文章信息
- 杨倩
- YANG Qian
- 猪黏膜免疫:前景与挑战
- Mucosal vaccination in pigs: prospects and challenges
- 南京农业大学学报, 2018, 41(2): 218-222
- Journal of Nanjing Agricultural University, 2018, 41(2): 218-222.
- http://dx.doi.org/10.7685/jnau.201712003
- 
                文章历史
- 收稿日期: 2017-12-04
引起猪传染病的绝大多数(95%以上)病原微生物都是通过消化道、呼吸道或生殖道入侵机体, 如猪传染性胃肠炎病毒(transmissible gastroenteritis virus, TGEV)、猪流行性腹泻病毒(porcine epidemic diarrhea virus, PEDV)、猪圆环病毒2型(porcine circovirus type 2, PCV2)、猪瘟病毒(classical swine fever virus, CSFV)和轮状病毒(rotavirus, RV)等主要通过消化道传播和入侵机体。猪繁殖与呼吸综合征(porcine reproductive and respiratory syndrome, PRRS)、口蹄疫(foot and mouth disease)、猪流感(swine influenza)、伪狂犬(pseudorabies)和猪支原体肺炎(Mycoplasmal pneumona of swine, MPS)等主要通过呼吸道传播和入侵机体。这些传染病的发生和流行已给我国养猪业造成毁灭性的经济损失。尤其是近几年来猪流行性腹泻的爆发和流行(消化道发病, 系统免疫无法控制)使黏膜免疫倍受关注。大量的事实表明传统的免疫方式(肌肉注射和皮下注射)已经不能有效控制一些通过消化道和呼吸道传播的传染病的发生。
进入消化道和呼吸道的大多数病毒首先入侵黏膜上皮, 然后再扩散到其他部位进行感染, 还有些病毒只限制在上皮中繁殖, 如猪流感病毒和猪肺炎支原体, 造成猪局部的严重病变。通过模拟传染病病原的自然感染途径, 建立呼吸道和消化道免疫, 直接切断病毒的入侵途径是控制猪传染疾病的最有效方法。近年来, 通过黏膜免疫预防猪传染病的研究已悄然兴起。本文概述猪的消化道免疫与口服疫苗研究进展以及猪的呼吸道免疫与滴鼻疫苗研究进展, 以期为黏膜免疫预防猪的传染病提供理论依据。
1 猪口服免疫与消化道免疫猪消化道中广泛分布大量的淋巴组织, 除了弥漫淋巴组织, 淋巴组织还以淋巴集结的形式存在。口咽扁桃体和肠道相关淋巴组织(gut-associated lymphoid tissue, GALT)是2个典型的淋巴集结。GALT主要指肠集合淋巴结又称派伊尔氏斑(Peyer′s patches, PP)。猪口咽扁桃体和PP结中分布有大量的淋巴滤泡或淋巴小结。此外还有大量与免疫反应有关的细胞, 如树突状细胞(dendritic cell, DC)、微皱褶细胞(microfold cell, 简称M细胞)、巨噬细胞、T细胞、B细胞、肥大细胞和嗜酸性粒细胞等[1]。