文章信息
- 郭蓉, 张峰, 郑卫江, 饶时庭, 薛永强, 邹雪婷, 李建航, 姚文. 2016.
- GUO Rong, ZHANG Feng, ZHENG Weijiang, RAO Shiting, XUE Yongqiang, ZOU Xueting, LI Jianhang, YAO Wen. 2016.
- 撤除教槽料抗生素和无机铜对哺乳仔猪粪便大肠杆菌耐药性的影响
- Effects of withdrawing antibiotic and copper in creep feed on the resistance of Escherichia coli isolated from feces of sucking piglets
- 南京农业大学学报, 39(3): 448-454
- Journal of Nanjing Agricultural University, 39(3): 448-454.
- http://dx.doi.org/10.7685/jnau.201601057
-
文章历史
- 收稿日期:2016-01-30
在我国目前的养猪生产过程中,为预防仔猪腹泻和促生长,仔猪饲料中添加抗生素和无机铜是普遍采用的营养策略。无论是治疗的高剂量还是预防和促生长的低剂量抗生素的使用,都可能导致宿主肠道微生物抗生素耐受基因的选择及水平转移[1, 2]。Zhu等[3]利用宏基因组学研究了北京、嘉兴、莆田三地3个万头猪场猪粪便细菌的耐药情况,检测到149种抗生素耐药基因,耐受抗生素的种类包括了氨基糖苷类、β-内酰胺、四环素、万古霉素,并且随着猪粪用于土壤施肥,土壤的耐药基因水平也随之上升。动物肠道中的耐药菌,无论是共生菌还是病原菌,都有可能通过食物、直接接触或者粪便排放等方式传递给人类,从而威胁人类健康[4]。
针对耐药性的严重状况,2006年欧盟全面禁用抗菌促生长剂[5],耐药菌数量在该地区得到了控制,但却没有完全消失。一方面可能是抗生素仍是动物主要的治疗用药,另一方面饲料中铜等微量元素的高剂量使用可能对维持和促进抗生素的耐药性起着重要作用[6]。有研究表明,高剂量铜的使用与革兰氏阳性肠球菌对大环内酯类、四环素类抗生素耐受性的增加存在着一定的联系[7],铜在筛选耐药大肠杆菌中发挥着一定作用[8]。
本研究室前期对江苏某集约化猪场仔猪粪便大肠杆菌6类抗生素耐药表型的分析发现:70%的大肠杆菌表现为多重耐药,约90%的菌株耐受四环素类,70%耐受青霉素类,50%耐受酰胺醇类,30%耐受头孢菌素类、氨基糖苷类和氟喹诺酮类抗生素;仔猪在摄入含有抗生素和高剂量铜的饲料后,其粪便大肠杆菌对头孢菌素类、酰胺醇类和氟喹诺酮类抗生素的耐受率显著上升,大肠杆菌的铜耐受和抗生素耐受表型间存在一定的相关性[9]。由此可见养猪生产中抗生素和微量元素的规范使用迫在眉睫。近几年来,我国对畜禽病原菌的耐药问题也给予了高度关注并出台了规范使用抗生素的相关条例[10],但是对抗生素和无机铜在细菌耐药性传播中的作用机制研究不足,对无抗养殖与细菌抗生素耐药性之间的作用机制缺乏理论依据。因此,本试验以苏淮猪哺乳仔猪为对象,在出生后的第14天开始给对照组仔猪饲喂商品教槽料(添加抗生素和无机铜),给试验组仔猪饲喂自配教槽料(不添加抗生素和无机铜),通过比较仔猪粪便中氨苄西林(AMP)、四环素(TET)、头孢噻肟(CTX)耐受肠杆菌数的差异和分离自CTX-Mac平板大肠杆菌耐药性和铜抗性的变化,剖析并评估撤除饲料中抗生素和无机铜对缓解当前猪源大肠杆菌严重耐药问题的可行性与意义,为无抗养猪实践提供理论指导。
1 材料与方法 1.1 试验材料麦康凯琼脂、伊红美蓝琼脂、营养琼脂和肉汤,购自北京奥博星生物技术有限公司。MH琼脂和MH肉汤均购自青岛海博生物技术有限公司。氨苄西林、氟苯尼考购自南京龙斌生物科技有限公司,盐酸四环素、硫酸庆大霉素购于生工生物(上海)有限公司。头孢噻肟钠(cefotaxime sodium,CTX)、萘啶酸、盐酸环丙沙星购于大连美仑生物技术有限公司。药敏试验用质控菌株大肠杆菌(ATCC25922),购于广东省微生物菌种保藏中心。
1.2 试验设计本试验选用9窝27头7日龄苏淮哺乳仔猪,随机分为3组,每组3窝9头仔猪,从14日龄开始,W0组饲喂商品教槽料(含抗生素和无机铜),该商品教槽料中添加了金霉素(137.5 mg · kg-1)、硫酸黏杆菌素(50 mg · kg-1)、杆菌肽锌(100 mg · kg-1);W1和W2组饲喂不同的自配教槽料(不添加抗生素和无机铜)。W0、W1、W2组教槽料配方和营养水平见表 1。利用原子吸收分光光度法检测了商品和自配教槽料中的铜水平[11],W0、W1和W2组铜含量分别为45.21、5.83和5.22 mg · kg-1。30日龄断奶,采集每头仔猪7和30日龄的粪样,进行细菌计数和菌株分离。
| % | ||||||||
| 项目 Items | 分组 Groups | 项目 Items | 分组 Groups | |||||
| W0 | W1 | W2 | W0 | W1 | W2 | |||
