Variation of soil humus under long-term fertilization andits relation to soil acidity
长期定位施肥试验是研究土壤质量演变的重要方法和手段,能够对土壤质量演变规律与趋势、养分循环与平衡等问题进行系统研究。长期施用化肥使得进入土壤的酸根离子不断增加,酸根离子同阳离子交换作用后附着在土壤胶体上。大量的盐基离子被酸根离子所取代,导致土壤盐基饱和度下降,酸根离子饱和度提高。打破了土壤本身的化学平衡,土壤酸化加剧[1]。
土壤酸化是土壤质量退化的重要形式,是一个速度非常缓慢的自然过程。东北黑土区是我国重要的粮食生产基地,近几十年来,伴随着黑土区耕作制度的改变,并且长期单施化肥,特别是大量施用氮肥,导致黑土酸化现象明显,黑土质量退化日趋严重[2],对我国的粮食安全造成严重威胁。
有研究表明土壤有机质对于土壤pH值的大小有着极其重要的制约作用。土壤有机质对于进入土壤的酸根离子尤其是铝离子的毒性有着很好的缓冲作用[3, 4]。其中土壤腐殖质可以提高土壤对酸化的缓冲能力[5]。然而,目前土壤酸度变化与土壤腐殖质组成和数量的内在联系还不清楚,土壤有机质对土壤酸度缓冲作用的机制还有待进一步研究。
鉴于上述原因,本文以长期定位施肥的黑土为研究对象,研究长期不同施肥土壤的腐殖质组成及胡敏酸类型与土壤酸度变化的关系,以进一步揭示土壤有机质对土壤酸度的缓冲机制,为减缓土壤酸化、保持黑土的土壤质量和生产力提供理论依据。
1 材料与方法
1.1 供试土壤
土壤样品采自于吉林农业大学培养场的长期定位试验基地(125°40′E,43°81′N),长期定位试验开始于1984年,该培养场位于松辽平原腹地的伊通河台地之上,其海拔207.4 m,属于中温带半干燥半湿润季风气候区,年平均气温4.7 ℃,平均相对湿度69%,年均降水量600 mm左右。当季作物为玉米,供试土壤类型为草甸黑土,土壤耕层厚度为15~20 cm。该定位试验的施肥方式为P肥作底肥一次性施入,N肥的1/3作为底肥,其余的2/3作为追肥施入。有机物料为玉米秸秆,种植密度为6万株·hm-2。定位试验分为8个处理(N肥、P肥、K肥单施,NP、NK、PK、NPK配施以及空白对照),3次重复,随机排列。另外设置2组添加有机物料,添加量分别为0.125和0.25 kg·m-2(N、P2O4、K2O的施用量分别为150、75和75 kg·hm-2)。按有机物料添加量分别将两组命名为CM1组和CM2组,单施化肥处理为C组。样品采集于2014年10月中旬(作物收获之后),用土铲在每个培养池内铲出一个耕层断面(0~10 cm),然后平行断面取土。风干过筛后,取部分土样进行腐殖质物质的提取和腐殖质组成的分析和总量变化的测定。
供试土壤的基本性质见表1和2。
表 1 供试土壤的pH值和有机质(OM)
Table 1 The pH and organic matter(OM)of tested soil
| N | 6.01 | 16.61 | 6.42 | 19.83 | 6.78 | 23.56
|
| P | 6.81 | 19.03 | 6.79 | 19.27 | 6.88 | 20.87
|
| K | 6.58 | 17.68 | 6.79 | 19.03 | 7.00 | 19.10
|
| NP | 6.11 | 18.34 | 6.59 | 17.41 | 6.33 | 22.56
|
| NK | 5.89 | 19.72 | 6.31 | 19.38 | 6.27 | 20.42
|
| PK | 6.57 | 18.38 | 6.69 | 18.03 | 6.94 | 21.42
|
| NPK | 6.00 | 17.34 | 6.41 | 18.72 | 6.49 | 23.49
|
| CK | 6.95 | 23.20 | 7.15 | 20.77 | 7.04 | 19.83 |
注:1)C、CM1、CM2分别表示单施化肥、添加有机物料(秸秆)0.125 和0.25 kg·m-2;2)N、P、K、NP、NK、PK、NPK、CK表示定位试验的8个处理,分别代表N肥、P肥、K肥单施,NP、NK、PK、NPK配施以及空白对照。
Note:1)C,CM1 and CM2 represent single application of chemical fertilizer,adding 0.125 and 0.25 kg·m-2 of organic material(straw),respectively;2)N,P,K,NP,NK,PK,NPK and CK represent eight treatments in location experiment;and they represent single application of N,P and K fertilizer and NP,NK,PK,NPK compound fertilizer as well as blank control,respectively. The same as follows.