M细胞是覆盖PP结表面的一种特殊的上皮细胞。抗原进入消化道后, 肠道PP结上皮中M细胞首先摄取抗原, 然后将抗原转移给DC, 后者产生相应的趋化因子, 迁移到T细胞区, 将处理过的肽抗原呈递给T细胞, T细胞变成抗原特异性T细胞。肠道中黏膜下层的DC也可通过伸出树突进入肠腔内直接摄取抗原。摄取抗原后DC可迁移到肠系膜淋巴结中。随后被DC激活的T细胞使生发中心的B细胞发生IgA类别转换[1]。因此, 猪口咽扁桃体和PP结在肠道免疫中发挥主要的作用[2]。
由于减毒活病毒可在黏膜上皮中复制, 因此应用减毒活疫苗可有效进行黏膜免疫。如在欧洲应用减毒CSFV口服免疫猪群已成功预防猪瘟(CSF)[3]; 口服减毒CSFV后猪体内产生较高的中和抗体, 整个猪群全体免疫力都显著提高[3-4]。我国的CSFV减毒C株疫苗也具有较好的效果, 口服此疫苗后73%的猪抗体效价显著增加2~3倍[5]。非洲猪瘟(African swine fever, ASF)是严重危害欧洲养猪业的重大传染病。尽管在养猪场中可通过免疫能控制ASF的发生, 但对放牧的野猪却无法控制, 致使ASF长期流行。应用口服方式(避免抓猪和引起动物应激反应)对放牧的野猪进行免疫对预防ASF是目前欧洲公认的有效方法[3-4, 6]。在欧洲和美国对野外动物应用口服免疫已有效控制了狂犬病的蔓延和扩散[7]。
猪传染性胃肠炎(TGE)和猪流行性腹泻(PED)都是引起仔猪腹泻、脱水等症状的高度接触性肠道传染性疾病。2种病毒(TGEV和PEDV)均主要在小肠中复制和致病。应用减毒TGEV经口鼻腔途径免疫后可显著提高小肠黏膜免疫力, 小肠(十二指肠和回肠)中CD2+、CD4+ T细胞数量极显著增加, 支气管淋巴结、肠系膜淋巴结IgG和IgA水平显著增加。十二指肠和空肠IgA抗体分泌细胞数量显著增加[8]。应用减毒PEDV通过口服免疫可显著降低致死率(致死率为13%), 明显低于肌肉注射免疫动物的致死率(60%)[9]。
猪消化道黏膜表面环境复杂, 如胃肠道中胃酸和各种蛋白酶的存在、大量微生物的存在均会影响口服疫苗的效果, 长期以来给猪口服免疫带来巨大的挑战。设计和诱导高效的口服免疫反应使疫苗抗原不容易受到酶解或化学降解的影响。因此, 各种免疫增强剂、重组亚单位疫苗和各种抗原呈送系统在黏膜免疫中得到广泛研究。黏膜免疫增强剂能显著增强局部黏膜对抗原的特异性免疫应答, 是研制高效黏膜免疫疫苗的保证。应用CpG配合灭活TGEV通过口服仔猪, 不仅可诱导局部小肠黏膜免疫力(IgA分泌细胞、CD3+T和小肠上皮内淋巴细胞数量显著增加), 还可提高全身TGEV特异性IgA水平[10]。
霍乱毒素是目前公认的很有效的一种免疫增强剂。针对我国养猪业危害严重的PRRS, 有学者将PRRSV N蛋白与霍乱毒素B亚单位(CT-B)进行融合形成重组蛋白, 或将PRRSV的Myc多肽与CT-B进行融合形成重组蛋白, 然后将2种重组蛋白分别灌服小猪, 在肠黏膜均检测到CT-B特异性IgA(SigA), 血清中同时也产生了抗N蛋白抗体和Myc的IgA抗体[11], 该结果为预防PRRS提供了新的免疫途径。