| 饲料组成Feed composition | 营养组成Nutrient composition | |||||||
| 玉米 Corn | 60 | 61 | 58 | 粗蛋白 Crude protein | 19.22 | 18.10 | 18.10 | |
| 康地59401,2 Kangdi 5940 | 20 | 赖氨酸 Lysine | 1.18 | 1.08 | 1.07 | |||
| 泰高P40813,4 Taigao P4081 | 20 | 粗纤维 Crude fibre | 3.36 | 6.06 | 6.53 | |||
| 自配教槽料 Self-made creep feed | 34 | 32 | ||||||
| 酵母培养物Yeast culture | 10 | |||||||
| 大豆皮Soybean hulls | 5 | |||||||
| 注: 1)原料组成:豆粕、鱼粉、乳清粉、香味剂、维生素、石粉、磷酸氢钙、矿物元素、氨基酸、氯化钠、乙氧基喹啉;2)药物添加剂:硫酸黏杆菌素、金霉素;3)原料组成:膨化大豆、乳清粉、鱼粉、维生素、矿物元素、氧化锌、氯化钠、L-赖氨酸硫酸盐及其发酵副产物、乳酸、酶制剂等;4)药物添加剂:杆菌肽锌预混剂、硫酸黏杆菌素预混剂 Note: 1)Ingredints:soybean meal,fish meal,whey powder,scenting agent,vitamin,stone powder,calcium hydrogen phosphate,mineral element,amino acid,sodium chloride,ethoxyquinoline;2)Drug additive:colistin sulfate,chlortetracycline;3)Ingredints:expanded soybean,whey powder,fish meal,vitamin,mineral element,zinc oxide,sodium chloride,L-lysine sulphate and its fermentation products,lactic acid,enzyme preparation etc;4)Drug additive:bacitracin zinc premix,colistin sulfate premix. |
||||||||
准确称取0.5 g仔猪粪样加入4.5 mL无菌生理盐水中,涡旋成悬浊液后进行10倍梯度稀释。选择3个适宜稀释梯度的粪便悬液,各取0.1 mL,分别涂布在不含抗生素,含氨苄西林(16 μg · mL-1)、四环素(8 μg · mL-1)或头孢噻肟钠(2 μg · mL-1)的麦康凯琼脂平板(Mac)上,37 ℃培养24 h后对各个平板进行菌落计数。加入培养基的抗生素均按照药物本身的效价进行计算与称质量。挑选含头孢噻肟钠(2 μg · mL-1)麦康凯琼脂平板上的砖红色、圆形隆起、光滑、湿润、边缘整齐的单个菌落接种于伊红美蓝琼脂平板上,37 ℃培养24 h,在伊红美蓝琼脂平板上挑选黑色、金属光泽菌落进行吲哚试验、甲基红试验、维倍(V-P)试验和枸橼酸盐利用试验,鉴定结果为“+、+、-、-”的菌株可确定为大肠杆菌。每个样品挑选2株大肠杆菌,用体积分数为20%的甘油肉汤保存,置于-20 ℃冰箱中备用。
1.4 抗生素药敏性测定方法试验分离鉴定的大肠杆菌对6种抗生素的最低抑菌浓度(MIC)通过琼脂稀释法进行检测,所用方法和标准均遵循美国临床试验室标准化委员会(Clinical and Laboratory Standards Institute,CLSI)的相关条例[12, 13]。具体操作如下:使用二倍稀释法将各种药物稀释成试验所需的各个浓度梯度,分别定量加入灭菌的MH琼脂于平皿中混合均匀,冷却凝固后制成所需药物浓度的琼脂平板。将浊度为0.5麦氏单位、浓度约为109 CFU · mL-1的菌液,用灭菌MH肉汤稀释100倍后,用多点接种器接种到含不同浓度药物的MH平板上,接种顺序从低浓度到高浓度,37 ℃倒置培养16~18 h后观察结果,以完全不见细菌生长的最低浓度为该药物对细菌的MIC值。终点判读:参照CLSI药敏标准,当质控菌ATCC25922在CLSI规定的药敏范围内时,对试验菌株的MIC值进行判读,大肠杆菌的MIC值分为敏感(包括中介)和耐药。抗生素的浓度范围以及大肠杆菌的耐药折点见表 2。
| μg · mL-1 | |||||
| 抗生素种类 Antimicrobial class | 抗生素 Antimicrobial agent | 缩写 Abbreviations | 浓度范围 Concentrations range | 敏感折点 Sensitive break point | 耐药折点 Resistant break point |
| 喹诺酮类Quinolones | 萘啶酸 环丙沙星 | NAL CIP | 0.5~128 0.003 9~32 | ≤16 ≤1 | ≥32 ≥4 |
| 青霉素类Penicillins | 氨苄西林 | AMP | 1~64 | ≤8 | ≥32 |