表 2 供试土壤酸度的分析结果
Table 2 Analysis results of the tested soil
cmol·kg-1
处理 Treatment | | 交换性H+ Exchangeable H+ | 交换性Al3+ Exchangeable Al3+ | 交换性酸 Exchangeable acid |
| |
| 交换性H+ Exchangeable H+ | 交换性Al3+ Exchangeable Al3+ | 交换性酸 Exchangeable acid |
| |
| 交换性H+ Exchangeable H+ | 交换性Al3+ Exchangeable Al3+ | 交换性酸 Exchangeable acid |
|
| N | 0.30 | 0.13 | 0.43 | 0.08 | 0.15 | 0.23 | 0.09 | 0.11 | 0.20
|
| P | 0.14 | 0.10 | 0.24 | 0.11 | 0.05 | 0.16 | 0.10 | 0.09 | 0.19
|
| K | 0.18 | 0.10 | 0.28 | 0.09 | 0.05 | 0.14 | 0.09 | 0.06 | 0.15
|
| NP | 0.18 | 0.11 | 0.29 | 0.10 | 0.14 | 0.24 | 0.09 | 0.15 | 0.24
|
| NK | 0.28 | 0.11 | 0.39 | 0.09 | 0.17 | 0.26 | 0.10 | 0.15 | 0.25
|
| PK | 0.23 | 0.12 | 0.35 | 0.09 | 0.04 | 0.13 | 0.09 | 0.12 | 0.21
|
| NPK | 0.21 | 0.10 | 0.31 | 0.08 | 0.13 | 0.21 | 0.14 | 0.09 | 0.23
|
| CK | 0.15 | 0.10 | 0.25 | 0.08 | 0.05 | 0.13 | 0.08 | 0.08 | 0.16 |
1.2 测定方法
土壤腐殖质组成及分析按Kumada法[6]进行。以0.1 mol·L-1 NaOH提取游离态腐殖质,然后用0.1 mol·L-1 Na4P2O7提取结合态腐殖质[7]。腐殖质提取液经酸沉淀后,分离出胡敏酸(HA)和富里酸(FA),HA经稀碱溶解后,于波长400和600 nm处测定消光系数(K400和K600),并采用高锰酸钾氧化滴定法分别测定HA和FA。HA、FA分别用每克土壤或复合体中含有的HA和FA消耗0.1 mol·L-1 KMnO4的毫升数表示(mL·g-1)。HA1和FA1分别表示NaOH提取的游离态胡敏酸和富里酸;HA2和FA2分别表示Na4P2O7提取的结合态胡敏酸和富里酸。HA的分类按Kumada提出的RF-ΔlogK图[6]进行。Kumada根据与颜色有关的指标色调系数(ΔlogK)和相对色度(RF)将HA分为A、B、P、Rp 4种类型,并指出从Rp到B,或从B到A,或P到A,腐殖物质分子结构趋于复杂。
1.3 数据统计与分析
应用SPSS 16.0统计软件进行数据分析,采用Pearson分析法进行数据间相关性比较。
2 结果与分析
2.1 长期定位施肥黑土的游离态腐殖质组成
从表3可知:在单施化肥的C组,只有单施N肥处理游离态腐殖质(HA1+FA1)大于CK,其余6个处理游离态腐殖质(HA1+FA1)均小于CK;添加有机物料CM1组,N、K、NP、PK、NPK 5个施肥处理大于CK;添加有机物料CM2组,7个不同施肥处理游离态腐殖质(HA1+FA1)均大于CK。这表明:单施化肥的情况下,游离态腐殖质的含量下降,而添加有机物料后,游离态腐殖质含量逐渐升高。
表 3 长期定位施肥黑土的游离态腐殖质组成
Table 3 Free humus composition of black soil
g·kg-1
|
N | 2.03±0.22c | 7.81±0.01a | 9.84±0.23a | 4.25±0.35bc | 7.25±0.35abc | 11.50±0.71abc | 5.47±0.22b | 7.66±0.21ab | 13.13±0.01bc
|