应用抗原呈送系统可避免胃肠道的复杂环境。Shin等[12]将猪胸膜放线杆菌Apx ⅠA和Apx ⅡA基因插入酵母基因组, 构建了重组酵母。口服重组酵母后仔猪鼻洗液中产生较高的抗Apx ⅠA和Apx ⅡA的sIgA。应用猪胸膜放线杆菌滴鼻攻毒后仔猪临床症状明显减轻。Ogawa等[13]以猪丹毒杆菌为载体构建了一种表达肺炎支原体基因C端P97蛋白的重组载体, 通过滴鼻攻毒后口服预防接种的仔猪也获得了一定的保护。应用酵母表达PEDV S1, 口服免疫小猪, 从第7天开始粪便中就产生了PEDV-sIgA, 一直持续到第28天[14]。
益生菌不仅能促进小肠的发育, 提高肠道的先天性免疫力, 还具有很好的安全性。应用益生菌作为抗原呈送表达系统是最理想的口服免疫载体。Mou等[15]应用枯草芽胞杆菌表达了TGEV S蛋白, 口服重组枯草芽胞杆菌后可显著提高局部肠道黏膜免疫力。其机制是重组枯草芽胞杆菌通过刺激肠上皮细胞分泌CCL20募集树突状细胞至肠黏膜下, 树突状细胞摄取重组枯草芽胞杆菌后对其进行加工处理, 同时迁移至肠系膜淋巴结中激活T细胞并促进T细胞增殖, 进一步刺激B细胞分化形成sIgA细胞, 分泌sIgA。将口蹄疫抗原与CT-B进行重组, 然后通过枯草芽胞杆菌表达, 口服免疫仔猪后肺和小肠中抗FMDV的IgA含量显著增加, 血清中中和抗体增加, IFN-γ水平也显著增加。进一步的攻毒试验验证有60%的动物对FMDV强毒具有预防作用[16]。
2 猪鼻腔免疫与呼吸道免疫呼吸道黏膜是许多病原微生物的主要入口, 几乎在所有呼吸道的管壁中都分布有淋巴组织, 有的部位淋巴组织以弥散性淋巴组织为主, 有的部位则是以淋巴集结的方式存在。以淋巴集结的方式存在的典型淋巴组织主要是位于上呼吸道鼻黏膜的相关淋巴组织(nasal-associated lymphoid tissue, NALT)和位于下呼吸道支气管的相关淋巴组织(bronchus-associated lymphoid tissue, BALT)。NALT主要指鼻腔后部的咽鼓管扁桃体和咽扁桃体。二者与口咽扁桃体软腭扁桃体、舌扁桃体和会厌两侧扁桃体一起构成类似人的Waldeyer′s环。猪的NALT除含有较多淋巴小结外还分布大量与免疫反应有关的细胞, 如DC、巨噬细胞、T细胞和B细胞等[17-18]。因此, NALT是鼻腔免疫的组织结构基础, 在防御外界病原微生物从鼻腔入侵中发挥重要的作用。呼吸道免疫(滴鼻、喷雾)因具有抗原使用量少、对动物产生的应激反应小等多种优点, 而使鼻腔免疫的研究近年来倍受关注。在人类医学上应用鼻腔免疫防止传染病的发生已开始推广, 如2010年美国启动流感疫苗工程(Influenza Vaccine Project), 主要是通过鼻腔免疫预防人类流感的发生[19]。早在20世纪90年代就有人试图通过鼻腔免疫预防猪呼吸道传染病(伪狂犬)[20]。最近几年一些研究学者对猪的鼻腔免疫进行了更深入研究, 如通过鼻腔免疫预防PRRS、MPS和猪流感等[21-24]。
