文章信息
- 张杨, 文春燕, 赵买琼, 张苗, 高琦, 李荣, 沈其荣. 2015.
- ZHANG Yang, WEN Chunyan, ZHAO Maiqiong, ZHANG Miao, GAO Qi, LI Rong, SHEN Qirong. 2015.
- 辣椒根际促生菌的分离筛选及生物育苗基质研制
- Isolation of plant growth promoting rhizobacteria from pepper and development of bio-nursery substrates
- 南京农业大学学报, 38(6): 950-957
- Journal of Nanjing Agricultural University, 38(6): 950-957.
- http://dx.doi.org/10.7685/j.issn.1000-2030.2015.06.012
-
文章历史
- 收稿日期: 2015-05-15
植物根际促生菌(plant growth-promoting rhizobacteria,PGPR)是指定殖于植物根际系统,并能促进植物生长的一类微生物总称[1]。该类微生物能够依靠植物根系直接产生信号物质,通过提高植物抗性和加速土壤养素循环等方式促进植物生长、提高防病能力、增加作物产量[2];其具有产NH3、产IAA、产铁载体、产HCN、解磷、固氮以及产抗生素等功能中的一种或多种[3]。近年来,国内外有越来越多的学者对PGPR进行深入研究,分离获得了大量PGPR,但越来越多的研究者同时意识到,有效发挥PGPR功能的关键在于菌株的根际有效定殖。有研究表明,大田条件下根际预接种PGPR能够有效促进作物生长或防控土传病害[4, 5, 6, 7]。因此,分离获得高效PGPR菌株,并开发出其最优的施用模式,对与现代农业的发展极为重要。
随着设施农业的迅速发展,无土栽培和穴盘育苗得到大范围推广应用,加速了固体栽培基质的开发研究,然而进口基质质量明显高于国产泥炭基质,提升国内育苗基质的整体水平变得尤为迫切[8]。目前,国内已有专家尝试将促进作物生长的微生物与普通育苗基质相结合,研制成活性生物育苗基质,但主要集中在利用丛枝菌根(arbuscular mycorrhiza,AM)真菌接种现有基质进行育苗。因有些科、属的农作物一般情况下不易被AM真菌侵染,但如何大规模生产商品化的AM真菌接种剂仍未解决,这制约了生物育苗基质的发展[9]。
将普通育苗基质与易培养生产的PGPR菌株联合研制成含PGPR菌株生物育苗基质,预计能够有效促进PGPR菌株的根际定殖和功能的发挥,从而增强所育种苗的质量,并提高移植后作物的产量。本研究从辣椒根际分离获得的高效促生菌株保活添加至其普通育苗基质中,研制成活性生物育苗基质,为PGPR菌株的高效应用提供新的思路,也为现代高效农业的发展提供理论依据。
1 材料与方法
1.1 材料
用于菌株分离的植株样品采至南京市蔬菜花卉科学研究所;供试辣椒品种为‘苏椒五号’;供试普通育苗基质由淮安柴米河基质肥料公司提供:总氮13.4 g · kg-1,有机质22.78 g · kg-1,水小于等于50%,pH 6.96,Ec 1.94 ms · cm-1。
1.2 根际及内生菌的初步筛选
取植物根部,切成长约3 cm小段;取10 g植物根于盛有90 mL无菌水的三角瓶内,30 ℃、170 r · min-1振荡20 min后,80 ℃水浴20 min,制成土壤悬浮液,涂布不同梯度土壤悬液于LB固体平板上[10];培养箱中黑暗培养1~2 d后,挑取典型菌落,经平板纯化后4 ℃保存待用。内生菌筛选需用70%(体积分数)乙醇先将10 g根表面消毒5 min,再用无菌水冲洗3次置于研钵内磨碎,再倒入盛有90 mL无菌水的三角瓶内,其他操作同根际菌筛选步骤。
1.3 菌株产IAA能力的测定
菌株产IAA能力参照Glickmann等[11]的方法测定。将分离纯化后的菌株接种于含有100 mg · L-1 L-色氨酸的LB液体培养基中,30 ℃、170 r · min-1 振荡培养24 h;然后将菌悬液10 000 r · min-1离心10 min,取上清液50 μL滴于白色陶瓷板上,同时加入等体积Salkowski比色液(1 L 10.8 mol · L-1 H2SO4含4.5 g FeCl3),以空白培养基为对照,将加入50 μL 50 mL · L-1吲哚乙酸的比色液作为阳性对照,避光静置 30 min,然后监测颜色变化并测定D530,同时计算单位体积发酵液中吲哚乙酸的含量。
1.4 菌株产1-氨基环丙烷-1-羧酸(ACC)脱氨酶能力的测定