| 氨基糖苷类Aminoglycosides | 庆大霉素 | GEN | 0.125~64 | ≤4 | ≥16 |
| 四环素类Tetracydines | 四环素 | TET | 0.25~64 | ≤4 | ≥16 |
| 酰胺醇类Amphenicols | 氟苯尼考 | FLO | 1~64 | ≤4 | ≥16 |
| 注: 耐药折点参考美国临床实验室标准委员会标准(CLSI)。Break points were based on Clinical Laboratory Standards Institute guidelines(CLSI). | |||||
铜的敏感性检测使用琼脂稀释法[14],硫酸铜的浓度设为0、2、4、8、12、16、24和32 mmol · L-1。使用多点接种器将菌液接种到MH琼脂平板上,37 ℃培养24 h后观察结果,以完全看不见细菌生长的最低抗生素浓度为其对细菌的最小抑菌浓度(MIC)。
1.6 统计方法本试验所得数据使用IBM SPSS 20.0软件进行分析,采用ANOVA单因素方差分析分别对各处理组细菌计数结果以及耐药比率差异进行显著性比较。在分析大肠杆菌对抗生素和铜敏感性数据时采用卡方检验。
2 结果与分析 2.1 仔猪采食教槽料前后Mac肠道杆菌和耐受AMP、TET及CTX肠道杆菌的计数仔猪采食教槽料前后,其Mac肠道杆菌计数和AMP、TET、CTX-Mac肠道杆菌计数结果,以及3种抗生素耐药菌的比例见图 1。7日龄仔猪未分组饲喂教槽料,各组仔猪粪样的肠杆菌数以及耐受AMP、TET、CTX肠杆菌数均无显著差异;各组的3种抗生素耐药菌的比例也没有显著差异。30日龄时,W2组的肠杆菌数显著低于W0组(P<0.05),W2组耐受TET肠杆菌数也显著低于W0组(P<0.05);W1和W2组的耐 受CTX肠杆菌数均极显著低于W0组(P<0.01),其对应的耐药菌比例也极显著低于对照组W0(P<0.01)。
|
图 1 仔猪采食教槽料前后麦康凯琼脂平板(Mac)肠道杆菌和AMP、TET及CTX耐受肠道杆菌的数目与比值
Fig. 1 Abundance of cultivable bacterial in Mac and Mac amended with antibiotics and the ratio of resistant bacteria
1)A:麦康凯平板计数;B:氨苄西林(AMP)麦康凯平板计数;C:四环素(TET)麦康凯平板计数;D:头孢噻肟(CTX)麦康凯平板计数;
E:耐受氨苄西林肠杆菌比值;F:耐受四环素肠杆菌比值;G:耐受头孢噻肟肠杆菌比值。2)与对照组(W0)相比较,*、* *分别表示P<0.05、P<0.01。 1)A:Mac without antibiotics;B:Mac amended with 16 μg · mL-1ampicillin;C:Mac amended with 8 μg · mL-1 tetracycline;D:Mac amended with 2 μg · mL-1 cefotaxime;E:The ratio of ampicillin-resistant isolates;F:The ratio of tetracycline-resistant isolates;G:The ratio of cefotaxime-resistant isolates. 2)Compared with control group(W0),*,* * mean P<0.05,P<0.01,respectively. |
本试验自CTX-Mac琼脂平板上共分离了87株耐受头孢噻肟大肠杆菌,分别对其进行了6种抗生素以及铜的敏感性检测,结果如表 3所示。7日龄时,所有分离株均耐受AMP和TET,对CIP和FLO的耐受率无组间差异;W0和W2组分离株的GEN耐药率极显著高于W1组(P<0.01),而W0和W2组分离株的NAL耐药率则极显著低于W1组(P<0.01);除1株菌表现出铜抗性外其余分离株均对铜敏感。30日龄时,W2组分离株的GEN耐药率显著高于W0和W1组(P<0.05);W0组分离株的NAL耐药率显著高于W1和W2组(P<0.05);W0组分离株的铜抗性显著高于W1和W2组(P<0.05)。比较同一组仔猪7和30日龄的结果可见,W0组分离株的GEN耐药率极显著下降(P<0.01),NAL耐药率显著升高(P<0.05);W1组分离株的NAL耐药率极显著下降(P<0.01);所有菌株的铜抗性均极显著升高(P<0.01)。
| 日龄
Day-old |
处理
Treatment |
CIP | GEN | TET | NAL | FLO | AMP | MDR | Cu |
| 7 | W0(n=13) | 3(23.08%) | 13Aa(100.00%) | 13(100.00%) | 3Bb(23.08%) | 3(23.08%) | 13(100.00%) | 13(100.00%) | 1(7.69%) |