PRRS是严重危害我国养猪业的重大传染病。应用PRRSV活苗或死苗通过传统的免疫方式都不能有效控制PRRS的发生, 但通过鼻腔免疫后却能产生较好的效果。如应用PRRSV致弱毒株与CpG配合通过鼻腔免疫仔猪后在唾液、粪便、鼻液中都能产生大量的抗PRRSV的sIgA, 血清中sIgG抗体水平也显著增加[24]。应用PRRSV弱毒苗通过鼻腔免疫后还可诱导交叉保护性免疫[21]。应用结核杆菌裂解物配合PRRSV, 通过鼻腔免疫既可诱导肺中NK细胞、CD8+ T细胞、CD4+ T细胞和γδT细胞数量的增加, 也可引起PRRSV特异性抗体的升高[21]。最近, 有试验结果证明减毒PRRSV株(VR2385)通过鼻腔免疫比肌肉注射效果更好[25]。此外, 应用灭活PRRSV病毒, 配合CpG经鼻腔免疫后也可促进局部细胞免疫和提高局部IgA水平[24]。病毒样颗粒(virus-like particle, VLP)大小与病毒相似, 由于具有更好的抗原性、免疫原性和更高的安全性倍受青睐。应用VLP通过黏膜免疫预防传染病在人类医学已得到广泛研究(人乳头瘤病毒和人类免疫缺陷病毒)。应用PRRSV的VLP经鼻腔免疫10 d后就能检测出特异性抗体, 并在血液中产生高水平的α干扰素[26]。
猪支原体肺炎(MPS)是由猪肺炎支原体(Mycoplasma hyopneumoniae, Mhp)引起的呼吸道传染病, 长期以来危害我国南方大部分地区的养猪业。应用Mhp弱毒株配合CpG鼻腔免疫猪后鼻腔、气管和气管叉, 分泌物中sIgA抗体水平显著增加, 细胞因子IL-6、IL-10及IFN-γ水平也显著增加, 肺门淋巴结中CD4+、CD8+ T淋巴细胞的数量也显著增加[27]。有意思的是肺内注射猪肺炎支原体弱毒株能够显著提高鼻腔分泌物中sIgA抗体水平[28], 因此目前通过肺内注射接种已成为国内一些猪场控制猪支原体肺炎的主要方法。
猪流感是典型通过飞沫传染的呼吸道疾病, 应用聚肌胞(Poly I:C)与猪流感灭活病毒一起鼻腔免疫后可对猪产生很好的交叉保护效果[29], 应用聚乳酸聚乙醇酸(PLGA)包被H1N2猪流感病毒, 经鼻腔免疫动物后也产生很好的保护效果(不再出现流感症状)[30]。
3 猪黏膜免疫应用前景目前,我国预防猪传染病的方法大都通过皮下注射或肌肉注射的传统方式, 但此种疫苗接种方式不仅会对动物造成很大的应激反应, 影响动物的生产力, 而且还会因针头接种易带来人为的污染, 不能有效控制传染病的发生。通过黏膜免疫不会导致动物的应激反应, 而且鼻腔免疫和口服免疫简便易行, 能直接切断病原体的入侵途径。国外学者曾专门介绍了猪黏膜免疫未来的发展方向[31]。但目前猪的黏膜免疫还存在一些局限, 如口服免疫存在疫苗经胃肠道时易受到胃肠液中各种酶解威胁和免疫期短等问题。因此,寻找合适的免疫增强剂和设计有效的疫苗递呈载体是猪黏膜免疫的发展方向。科学设计猪黏膜疫苗将为有效控制猪的传染病带来广阔的应用前景。此外, 猪的免疫系统和人的免疫系统有超过80%的相似度[32], 大量试验证明猪可作为理想的实验动物模型, 因此, 研究猪黏膜免疫和有针对性地设计疫苗会对人类预防医学发展做出很大贡献。
| [1] | 杨倩. 