菌株产ACC脱氨酶能力的测定参照Penrose等[12]的方法稍加改动。首先,将具IAA产生能力的供试菌株接种于含50 mL TSB液体培养基(胰蛋白胨15 g,大豆蛋白胨5 g,NaCl 5 g,H2O 1 000 mL,pH 7.2)中,30 ℃、170 r · min-1振荡培养24 h,重复转接1次;然后吸取1 mL菌悬液至50 mL DF培养液[KH2PO4 4 g,Na2 HPO4 6 g,MgSO4 · 7H2O 0.2 g,葡萄糖2 g,葡萄糖酸钠2 g,柠檬酸2 g,(NH4)2SO4 2 g,组分1和组分2溶液各0.1 mL(组分1:H3BO3 10 mg,MnSO4 · H2O 11.19 mg,ZnSO4 · 7H2O 124.6 mg,CuSO4 · 5H2O 78.22 mg,MoO3 10 mg,溶于100 mL灭菌蒸馏水中,-4 ℃保存;组分2:FeSO4 · 7H2O 100 mg溶于10 mL灭菌蒸馏水中,-4 ℃保存),H2O 1 000 mL,pH 7.2]中,同等条件下培养24 h;再从中吸取1 mL菌悬液于50 mL ADF培养液[超纯水溶解ACC,细菌过滤器(d=0.22 μm)抽滤灭菌,加到不含(NH4)2SO4且预先灭菌的DF培养基中,ACC最终浓度为3.0 mmol · L-1]中,相同条件培养24 h;重复转接2次后,梯度稀释,涂布于ADF固体平板,28 ℃恒温培养。待平板长出单菌落后,挑取单菌落接种至DF和ADF液体培养基中,30 ℃、170 r · min-1振荡培养48 h,在不同培养基下每4 h记录D600值,绘制生长曲线[13]。酶活性的测定方法详见文献[14],计算方法参考Seleh等[15]的方法,ACC脱氨酶活性以反应体系中每毫克酶蛋白每小时生成α-酮丁酸的物质的量表示,酶活性单位为μmol · mg-1 · h-1。总蛋白质含量的测定采用Bradford法[15],以牛血清白蛋白为标准蛋白。
1.5 生物育苗基质的研制
将菌株接种至PDA液体培养基[16]中发酵生产,发酵生产条件为:pH 7.0,温度30 ℃,170 r · min-1振荡,发酵中后期形成芽孢,发酵时间为48 h。将各菌株50 mL发酵液添加至1 kg普通育苗基质中,混合均匀。基质中功能菌株采用选择性培养基[17]涂布计数,取1 g基质于9 mL的无菌水中,170 r · min-1振荡20 min,梯度稀释后吸取0.1 mL各梯度稀释液涂布于选择性培养基平板,30 ℃培养箱中培养36 h后计数,功能菌数量以每克基质或根干质量计算,以CFU · g-1表示。
1.6 穴盘育苗试验
1.6.1 含不同菌株生物基质的育苗效果
将辣椒种子消毒浸种催芽,露白后埋入基质中,每个处理8个重复。育苗试验设计如下:处理为含不同菌株发酵液(接菌量为5%)的育苗生物基质;对照1为添加等体积未接菌的液体PDA培养基育苗基质(CK1);对照2为普通育苗基质对照(CK2)。40 d后取植株样品,分别测定株高、茎粗、叶绿素相对含量测量值(soil and plant analyzer development,SPAD)、叶面积、地上部鲜质量、地上部干质量、地下部鲜质量和地下部干质量,基质中功能菌株计数方法同1.5节。育苗试验重复2季。
1.6.2 含不同接菌量生物基质的育苗效果将功能菌株NJAU-G10分别以3%和5%(均为质量分数)的接菌量添加至普通育苗基质中,混合拌匀。育苗试验设计如下:对照为普通育苗基质(CK);处理1为添加3%菌株发酵液的育苗生物基质;处理2为添加5%菌株发酵液的育苗生物基质。测定指标及方法同1.6.1节。根际功能菌计数:首先将植株根上的基质抖落掉,称取1 g根置于9 mL的无菌水中,后面的步骤同1.5节基质中功能菌计数方法。
1.7 盆栽试验
将生物基质以及普通基质所育辣椒种苗分别于2014年7月3日至10月19日在本实验室的温室内进行两季盆栽试验,共设2个处理:1)普通基质所育种苗(CK);2)5%接菌量生物基质所育种苗。每个处理6个重复,每个盆钵装土2.5 kg,并添加1.5%的普通有机肥与土拌匀作为基肥,选取长势均一的种苗移栽,于40 d的时候测定各处理的株高、茎粗、SPAD值。盆栽试验中功能菌计数方法同1.5节。
1.8 菌株的鉴定
菌落形态及生理生化特征鉴定参照《伯杰细菌鉴定手册(第8版)》进行。基于16S rDNA序列的分子生物学鉴定参照文献[18]进行。
1.9 数据分析
使用Excel 2007程序和SPSS 19.0软件进行数据统计分析,使用最小显著差异法(least significant difference,LSD)检验进行多重比较。
2 结果与分析2.1 不同菌株IAA产生能力
分离获得根际菌株(编号前为G)及内生菌株(编号前为N)共150株,其中13株菌株能产生IAA,分别命名为NJAU-G2-7、NHAU-G6、NJAU-N5、NJAU-G8、NJAU-G9、NJAU-G10、NJAU-N11、NJAU-N6、NJAU-N1、NJAU-2-N5、NJAU-N2-11、NJAU-N2-2和NJAU-N9。定量测定结果表明,IAA产生量大于5.00 mg · L-1的菌株依次分别为NJAU-N1、NJAU-G10、NJAU-N5、NJAU-G6、NJAU-G9和NJAU-G8,其中NJAU-N1菌株分泌IAA含量最高,可达11.84 mg · L-1(表 1)。因此,对该6株菌进行进一步研究。
| 菌株 Bacteria strains | IAA含量/(mg·L-1) IAA content | 菌株 Bacteria strains | IAA含量/(mg·L-1) IAA content | |
| NJAU-G2-7 | 2.98±0.02 | NJAU-N6 | 2.09±0.00 | |