| P | 2.34±0.22bc | 3.44±0.44de | 5.78±0.22c | 2.19±0.44d | 5.16±0.22d | 7.34±0.66e | 4.69±0.01c | 6.56±0.03bc | 11.25±0.02de
|
| K | 1.72±0.22c | 5.31±0.44bc | 7.03±0.66bc | 3.44±0.03c | 8.13±0.44a | 11.56±0.47abc | 4.38±0.44cd | 7.03±0.22bc | 11.41±0.22de
|
| NP | 1.88±0.01c | 4.69±0.44cd | 6.56±0.43bc | 5.50±0.04a | 6.50±1.38bcd | 12.00±1.41ab | 6.25±0.04a | 8.75±0.04a | 15.00±0.07a
|
| NK | 2.81±0.01bc | 4.69±0.44cd | 7.50±0.45bc | 3.28±0.22c | 6.25±0.04bcd | 9.53±0.19d | 4.69±0.02c | 8.44±0.02a | 13.13±0.04bc
|
| PK | 4.38±0.88a | 2.50±0.88e | 6.88±1.77bc | 5.00±0.01ab | 5.94±0.44cd | 10.94±0.45bcd | 5.94±0.01ab | 6.88±0.44bc | 12.81±1.14cd
|
| NPK | 4.06±0.88ab | 3.13±0.88e | 6.88±1.77bc | 5.16±0.66ab | 7.66±0.22ab | 12.81±0.44a | 6.25±0.44a | 8.44±0.01a | 14.69±0.45ab
|
| CK | 2.00±1.06c | 6.16±0.57b | 8.16±0.49ab | 3.34±0.75c | 6.88±0.88abc | 10.22±0.13cd | 3.75±0.44d | 6.25±1.33c | 10.00±1.77e
|
注:HA1、FA1分别表示NaOH提取的游离态胡敏酸和富里酸;HA1+FA1表示游离态腐殖质总量。
Note:HA1 and FA1 represent the free humic acid and fulvic acid extracted by NaOH,respectively;HA1+FA1 represents the total content of free humus.
2.2 长期定位施肥黑土的结合态腐殖质组成
从表4可见:C、CM1、CM2 3组供试土壤中,CK的结合态腐殖质总量(HA2+FA2)均大于其他施肥处理,说明单施化肥使土壤结合态腐殖质含量下降。从结合态HA2结果来看,除CM1组中单施K肥处理的结合态HA2含量高于CK外,其他施肥处理的结合态HA2含量均低于CK,说明施肥主要影响的是土壤结合态HA2含量的变化,从而影响结合态腐殖质总量(HA2+FA2)的变化。
表 4 长期定位施肥黑土的结合态腐殖质组成
Table 4 Combined humus composition of black soil
g·kg-1
|
N | 5.00±0.01b | 2.81±0.44a | 7.81±0.43a | 6.13±0.88bc | 1.38±0.18ab | 7.50±0.71abc | 10.30±0.01b | 7.81±0.01ab | 18.13±0.02b
|
| P | 3.59±0.22c | 2.81±0.01a | 6.41±0.23b | 5.94±0.03bc | 1.25±0.44ab | 7.19±0.42bc | 9.69±0.01de | 7.66±0.22ab | 17.34±0.21cd
|
| K | 4.22±0.22c | 2.19±0.44ab | 6.41±0.22b | 8.44±0.01a | 1.25±0.44ab | 9.69±0.45ab | 10.30±0.01b | 2.03±0.22d | 12.34±0.21f
|
| NP | 3.75±0.04c | 0.63±0.02c | 4.38±0.02de | 5.75±0.35bc | 1.25±0.35ab | 7.00±0.71c | 10.00±0.01c | 7.50±0.04b | 17.50±0.02bc