| W1(n=9) | 3(33.33%) | 3Bb(33.33%) | 9(100.00%) | 8Aa(88.89%) | 5(55.56%) | 9(100.00%) | 8(88.89%) | 0(0.00%) | |
| W2(n=13) | 2(15.38%) | 12Aa(92.31%) | 13(100.00%) | 4Bb(30.77%) | 7(53.85%) | 13(100.00%) | 13(100.00%) | 0(0.00%) | |
| 30 | W0(n=18) | 2(11.11%) | 4Bb(22.22%) | 18(100.00%) | 13a(72.22%) | 9(50.00%) | 18(100.00%) | 16(88.89%) | 17Aa(94.44%) |
| W1(n=16) | 1(6.25%) | 6b(37.50%) | 16(100.00%) | 4b(25.00%) | 9(56.25%) | 15(93.75%) | 11(68.75%) | 9b(56.25%) | |
| W2( n=18) | 2(11.11%) | 14Aa(77.78%) | 18(100.00%) | 6b(33.33%) | 6(33.33%) | 18(100.00%) | 18(100.00%) | 9Bb(50.00%) | |
|
P值 P-value |
W0D7×W0D30
W1D7×W1D30 W2D7×W2D30 |
0.625
0.116 1.000 |
<0.01
1.000 1.000 |
—
— — |
0.011
0.004 1.000 |
0.158
1.000 0.294 |
—
1.000 — |
0.497
0.364 — |
<0.01
0.008 0.004 |
| 注: 1)MDR:多重耐药性;2)相同指标同一列肩标不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01);3)括号内数值为该组耐药大肠杆菌所占百分比。 Note: 1)MDR:Multi-drug resistance;2)Values in a row with different lowercase superscripts are significantly different(P<0.05),with different capital superscripts are extremely significantly different(P<0.01);3)Data in brackets are percent of antimicrobiol resistance in each group. |
|||||||||
耐受头孢噻肟大肠杆菌分离株对GEN和NAL的耐受表现出一定程度的此消彼长。将87株分离株划分为NAL耐受和敏感两类,进行GEN耐药率分析发现,NAL敏感株的GEN耐药率显著高于NAL耐受株的GEN耐药率(74.51% vs 36.11%,P<0.01,表略)。从生存曲线分析(图 2)结果可以看出,大肠杆菌对庆大霉素和萘啶酸的敏感性之间存在极显著差异(HR=2.599;95% CI=1.392~4.852;P<0.01)。
| 图 2 耐受头孢噻肟大肠杆菌生存曲线分析 Fig. 2 The survival analysis of cefotaxime-resistant E.coli isolates |
将87株分离株根据其不同的铜抗性值,分为小于24 mmol · L-1和大于等于24 mmol · L-1两类,分析在铜抗性不同时,菌株对不同种类抗生素的耐药性是否存在差异,结果如表 4所示。可以看出,当菌株的铜抗性降低时,只有庆大霉素的耐药率表现为显著升高(P<0.05);其余抗生素的耐药性在铜抗性不同时并无显著差异。
| % | ||
| 抗生素 Antimicrobial agent |
铜MIC值 Copper MIC value | |
| <24 mmol·L-1 | ≥24 mmol·L-1 | |
| CIP | 19.61 | 8.33* |
| GEN | 68.63 | 47.22* |
| TET | 100.00 | 100.00* |
| NAL | 45.10 | 41.67* |
| FLO | 50.98 | 36.11* |
| AMP | 98.04 | 100.00* |
| Note:*P<0.05. | ||
为应对畜禽病原菌日益严重的耐药问题,欧盟已于2006年禁止以促进生长为目的抗生素饲料添加剂的使用[5]。我国近年来也高度关注畜禽病原菌的抗生素耐药问题,出台了规范使用抗生素的法规条例[10],但是对饲料抗生素和铜等微量元素在耐药性形成和传播中作用的系统和深入研究不足,对无抗健康养殖的理论支持不足。因此本试验通过比较采食不同教槽料仔猪粪便中大肠杆菌耐药性的差异,评价撤除饲料中的抗生素和无机铜对控制猪源大肠杆菌耐药的可行性,为实现无抗养殖提供理论指导。