| NJAU-G6 | 5.55±0.00 | NJAU-N1 | 11.84±0.00 | |
| NJAU-N5 | 7.36±0.01 | NJAU-2-N5 | 1.34±0.01 | |
| NJAU-G8 | 5.46±0.01 | NJAU-N2-11 | 1.68±0.01 | |
| NJAU-G9 | 5.54±0.01 | NJAU-N2-2 | 3.30±0.07 | |
| NJAU-G10 | 7.43±0.00 | NJAU-N9 | 3.64±0.01 | |
| NJAU-N11 | 1.92±0.01 |
利用菌株NJAU-G6、NJAU-G8、NJAU-G9、NJAU-N1、NJAU-G10和NJAU-N5分别在ADF和DF培养基中的生长曲线,进行ACC脱氨酶活性的初步判定。结果(图 1)表明:此6株菌均能在ADF培养基中生长,且均在12 h时进入对数生长期,NJAU-G10生长速度最快,NJAU-N5和NJAU-N1次之,初步表明NJAU-G10利用ACC为唯一氮源的能力最强,NJAU-N5和NJAU-N1次之。
![]() | 图 1 不同菌株在DF和ADF培养基中的生长曲线Fig. 1 Growth curves of different strains in DF and ADF media |
所有菌株产ACC脱氨酶的酶活性见图 2,其中菌株NJAU-G10的产酶能力最强,酶活性为0.08 μmol · mg-1 · h-1;其次为NJAU-N5和NJAU-N1,酶活性分别为0.06和0.05 μmol · mg-1 · h-1,酶活性结果与上述生长曲线测定结果基本一致,表明NJAU-G10产ACC酶能力最强,显著优于其他菌株。
![]() | 图 2 不同菌株产ACC脱氨酶能力Fig. 2 ACC deaminase production ability of different strains不同小写字母表示差异显著(P<0.05)。Different small letters mean significant difference among treatments at 0.05 level. The same as follows. |
从表 2可知:相比于普通育苗基质(CK2)及添加PDA培养基的育苗基质(CK1),第1季苗盘育苗试验中,添加功能菌的生物基质均对辣椒苗具有促生效果,除SPAD值和叶面积外,其他生长指标均显著优于对照(表 2),同时,普通育苗基质(CK2)与添加PDA培养基的育苗基质(CK1)之间无显著性差异(地上部干质量除外);第2季苗盘育苗试验中,除SPAD值、叶面积、地上部干质量和地下部干质量外,添加功能菌的生物基质育苗效果优于对照,且功能菌株NJAU-G10处理除SPAD值外,其他指标均显著高于对照(表 3)。在功能菌定殖效果方面,两季育苗过程中,使用生物基质所育辣椒种苗40 d左右根际含有功能菌的数量均可达到107 CFU · g-1(图 3),且NJAU-G10、NJAU-G6和NJAU-G8定殖能力更强,其中菌株NJAU-G10在两季育苗试验中,体现出较其他菌株更为稳定的促进幼苗生长和根际定殖能力。
| 处理 Treatment | 株高/cm Plant height | 茎粗/cm Stem diameter | 叶面积/cm2 Leaf area | SPAD值 SPAD value | 地上部鲜质量/g Fresh weight of shoot | 地下部鲜质量/g Fresh weight of root | 地上部干质量/g Dry weight of shoot | 地下部干质量/g Dry weight of root |
| CK1 | 7.35±0.32c | 1.48±0.09d | 4.34±0.42d | 44.00±1.57bc | 0.23±0.02f | 0.11±0.01d | 0.03±0.00g | 0.01±0.00e |
| CK2 | 7.31±0.45c | 1.52±0.05d | 4.78±0.27cd | 42.67±0.38c | 0.29±0.00e | 0.10±0.01d | 0.04±0.00f | 0.01±0.00e |
| NJAU-N5 | 8.12±0.23b | 1.77±0.02ab | 5.32±0.58cd | 47.33±1.00b | 0.53±0.01c | 0.36±0.01b | 0.07±0.00c | 0.03±0.00c |
| NJAU-N1 | 8.17±0.17b | 1.78±0.02ab | 5.82±1.18c | 46.40±0.62b | 0.43±0.01d | 0.36±0.02b | 0.06±0.00d | 0.03±0.00c |
| NJAU-G10 | 9.90±0.28a | 1.81±0.02a | 7.12±0.43ab | 48.90±0.52a | 0.60±0.01b | 0.45±0.02a | 0.08±0.00b | 0.04±0.00b |