|
| NK | 4.06±0.44c | 1.25±0.01bc | 5.31±0.45c | 5.94±0.44bc | 0.94±0.43b | 6.88±0.01c | 9.53±0.22e | 7.19±0.01b | 16.72±0.21de
|
| PK | 2.81±0.44d | 1.25±0.88bc | 4.06±0.44e | 5.00±0.01c | 1.72±0.22ab | 6.72±0.19c | 9.69±0.01de | 1.88±0.44d | 11.56±0.45g
|
| NPK | 4.06±0.44c | 0.94±0.43c | 5.00±0.01cd | 6.88±0.01abc | 1.25±0.01ab | 8.13±0.02abc | 9.84±0.22cd | 6.41±0.22c | 16.25±0.44e
|
| CK | 5.81±0.27a | 2.27±0.55ab | 8.08±0.29a | 7.97±2.43ab | 2.03±0.22a | 10.00±2.65a | 11.30±0.11a | 8.20±0.55a | 19.53±0.44a |
注:HA2、FA2分别表示Na4P2O7提取的结合态胡敏酸和富里酸;HA2+ FA2表示结合态腐殖质总量。
Note:HA2 and FA2 represent the combined humic acid and fulvic acid extracted by Na4P2O7,respectively;HA2+FA2 represents the total content of combined humus.
结合表3和表4结果,在同一施肥处理下,供试的3组土壤样品中,游离态腐殖质的HA1含量除有机物料配合P肥施用的CM1组略小于C组外,其余HA1含量从大到小的处理依次为CM2、CM1、C,即随有机物料添加量增多呈递增趋势;而游离态FA1含量中,除有机物料配合K肥施用以及CK的CM2组小于CM1组外,其余均是随有机物料添加量的增加递增。这说明长期配施有机物料使土壤中游离态HA1和FA1含量均增加。
对比3组土壤样品的结合态腐殖质可以看出,结合态HA2含量在3组供试土壤样品中从大到小的处理依次为CM2、CM1、C,这说明长期配施有机物料使土壤结合态HA2含量增加;对比3组样品中的结合态FA2含量可以看出,CM1、CM2各有高低,而CM2组均大于C组和CM1组。这说明长期配施有机物料增加了结合态FA2的含量。从结合态腐殖质(HA2+FA2)的结果来看,结合态腐殖质的总量均从大到小的处理依次为CM2、CM1、C,长期配施有机物料使结合态腐殖质总量增加。
从可提取腐殖质总量(HA1+FA1+HA2+FA2)来看,其总量从大到小的处理依次为CM2、CM1、C,可提取腐殖质总量随着有机物料的增加呈递增趋势。这说明长期配施有机物料使土壤腐殖质总量升高。
2.3 长期配施有机物料土壤的HA类型
表5列出了土壤腐殖质的游离态以及结合态HA类型。从单施化肥C组分析,CK土壤的游离态HA1类型为Rp型,其余7组施肥处理HA1类型均为P型,说明单施化肥使游离态HA1类型由Rp型向P型转化,土壤腐殖化程度升高,腐殖质质量下降。CM1和CM2组与C组进行比较,从游离态HA1类型来看,CM1组中除N肥配施有机物料和CM2组中除PK肥配施有机物料的土壤类型为P型外,其他均是Rp型,游离态HA1类型向腐殖化程度较低的类型转化。从结合态HA2类型来看,C组、CM1组和CM2组HA2类型均为P型。这说明添加有机物料对土壤中结合态腐殖质类型无明显影响。结论:黑土长期配施有机物料对结合态HA2类型影响不明显,但对游离态HA1类型有影响。
表 5 土壤腐殖质的HA类型
Table 5 HA type of soil humus
| N | P | P | P | P | Rp | P
|
| P | P | P | Rp | P | Rp | P
|
| K | P | P | Rp | P | Rp | P
|
| NP | P | P | Rp | P | Rp | P
|
| NK | P | P | Rp | P | Rp | P