本试验中,7日龄仔猪均未采食教槽料,其哺乳母猪饲养于同一舍内,采食同样的饲料,因此这个时间点仔猪粪样Mac肠杆菌数和AMP、TET、CTX-Mac肠道杆菌数各组间均无显著差异。30日龄时,W0组仔猪已经采食了含有金霉素、硫酸黏杆菌素、杆菌肽锌和无机铜的商品教槽料,W1和W2组仔猪的教槽料中撤除了抗生素和无机铜,分离耐药菌的数目也随之显著降低,抗生素和无机铜的撤除可能缓解了其对肠道肠杆菌的选择性压力,进而降低了肠道耐药菌的比例。整个试验过程中,AMP和TET耐药肠杆菌的比例始终维持在90%以上,该猪场母猪饲料中金霉素的添加和使用青霉素、氨苄西林等治疗腹泻和气喘可能是导致这一现象的主要原因。Holman等[15]研究也发现,未使用任何抗生素的哺乳仔猪对金霉素的耐受率高达60%左右,断奶后仔猪对金霉素的耐受率达到了80%左右。金霉素自20世纪50年代以来在商品猪生产上的广泛使用,是导致细菌对其高耐药的直接原因[16]。
本试验分离自CTX-Mac琼脂平板的87株大肠杆菌的多重耐药现象极为普遍,占总数的90.80%。主要的耐药表型是TET/GEN/AMP,其次是FLO/TET/NAL/AMP和FLO/TET/GEN/AMP。除1株大肠杆菌对氨苄西林敏感外,其余菌株对四环素和氨苄西林均表现为耐受。有报道指出,大肠杆菌对四环素和头孢菌素的耐药性之间存在极显著相关性[OR-5.1(95% CI-2.4-11.2)],并且四环素耐药基因tetA和头孢菌素耐药基因blaCMY- 2 之间存在极显著正相关[14]。Cameron-Veas等[17]对47株耐受头孢菌素大肠杆菌的多种抗生素的敏感性检测后发现,这47株大肠杆菌均耐受氨苄西林和头孢噻肟,其中45株对四环素类、磺胺类、氨基糖苷类、喹诺酮类、氯霉素类和多黏菌素类抗生素表现为多重耐药,耐药范围为3~6类抗生素不等。说明大肠杆菌一旦对某一种抗生素产生耐药,不仅对同类抗生素的疗效造成威胁,还会影响其他种类抗生素的疗效。本试验分离的耐受头孢噻肟大肠杆菌对GEN和NAL的耐受表现出一定程度的此消彼长,萘啶酸敏感菌株的庆大霉素耐药率极显著高于萘啶酸耐受菌株,其原因需要进一步研究。
本试验大肠杆菌分离株的铜抗性,在7日龄的35株菌中仅1株高耐铜;在30日龄的52株菌中,W1和W2组的大肠杆菌铜抗性显著低于W0组,教槽料中无机铜的添加显著提高了大肠杆菌的铜抗性。Amachawadi等[18]研究表明,在猪饲料中添加较高剂量的无机铜增加了肠道微生物对重金属的抗性。同时,30日龄仔猪粪样大肠杆菌铜抗性均极显著高于7日龄仔猪粪样大肠杆菌的铜抗性。本实验室在前期研究中系统分析了仔猪饲料中添加定量无机铜后粪便中的铜水平的变化。结果显示:在饲料中分别添加4和125 mg · kg-1硫酸铜后,仔猪粪便中的铜水平随着含铜日粮采食时间的延长而提高,仔猪19日龄时,低铜组粪便铜含量为17.02 mg · kg-1,高铜组粪便铜含量为330.80 mg · kg-1;24日龄时,低铜组仔猪粪便中铜含量为13.78 mg · kg-1,高铜组中粪便铜含量为355.88 mg · kg-1;34日龄时,低铜组仔猪粪便铜含量为14.65 mg · kg-1,高铜组粪便铜含量为443.96 mg · kg-1(数据未发表)。由此,我们推测本试验仔猪粪便中的铜水平也会随仔猪饲料铜水平的不同而存在差异,30日龄,W0组粪便铜水平可能为160 mg · kg-1左右,W1和W2组可能为20 mg · kg-1左右,这可能是苏淮哺乳仔猪粪便分离大肠杆菌铜抗性在各组中均显著增加的主要原因。Jacob等[19]报道,低铜组和高铜组肉牛粪源大肠杆菌的铜抗性在试验期32 d均显著高于试验期0 d和14 d。此外,计徐等[9]也发现,仔猪断奶前后分离的大肠杆菌对铜的敏感性也发生了极显著下降。
目前,已有报道指出重金属抗性和抗生素耐药性之间可能存在着协同选择作用,重金属可能通过协同抗性或者交叉抗性机制来维持和促进抗生素的耐受性[20]。Hölzel等[21]分析液态粪肥中细菌对重金属和抗生素抗性的相互关系时发现,重金属铜和锌在细菌对β-内酰胺类抗生素耐受性的维持中起着正效作用,相反,重金属汞浓度的升高会导致大肠杆菌对抗生素耐药性降低。Ji等[22]研究发现,一些抗生素耐药基因如sulA、sul Ⅲ 和铜、锌、汞之间存在着相关性,重金属的使用可能会加剧这些耐药基因的表达和水平传播。Medardus等[23]也在沙门氏菌中证实了重金属抗性和抗生素耐药性之间存在着极密切的联系。本试验结果也表明,当铜抗性降低时,大肠杆菌对庆大霉素的耐药性显著升高,对氟苯尼考和环丙沙星的耐药率也有所提高。此外,Agga等[14]也发现,随着时间的推移,对照组对庆大霉素的耐受率显著下降,而高铜处理组对庆大霉素的耐受率则表现为极显著下降,抗生素处理组和抗生素及高铜处理组对庆大霉素的耐受率也均有下降的趋势。大肠杆菌的铜抗性与其对庆大霉素耐受性间存在着一定互作关系,但二者的作用机制有待进一步研究。
| [1] | Barlow M. What antimicrobial resistance has taught us about horizontal gene transfer[M]//Gogarten M B. Horizontal Gene Transfer:Genomes in Flux,Vol 532. New York:Humana Press,2009:397-411. |