| NJAU-G6 | 8.12±0.29b | 1.68±0.06c | 4.92±0.42cd | 43.57±0.67bc | 0.68±0.03a | 0.53±0.03a | 0.09±0.00a | 0.05±0.00a |
| NJAU-G8 | 8.67±0.33b | 1.70±0.04bc | 6.94±0.44b | 44.73±0.45c | 0.44±0.02d | 0.30±0.01c | 0.05±0.00e | 0.02±0.00d |
| NJAU-G9 | 10.17±0.52a | 1.74±0.04abc | 8.02±0.18a | 46.77±0.25b | 0.56±0.03c | 0.34±0.01b | 0.07±0.00c | 0.02±0.00d |
| 注: CK1:未接菌空白培养基对照;CK2:水对照。表中数据表示平均值±标准偏差。同一列数字后不同字母表示在0.05水平差异显著。 Note: CK1:Seedling substrate inoculated with PDA medium;CK2:Seedling substrate inoculated with water. Values are means±standard error. Different letters in one column represent significant difference at 0.05 level. The same as follows. | ||||||||
| 处理 Treatment | 株高/cm Plant height | 茎粗/cm Stem diameter | 叶面积/cm2 Leaf area | SPAD值 SPAD value | 地上部鲜质量/g Fresh weight of shoot | 地下部鲜质量/g Fresh weight of root | 地上部干质量/g Dry weight of shoot | 地下部干质量/g Dry weight of root |
| CK1 | 12.11±0.50e | 2.19±0.05d | 11.61±1.39c | 40.97±0.64de | 0.78±0.03b | 0.12±0.00c | 0.36±0.03cd | 0.03±0.00c |
| CK2 | 12.66±0.19de | 2.12±0.06d | 13.44±1.84ab | 39.77±0.25e | 0.66±0.05b | 0.12±0.00c | 0.44±0.00b | 0.04±0.00b |
| NJAU-N1 | 13.28±0.22bc | 2.26±0.06bc | 11.51±0.59ab | 41.93±0.83bcd | 0.85±0.05ab | 0.15±0.00a | 0.34±0.01d | 0.04±0.00b |
| NJAU-N5 | 13.17±0.44bcd | 2.31±0.02bc | 13.86±1.33b | 43.20±0.96ab | 1.14±0.01a | 0.15±0.00a | 0.44±0.02b | 0.04±0.00b |
| NJAU-G10 | 13.80±0.10ab | 2.57±0.01a | 14.43±0.70a | 42.83±0.35abc | 1.13±0.01a | 0.13±0.00b | 0.56±0.03a | 0.05±0.00a |
| NJAU-G6 | 12.64±0.12de | 2.25±0.03c | 12.95±1.32ab | 39.83±0.95e | 0.95±0.04ab | 0.13±0.00b | 0.39±0.00c | 0.05±0.00a |
| NJAU-G8 | 14.30±0.27a | 2.33±0.01b | 13.03±1.45ab | 41.50±0.17cd | 1.17±0.06a | 0.13±0.00b | 0.39±0.01c | 0.04±0.00b |
| NJAU-G9 | 13.06±0.43cd | 2.33±0.02b | 13.19±0.54ab | 43.63±1.44a | 0.96±0.03ab | 0.13±0.00b | 0.40±0.00c | 0.05±0.00a |
![]() | 图 3 第1季(A)和第2季(B)育苗试验中辣椒植株根际不同功能菌定殖情况Fig. 3 Colonization ability of different PGPR strains in the pepper rhizosphere in the first(A) and second season(B)seedling raising experiments |
据以上育苗效果,菌株NJAU-G10被选择进行进一步研究。相比于普通育苗基质,含不同浓度功能菌育苗生物基质均能不同程度促进植株生长,尤以5%接种量效果最优,株高、地上部干质量及鲜质量均显著优于3%接种量处理及对照;3%接种量处理在地下部干鲜质量、株高、茎粗方面显著优于对照(表 4)。同时,添加3%和5%菌株NJAU-G10发酵液的育苗生物基质所育辣椒种苗根际含有功能菌的数量分别为3.89×106和1.28×107 CFU · g-1(图 4)。