																黏膜免疫及其疫苗设计[M].								北京: 								科学出版社, 								2016. Yang Q. Mucosal Immunization and Its Vaccine Design[M]. Beijing: Science Press, 2016. (in Chinese with English abstract) | 
| [2] | Snoeck V, Verfaillie T, Verdonck F, et al. The jejunal Peyer's patches are the major inductive sites of the F4-specific immune response following intestinal immunisation of pigs with F4(K88)fimbriae[J]. Vaccine, 2006, 24(18): 3812-3820. DOI: 10.1016/j.vaccine.2005.07.025 | 
| [3] | Von R S, Staubach C, Kaden V, et al. Retrospective analysis of the oral immunisation of wild boar populations against classical swine fever virus(CSFV)in region Eifel of Rhineland-Palatinate[J]. Veterinary Microbiology, 2008, 132(1): 29-38. | 
| [4] | Rossi S, Pol F, Forot B, et al. Preventive vaccination contributes to control classical swine fever in wild boar(Sus scrofa sp.)[J]. Veterinary Microbiology, 2010, 142(1/2): 99-107. | 
| [5] | Monger V R, Stegeman J A, Dukpa K, et al. Evaluation of oral bait vaccine efficacy against classical swine fever in village backyard pig farms in bhutan[J]. Transboundary and Emerging Diseases, 2016, 63(6): e211. DOI: 10.1111/tbed.12333 | 
| [6] | Saubusse T, Masson J D, Le D M, et al. How to survey classical swine fever in wild boar(Sus scrofa)after the completion of oral vaccination?Chasing away the ghost of infection at different spatial scales[J]. Veterinary Research, 2016, 47(1): 21. DOI: 10.1186/s13567-015-0289-6 | 
| [7] | Mainguy J, Fehlnergardiner C, Slate D, et al. Oral rabies vaccination in raccoons:comparison of ONRAB® and RABORAL V-RG® vaccine-bait field performance in Québec, Canada and Vermont, USA[J]. Journal of Wildlife Diseases, 2013, 49(1): 190-193. DOI: 10.7589/2011-11-342 | 
| [8] | Brim T A, Vancott J L, Lunney J K, et al. Cellular immune responses of pigs after primary inoculation with porcine respiratory coronavirus or transmissible gastroenteritis virus and challenge with transmissible gastroenteritis virus[J]. Vet Immunol Immunopathol, 1995, 48(1/2): 35-54. | 
| [9] | Song D S, Oh J S, Kang B K, et al. Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain[J]. Research in Veterinary Science, 2007, 82(1): 134-140. DOI: 10.1016/j.rvsc.2006.03.007 | 
| [10] | Lin J, Tu C, Mou C, et al. CpG DNA facilitate the inactivated transmissible gastroenteritis virus in enhancing the local and systemic immune response of pigs via oral administration[J]. Veterinary Immunology and Immunopathology, 2016, 172: 1-8. DOI: 10.1016/j.vetimm.2016.02.013 | 
| [11] | Hyland K, Foss D L, Johnson C R, et al. Oral immunization induces local and distant mucosal immunity in swine[J]. Veterinary Immunology and Immunopathology, 2004, 102(3): 329-338. DOI: 10.1016/j.vetimm.2004.09.015 | 
| [12] | Shin M K, Kang M L, Jung M H, et al. Induction of protective immune responses against challenge of actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs[J]. Veterinary Immunology and Immunopathology, 2013, 76(4): 495-503. | 
| [13] | Ogawa Y, Oishi E, Muneta Y, et al. Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector[J]. Vaccine, 2009, 27(33): 4543-4550. DOI: 10.1016/j.vaccine.2009.04.081 | 
| [14] | Wang X, Wang Z, Xu H, et al. Orally administrated whole yeast vaccine against porcine epidemic diarrhea virus induced high levels of iga response in mice and piglets[J]. Viral Immunology, 2016, 29(9): 526-531. DOI: 10.1089/vim.2016.0067 | 
| [15] | Mou C, Zhu L, Xing X, et al. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs[J]. Antiviral Research, 2016, 131: 74-84. DOI: 10.1016/j.antiviral.2016.02.003 | 
| [16] | Hu B, Li C, Lu H, et al. Immune responses to the oral administration of recombinant Bacillus subtilis expressing multi-epitopes of foot-and-mouth disease virus and a cholera toxin B subunit[J]. Journal of Virological Methods, 2011, 171(1): 272-279. DOI: 10.1016/j.jviromet.2010.11.023 | 
| [17] | 杨倩, 庾庆华, 李玉磊. 猪呼吸道淋巴组织发育的亚显微结构变化[J].