|
| PK | P | P | Rp | P | P | P
|
| NPK | P | P | Rp | P | Rp | P
|
| CK | Rp | P | Rp | P | Rp | P |
2.4 长期施肥土壤腐殖质与土壤酸度变化的关系
从表6可知:结合态HA2与pH值呈显著正相关(r=0.467*);游离态HA1和FA1与交换性H+呈显著负相关,相关系数分别为r=-0.474*和r=-0.476*,结合态HA2与交换性H+呈极显著负相关(r=-0.633**);腐殖质与交换性Al3+无显著相关性;结合态HA2与交换性酸呈极显著负相关(r= -0.574**)。
表 6 长期不同施肥土壤腐殖质与pH值、交换性H+、交换性Al3+、交换性酸的相关性
Table 6 The correlation among the pH value,exchangeable H+,exchangeable Al3+,exchangeable
acid and humus under long-term different fertilizations
| pH值pH value | 0.105 | 0.116 | 0.467* | 0.194
|
| 交换性H+ Exchangeable H+ | -0.474* | -0.476* | -0.633** | -0.273
|
| 交换性Al3+ Exchangeable Al3+ | 0.192 | 0.134 | -0.104 | 0.080
|
| 交换性酸Exchangeable acid | -0.306 | -0.334 | -0.574** | -0.190 |
注:*表示5%显著性水平;**表示1%显著性水平。
Note:* indicates 5% significant level;**indicates 1% significant level.
3 结论与讨论
长期大量施用化肥,使土壤理化性状变差,土壤微生物减少,土壤肥力退化[8]。土壤腐殖质是土壤中一类特殊的高分子化合物,以游离态和结合态存在。长期施用化肥对土壤腐殖质影响的结论各有不同,并有较大差异[9, 10, 11]。本文的研究结果表明:长期单施化肥土壤游离态腐殖质总量下降,但游离态HA1和FA1无明显规律,各施肥处理结合态腐殖质总量(HA2+FA2)均低于对照,其中结合态HA2下降明显。这说明长期施用化肥使土壤游离态腐殖质和结合态腐殖质均降低,而结合态HA2的下降是腐殖质含量下降的主要原因。
长期施用有机肥料,可以提高有机质、腐殖质和活性腐殖质含量,同时还能改善腐殖质组成,提高土壤有机质的质量[12, 13, 14]。本研究结果表明:有机物料配合化肥长期施用使土壤中游离态和结合态的HA和FA含量均增加,说明土壤经长期配施有机物料后,土壤腐殖质总量增加,土壤肥力提升,20多年间土壤中不仅活性较高的游离态腐殖质数量增加,而且结合态腐殖质数量也同样增加。
HA的腐殖化过程是从Rp型经B或P型最终向A型转化,腐殖化度从大到小的顺序依次为A、B(P)、Rp[6]。本研究的研究结果显示:长期单施化肥使游离态HA1类型由Rp型向P型转化,说明长期单施化肥使土壤腐殖质的腐殖化程度升高,腐殖质质量下降;配施有机物料后的游离态腐殖质组分发生了变化,游离态HA1的类型由P型向Rp型转化,结合态HA2类型无变化,说明配施有机物料使游离态HA1腐殖化程度降低,腐殖质的质量提高。
长期单施化肥使土壤pH值下降,土壤变酸[15]。本研究结果表明:单施化肥处理的土壤pH值均低于对照,其中施用氮肥处理均显著低于对照,表明长期单施化肥,尤其是氮肥的施用使土壤出现一定程度的酸化,而配施有机物料处理的pH值均高于相应的单施化肥处理。这是由于有机质含量的增加意味着土壤阳离子交换量增加,因为有机质特别是腐殖质中的酸性基团(-COOH)提供了大量的阳离子交换点位[5],因而提高了土壤对酸化的缓冲能力。相关性分析表明:结合态HA2使土壤pH值升高,土壤酸度下降。结合态HA2与土壤pH值呈显著正相关,即pH值随结合态HA2含量升高而升高;而结合态HA2与交换性H+、交换性酸呈极显著负相关,即交换性H+、交换性酸随结合态HA2含量升高而减少。这说明土壤结合态HA2含量的变化影响土壤腐殖质总量,缓解了施用化肥造成的土壤pH值变化。