| 处理 Treatment | 株高/cm Plant height | 茎粗/cm Stem diameter | 叶面积/cm2 Leaf area | SPAD值 SPAD value | 地上部鲜质量/g Fresh weight of shoot | 地下部鲜质量/g Fresh weight of root | 地上部干质量/g Dry weight of shoot | 地下部干质量/g Dry weight of root |
| 对照Control | 8.64±0.27c | 1.41±0.12b | 4.46±0.95b | 27.13±0.68a | 0.28±0.03b | 0.20±0.02b | 0.04±0.00b | 0.06±0.00b |
| 处理1 Treatment 1 | 9.15±0.07b | 1.66±0.13a | 5.50±0.75ab | 20.80±0.78b | 0.30±0.02b | 0.29±0.05a | 0.05±0.00b | 0.09±0.02a |
| 处理2 Treatment 2 | 10.99±0.01a | 1.72±0.05a | 6.59±0.24a | 30.73±1.50a | 0.41±0.01a | 0.35±0.02a | 0.06±0.00a | 0.09±0.00a |
| 注:对照为不添加功能菌CK;处理1为添加3%NAJU-G10;处理2为添加5%NAJU-G10。 Note: Control added with none strains;treatment 1 added with 3% of NAJU-G10;treatment 2 added with 5% of NAJU-G10. The same as in Fig. 4. | ||||||||
![]() | 图 4 苗盘期不同接菌量生物基质所育辣椒幼苗植株根际功能菌定殖情况Fig. 4 Effect of seedling substrates with different inoculation amounts of strain NJAU-G10 on its colonization ability in the pepper rhizosphere in nursery |
根据以上育苗结果,选择接菌量5%生物基质所育种苗进行盆栽试验。结果表明,两季盆栽效果基本一致(表 5和表 6),移苗后40 d,生物基质所育种苗生长过程中除SPAD值外,其余指标均显著高于对照。且两季盆栽试验结束后,根 际功能菌的定殖数量分别为1.30×107和3.10×107 CFU · g-1。综合苗盘试验及两季盆栽试验结果,功能菌NJAU-G10 5%接种量的生物基质,在育苗效果、功能菌定殖以及后期盆栽效果方面性能最优,因此,最终确立生物基质的生产工艺为普 通育苗基质以5%接入量添加功能菌NJAU-G10。
| 处理 Treatment | 株高/cm Plant height | 茎粗/cm Stem diameter | SPAD值 SPAD value | 叶面积/cm2 Leaf area | 地上部鲜质量/g Fresh weight of shoot | 地上部干质量/g Dry weight of shoot |
| CK | 40.13±2.29 | 3.30±0.10 | 58.90±1.67 | 26.84±2.36 | 8.81±0.33 | 1.68±0.09 |
| NJAU-G10 | 44.23±1.62* | 3.90±0.10* | 60.47±0.61 | 34.44±2.68* | 10.33±1.12* | 2.03±0.13* |
| 注:表中数据表示平均值±标准偏差。*表示在0.05水平差异显著。 Note:Values are means±standard error.*represent significant differences at 0.05 level. The same as follows. | ||||||
| 处理 Treatment | 株高/cm Plant height | 茎粗/cm Stem diameter | 叶面积/cm2 Leaf area | 叶片数(片) leaf number | 地上部鲜质量/g Fresh weight of shoot | 地上部干质量/g Dry weight of shoot | SPAD值 SPAD value |
| CK | 15.04±0.94 | 1.77±0.15 | 27.34±1.31 | 13.75±2.49 | 4.44±0.22 | 0.76±0.07 | 45.25±0.93 |
| NJAU-G10 | 21.14±1.28* | 3.04±0.05* | 45.56±6.30* | 21.00±2.35* | 8.78±0.21* | 1.32±0.03* | 46.20±0.99 |
![]() | 图 5 菌株NJAU-G10的系统发育树Fig. 5 The phylogenetic tree of strain NJAU-G10 |