| [2] | Looft T,Allen H K,Casey T A,et al. Carbadox has both temporary and lasting effects on the swine gut microbiota[J]. Frontiers in Microbiology,2014,5:276. |
| [3] | Zhu Y G,Johnson T A,Su J Q,et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences USA,2013,110(9):3435-3440. |
| [4] | Barza M. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals[J]. Clinical Infectious Diseases,2002,34(Suppl 3):S123-S125. |
| [5] | Casewell M,Friis C,Marco E,et al. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health[J]. Journal of Antimicrobial Chemotherapy,2003,52(2):159-161. |
| [6] | Knapp C W,McCluskey S M,Singh B K,et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS ONE,2011,6(11):e27300. |
| [7] | Amachawadi R,Scott H,Alvarado C,et al. Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of US feedlot cattle fed copper-supplemented diets[J]. Applied and Environmental Microbiology,2013,79(14):4369-4375. |
| [8] | Page S. The Role of Enteric Antibiotics in Livestock Production:A Review of Published Literature[M]. Canberra,Australia:Avcare Ltd,2003. |
| [9] | 计徐,郑卫江,邹雪婷,等. 断奶前后仔猪和母猪粪便源大肠杆菌耐药性和铜抗性的分析[J]. 畜牧兽医学报,2015,46(3):482-490. Ji X,Zheng W J,Zou X T,et al. Analysis of antibiotic and copper resistance of Escherichia coli isolated from feces of sows and piglets before and after weaning[J]. Acta Veterinaria et Zootechnica Sinica,2015,46(3):482-490(in Chinese with English abstract). |
| [10] | 晓同. 农业部发布《饲料药物添加剂使用规范》[J]. 饲料与畜牧,2001(4):5-15. Xiao T. Ministry of Agriculture issued "the use of feed additives norms"[J]. Feed and Animal Husbandry,2001(4):5-15(in Chinese). |
| [11] | 沈梦城. 高铜高锌日粮对断奶仔猪肠道形态、组织铜锌沉积规律及肠道微生物区系的影响[D]. 南京:南京农业大学,2012. Shen M C. Effect of pharmacological levels of dietary copper and zinc on small lintestinal morphology,histochemical precipitation and intestinal microbiota in weaned piglets[D]. Nanjing:Nanjing Agricultural University,2012(in Chinese with English abstract). |
| [12] | CLSI. Performance Standards for Antimicrobial Susceptibility Testing;Twenty-Fourth Informational Supplement[M]. Approved Standard. CLSI document M100-S24,Wayne,PA:Clinical Laboratory Standards Institute,2014. |