																畜牧兽医学报, 2006, 37(4): 374-378. Yang Q, Yu Q H, Li Y L. Submicroscopic changes in the development of respiratory tract lymphoid tissue in pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2006, 37(4): 374-378. (in Chinese with English abstract) | 
| [18] | Yang J, Lei D, Yu Q, et al. Histological and anatomical structure of the nasal cavity of Bama minipigs[J]. PLoS ONE, 2017, 12(3): e0173902. DOI: 10.1371/journal.pone.0173902 | 
| [19] | Ambrose C S, Luke C, Coelingh K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza[J]. Influenza Other Respi Viruses, 2008, 2(6): 193-202. DOI: 10.1111/irv.2008.2.issue-6 | 
| [20] | Bouma A, Zwart R J, de Bruin M G, et al. Immunohistological characterization of the local cellular response directed against pseudorabies virus in pigs[J]. Veterinary Microbiology, 1997, 58(2/3/4): 145. | 
| [21] | Dwivedi V, Manickam C, Patterson R, et al. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant[J]. Vaccine, 2011, 29(23): 4058-4066. DOI: 10.1016/j.vaccine.2011.03.006 | 
| [22] | Kappes M A, Sandbulte M R, Platt R, et al. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs[J]. Vaccine, 2012, 30(2): 280-288. DOI: 10.1016/j.vaccine.2011.10.098 | 
| [23] | Vincent A L, Ma W, Lager K M, et al. Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine[J]. Vaccine, 2007, 25(47): 7999-8009. DOI: 10.1016/j.vaccine.2007.09.019 | 
| [24] | Zhang L, Tian X, Zhou F. Intranasal administration of CpG oligonucleotides induces mucosal and systemic type 1 immune responses and adjuvant activity to porcine reproductive and respiratory syndrome killed virus vaccine in piglets in vivo[J]. International Immunopharmacology, 2007, 7(13): 1732-1740. DOI: 10.1016/j.intimp.2007.09.012 | 
| [25] | Evenson D, Gerber P F, Xiao C T, et al. A porcine reproductive and respiratory syndrome virus candidate vaccine based on the synthetic attenuated virus engineering approach is attenuated and effective in protecting against homologous virus challenge[J]. Vaccine, 2016, 34(46): 5546-5553. DOI: 10.1016/j.vaccine.2016.09.049 | 
| [26] | Noort A V, Nelsen A, Pillatzki A E, et al. Intranasal immunization of pigs with porcine reproductive and respiratory syndrome virus-like particles plus 2', 3'-cGAMP VacciGradeTM adjuvant exacerbates viremia after virus challenge[J]. Virology Journal, 2017, 14(1): 76. DOI: 10.1186/s12985-017-0746-0 | 
| [27] | Li Y, Li P, Wang X, et al. Co-administration of attenuated Mycoplasma hyopneumoniae 168 strain with bacterial DNA enhances the local and systemic immune response after intranasal vaccination in pigs[J]. Vaccine, 2012, 30(12): 2153-2158. DOI: 10.1016/j.vaccine.2012.01.028 | 
| [28] | Zhixin F, Guoqing S, Maojun L, et al. Immune responses to the attenuated Mycoplasma hyopneumoniae 168 strain vaccine by intrapulmonic immunization in piglets[J]. Journal of Integrative Agriculture, 2010, 9(3): 423-431. | 
| [29] | Thomas M, Wang Z, Sreenivasan C C, et al. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs[J]. Vaccine, 2015, 33(4): 542-548. DOI: 10.1016/j.vaccine.2014.11.034 | 
| [30] | Dhakal S, Hiremath J, Bondra K, et al. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs[J]. Journal of Controlled Release, 2017, 247: 194-205. DOI: 10.1016/j.jconrel.2016.12.039 | 
| [31] | Bailey M. The mucosal immune system:recent developments and future directions in the pig[J]. Developmental and Comparative Immunology, 2009, 33(3): 375. DOI: 10.1016/j.dci.2008.07.003 | 
| [32] | Dawson H. A comparative assessment of the pig, mouse and human genomes: a structural and functional analysis of genes involved in immunity[M]//McAnulty P A, Dayan A D, Hastings K H, et al. The Minipig in Biomedical Research. Boca Raton FL: CRC Press, 2011: 321-341. | 
 
  
  