菌株NJAU-G10在LB平板上的菌落呈乳白色,皱褶,边缘不整齐,具有一定的黏性,易挑起。革兰氏染色阳性,菌体着色均匀,呈杆状,两端钝平,呈不规则形状。淀粉水解反应、V.P反应、接触酶反应、利用柠檬酸盐反应、硝酸盐还原、石蕊牛奶还原胨化、甲基红反应、明胶液化反应均呈阳性,D-果糖、麦芽糖、阿拉伯糖、木糖、乳糖利用均呈阳性,发酵葡萄糖产酸不产气,厌氧条件下不生长,70 g · L-1 NaCl生长,能够产生芽孢。利用NJAU-G10菌株的16S rDNA序列(登录号为KP403800)所构建发育树如图 5所示,其与枯草芽孢杆菌Bacillus subtilis(AJ276351)同源性达到99%。结合菌株的形态特征、理化特征并结合16S rDNA序列分析,将菌株NJAU-G10初步鉴定为枯草芽孢杆菌。
3 讨论
随着生态农业的提倡和发展,大量关于植物根际促生菌(PGPR)促进植物生长及防控土传病害的研究被报道[19, 20, 21]。其菌剂研发在实际应用中的促生效果也已得到广泛验证[22, 23],PGPR的促生能力主要体现在能够产生一些植物促生物质,如吲哚乙酸、赤霉素和玉米素等植物生长激素[11];同时体现在能够产生ACC脱氨酶从而降解植物体内的乙烯前体ACC,减轻过量乙烯对植物的毒害作用[12]。本研究首先从辣椒植株根系筛选大量具有较强产生IAA能力的菌株,并从中筛选具ACC脱氨酶能力的优势菌株。然后,将筛选出的菌株保活添加至普通育苗基质中,研制活性生物育苗基质,从多季苗盘试验和盆栽试验结果可知,带有根际促生菌的生物基质与普通基质(CK)处理相比,能够显著促进植株的生长。申莉莉等[24]筛选的1株对烟草具有一定促生作用的芽孢杆菌Ba33,菌体发酵液灌根能够促进烟草植株的生长;王艳燕[25]筛选的辣椒根际促生菌G15-7、R2-1、L14-2和A21-4采用后期向植物苗期根部灌菌的方式同样表明根际促生菌对辣椒生长具有显著的促生作用。基于以上试验结果,生物基质可以提高辣椒植株的生长势,有效提高种苗的质量,Baset等[26]用水培法在香蕉组织上接入PGPR促生菌,也得到了相似的结论。
本研究基于促生机制的初筛和生物基质育苗试验的复筛,最终得到1株效果最优的菌株NAJU-G10,通过分子生物学及形态特征鉴定菌株NJAU-G10为枯草芽孢杆菌,而芽孢杆菌体现出的易筛选培养、产芽孢、易保存等优点也已经被大量报道,与其他属的功能菌株相比在农业生产和推广应用上有更为广阔的前景[27]。植物根际促生菌对植物生长的作用,不仅体现在能够产生一些植物促生物质,也体现在它能够改善植物根际环境,对病害的生物调控,改变微生物环境平衡,植物根际促生菌旺盛的代谢作用能加强土壤中有机物质的分解,促进植物营养元素的矿化,增加了对植物营养供应[28, 29],同时,减少农药和化肥的使用,是解决土壤、水源和食品污染的根本途经。
综上,本研究对根际促生菌在穴盘育苗中的促生作用进行了初步探讨,预计研究结果能够为含PGPR蔬菜育苗基质的开发提供理论支撑,同时为PGPR产品的开发提供新思路。
| [1] | 崔薇薇. 植物根际促生菌的研究进展[J]. 辽宁农业科学,2010(2):35-39 [Cui W W. Research progress of plant growth-promoting rhizobacteria[J]. Liaoning Agricultural Sciences,2010(2):35-39(in Chinese)] |
| [2] | Ahmad F,Ahmad I,Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J]. Microbiological Research,2008,163(2):173-181 |
| [3] | 康贻军,程洁,梅丽娟,等. 植物根际促生菌的筛选及鉴定[J]. 微生物学报,2010,50(7):853-861 [Kang Y J,Cheng J,Mei L J,et al. Screening and identification of plant growth-promotingrhizobacteria[J]. Acta Microbiologica Sinica,2010,50(7):853-861(in Chinese with English abstract)] |
| [4] | Han J G,Sun L,Dong X Z,et al. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens[J]. Systematic and Applied Microbiology,2005,28:66-76 |
| [5] | Zaidi S,Usmani S,Singh B R,et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J]. Chemosphere,2006,64:991-997 |
| [6] | Karlidag H,Esitken A,Turan M,et al. Effects of root inoculation of plant growth promoting rhizobacteria(PGPR)on yield,growth and nutrient element contents of leaves of apple[J]. Scientia Horticulturae,2007,114:16-20 |
