology Reports, 2014, 6(1): 45-56. DOI:10.1111/1758-2229.12107 |
|
[62] |
Wang W H, Luo X, Ye X F, et al. Predatory Myxococcales are widely distributed in and closely correlated with the bacterial community structure of agricultural land[J]. Applied Soil Ecology, 2020, 146: 103365. DOI:10.1016/j.apsoil.2019.103365 |
|
[63] |
Ye X F, Li Z K, Luo X, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1): 49. DOI:10.1186/s40168-020-00824-x |
|
[64] |
Mendes-Soares H, Velicer G J. Decomposing predation: testing for parameters that correlate with predatory performance by a social bacterium[J]. Microbial Ecology, 2013, 65(2): 415-423. DOI:10.1007/s00248-012-0135-6 |
|
[65] |
任兴波, 张子良, 赵璞钰, 等. 马铃薯晚疫病菌拮抗黏细菌YR-35的分离鉴定及其代谢产物稳定性[J]. 中国生物防治学报, 2016, 32(3): 379-387. Ren X B, Zhang Z L, Zhao P Y, et al. Isolation and identification of the strain YR-35 resistant to phytophthora infestans and its metabolites[J]. Chinese Journal of Biological Control, 2016, 32(3): 379-387 (in Chinese with English abstract). |
|
[66] |
李百元, 谢小林, 张鲜娇, 等. 不同被捕食细菌对新疆盐碱地黏细菌分离的影响[J]. 微生物学报, 2013, 53(4): 379-389. Li B Y, Xie X L, Zhang X J, et al. Influence of different prey strains on isolation of myxobacteria in saline-alkaline soils of Xinjiang[J]. Acta Microbiologica Sinica, 2013, 53(4): 379-389 (in Chinese with English abstract). |
|
[67] |
Kim S T, Yun S C. Biocontrol with Myxococcus sp. KYC 1126 against anthracnose in hot pepper[J]. The Plant Pathology Journal, 2011, 27(2): 156-163. DOI:10.5423/PPJ.2011.27.2.156 |
|
[68] |
Dahm M, Brzezińska A J, Wrótniak-Drzewiecka W, et al. Myxobacteria as a potential biocontrol agent effective against pathogenic fungi of economically important forest trees[J]. Dendrobiology, 2015, 74: 13-24. DOI:10.12657/denbio.074.002 |
|
[69] |
Ye X F, Chen Y, Ma S Y, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens[J]. Food Microbiology, 2020, 91: 103502. DOI:10.1016/j.fm.2020.103502 |
|
[70] |
Yun S C. Selection and a 3-year field trial of Sorangium cellulosum KYC 3262 against anthracnose in hot pepper[J]. The Plant Pathology Journal, 2014, 30(3): 279-287. DOI:10.5423/PPJ.OA.01.2014.0002 |
|
[71] | |
|
[72] |
Spormann A M. Gliding motility in bacteria: insights from studies of Myxococcus xanthus[J]. Microbiology and Molecular Biology Reviews, 1999, 63(3): 621-641. DOI:10.1128/MMBR.63.3.621-641.1999 |
|
[73] |
刘新利, 李越中. 黏细菌次级代谢产物及其在农业上的应用价值[J]. 中国农业科技导报, 2007, 9(3): 44-51. Liu X L, Li Y Z. Myxobacterial secondary metabolites and their potential applications in agriculture[J]. Journal of Agricultural Science and Technology, 2007, 9(3): 44-51 (in Chinese with English abstract). DOI:10.3969/j.issn.1008-0864.2007.03.009 |
|
[74] |
Kaur R, Singh S, Kaur R, et al. Myxococcus xanthus: a source of antimicrobials and natural bio-control agent[J]. The Pharma Innovation Journal, 2017, 6(11): 260-262. |
|
[75] |
Dworkin M. Recent advances in the social and developmental biology of the myxobacteria[J]. Microbiology Review, 1996, 60(1): 70-102. DOI:10.1128/MR.60.1.70-102.1996 |
|
[76] | |
|
[77] |
李曙光, 周秀文, 吴志红, 等. 黏细菌的种群生态及其生存策略[J]. 微生物学通报, 2013, 40(1): 172-179. Li S G, Zhou X W, Wu Z H, et al. Population ecology and survival strategy of myxobacteria[J]. Microbiology China, 2013, 40(1): 172-179 (in Chinese with English abstract). |
|
[78] | |
|
[79] |
Livingstone P G, Morphew R M, Whitworth D E. Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny[J]. Frontiers in Microbiology, 2017, 8: 1593. DOI:10.3389/fmicb.2017.01593 |
|
[80] | |
|
[81] |
Cao P, Wall D. Direct visualization of a molecular handshake that governs kin recognition and tissue formation in myxobacteria[J]. Nature Communications, 2019, 10(1): 3073. DOI:10.1038/s41467-019-11108-w |
|
[82] |
Yu Y T N, Yuan X, Velicer G J. Adaptive evolution of an sRNA that controls Myxococcus development[J]. Science, 2010, 328(5981): 993. DOI:10.1126/science.1187200 |
|
[83] |
Reichenbach H. Myxobacteria, producers of novel bioactive substances[J]. Journal of Industrial Microbiology and Biotechnology, 2001, 27(3): 149-156. DOI:10.1038/sj.jim.7000025 |
|
[84] |
Wang J, Hu W, Lux R, et al. Natural transformation of Myxococcus xanthus[J]. Journal of Bacteriology, 2011, 193(9): 2122-2132. DOI:10.1128/JB.00041-11 |
|