| [13] | CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals[M]. Approved Standard-Third Edition,CLSI document M31-A3,Wayne,PA:Clinical and Laboratory Standards Institute,2008. |
| [14] | Agga G E,Scott H M,Amachawadi R G,et al. Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs[J]. Preventive Veterinary Medicine,2014,114(3/4):231-246. |
| [15] | Holman D B,Chénier M R. Impact of subtherapeutic administration of tylosin and chlortetracycline on antimicrobial resistance in farrow-to-finish swine[J]. FEMS Microbiology Ecology,2013,85(1):1-13. |
| [16] | Looft T,Johnson T A,Allen H K,et al. In-feed antibiotic effects on the swine intestinal microbiome[J]. Proceedings of the National Academy of Sciences USA,2012,109(5):1691-1696. |
| [17] | Cameron-Veas K,Sola-Gines M,Moreno M A,et al. Impact of the use of beta-lactam antimicrobials on the emergence of Escherichia coli isolates resistant to cephalosporins under standard pig-rearing conditions[J]. Applied and Environmental Microbiology,2015,81(5):1782-1787. |
| [18] | Amachawadi R G,Shelton N W,Shi X,et al. Selection of fecal enterococci exhibiting tcrB-mediated copper resistance in pigs fed diets supplemented with copper[J]. Applied and Environmental Microbiology,2011,77(16):5597-5603. |
| [19] | Jacob M E,Fox J T,Nagaraja T,et al. Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle[J]. Foodborne Pathogens and Disease,2010,7(6):643-648. |
| [20] | Baker-Austin C,Wright M S,Stepanauskas R,et al. Co-selection of antibiotic and metal resistance[J]. Trends in Microbiology,2006,14(4):176-182. |
| [21] | H lzel C S,Müller C,Harms K S,et al. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance[J]. Environmental Research,2012,113:21-27. |
| [22] | Ji X L,Shen Q H,Liu F,et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai,China[J]. Journal of Hazardous Materials,2012,235:178-185. |
| [23] | Medardus J J,Molla B Z,Nicol M,et al. In-feed use of heavy metal micronutrients in US swine production systems and its role in persistence of multidrug-resistant salmonellae[J]. Applied and Environmental Microbiology,2014,80(7):2317-2325. |