| [7] | Ling N,Xue C,Huang Q W,et al. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt[J]. BioControl,2010,55:673-683 |
| [8] | 杜林峰,孙向阳,陈建武,等. 国内外泥炭基质养分比较研究[J]. 北方园艺,2008(7):55-57 [Du L F,Sun X Y,Chen J B,et al. Comparisons of nutrient of peat growing mediumes by domestic and foreign manufacturers[J]. Northern Horticulture,2008(7):55-57(in Chinese with English abstract)] |
| [9] | 范继红,李桂伶,高琼. 不同基质接种不同丛植菌根真菌对黄檗幼苗侵染及生长的影响[J]. 北方园艺,2011(22):1-5 [Fan J H,Li G L,Gao Q. Effects of different substrate with different arbuscularmycorrhiza fungi on the infection and growth to amur cork tree[J]. Northern Horticulture,2011(22):1-5(in Chinese with English abstract)] |
| [10] | 李荣,管晓进,陈荣宗,等. 阿维菌素降解菌株AW70的分离鉴定及降解特性研究[J]. 土壤,2009,41(4):607-611 [Li R,Guan X J,Chen R Z,et al. Isolation and identification of an avermectins degrading strain AW70and its degrading characteristics[J]. Soils,2009,41(4):607-611(in Chinese with English abstract)] |
| [11] | Glickmann E,Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology,1995,61:793-796 |
| [12] | Penrose D M,Glick B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiological Plantarum,2003,118:10-15 |
| [13] | Wu Z S,Yue H T,Lu J J,et al. Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress[J]. World Journal of Microbiology and Biotechnology,2012,28(6):2383-2393 |
| [14] | 陈坚,丁琴,王敏,等. 根际ACC脱氨酶活性细菌的分离及其促生作用研究[J]. 中国土壤与肥料,2012(2):92-97 [Chen J,Ding Q,Wang M,et al. Isolation of ACC deaminase producing bacteria and their effect on plant growth promotion[J]. Soil and Fertilizer in China,2012(2):92-97(in Chinese with English abstract)] |
| [15] | Seleh S S,Glick B R. Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities Enterobacter cloacae CAL2 and UW4[J]. Canadian Journal of Microbiology,2001,47(8):698-705 |
| [16] | 韦巧婕,郑新艳,邓开英,等. 黄瓜枯萎病拮抗菌的筛选鉴定及其生物防效[J]. 南京农业大学学报,2013,36(1):40-46. doi:10.7685/j.issn.1000-2030.2013.01.008 [Wei Q J,Zheng X Y,Deng K Y,et al. Screening and identification of antagonistic Bacillus vallismortis B against cucumber Fusarium wilt and its biological effect[J]. Journal of Nanjing Agricultural University,2013,36(1):40-46(in Chinese with English abstract)] |
| [17] | 曹亮亮,张苗,施娟娟,等. 添加蛋白原料辅助固态发酵生产功能菌生物有机肥的研究[J]. 南京农业大学学报,2014,37(2):85-91. doi:10.7685/j.issn.1000-2030.2014.02.014 [Cao L L,Zhang M,Shi J J,et al. Adding protein materials as solid-state fermentation media for producing bio-organic fertilizers with functional microbes[J]. Journal of Nanjing Agricultural University,2014,37(2):85-91(in Chinese with English abstract)] |
| [18] | Yang C L,Li R,Song Y,et al. Identification of the biochemical degradation pathway of triazophos and its intermediate in Diaphorobacter sp.TPD-1[J]. Current Microbiology,2011,62:1294-1301 |
| [19] | Xue Q,Chen Y,Li S,et al. Evaluation of the strains of Acinetobacter and Enterobacteras potential biocontrol agents against Ralstonia wilt of tomato[J]. Biological Control,2009,48:252-258 |
| [20] | Zhou T,Chen D,Li C,et al. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components[J]. Microbial Research,2012,167:388-394 |
| [21] | 陈巧玲,胡江,汪汉成,等. 生物有机肥对盆栽烟草根际青枯病原菌和短短芽孢杆菌数量的影响[J]. 南京农业大学学报,2012,35(1):75-79. doi:10.7685/j.issn.1000-2030.2012.01.013 [Chen Q L,Hu J,Wang H C,et al. Effects of bio-organic fertilizer application on population of Ralstonia solanacearum and Brevibacillus brevis in tobacco rhizosphere[J]. Journal of Nanjing Agricultural University,2012,35(1):75-79(in Chinese with English abstract)] |
| [22] | 李文英,彭智平,杨少海,等. 植物根际促生菌对香蕉幼苗生长及抗枯萎病效应研究[J]. 园艺学报,2012,39(2):234-242 [Li W Y,Peng Z P,Yang S H,et al. Effects of plant growth-promoting rhizobacteria on growth and controlling fusarium-wilt disease of banana seedlings[J]. Acta Horticulturae Sinica,2012,39(2):234-242(in Chinese with English abstract)] |
| [23] | Cao Y,Zhang Z H,Ling N,et al. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils,2011,47:495-506 |
| [24] | 申莉莉,王凤龙,钱玉梅,等. 解淀粉芽孢杆菌Ba33对烟草的促生及抗TMV作用[J]. 吉林农业大学学报,2010,32(4):383-386 [Shen L L,Wang F L,Qian Y M,et al. Tobacco growth-promotion effect and TMV resistance of Bacillus amyloliquefaciens Ba33[J]. Journal of Jilin Agricultural University,2010,32(4):383-386(in Chinese with English abstract)] |
| [25] | 王艳燕. 无土栽培辣椒根际促生菌的筛选及其应用效果[D]. 郑州:河南农业大学,2011:17-29 [Wang Y Y. The selection of pepper PGPR and the application effect in soil less cultivation[D]. Zhengzhou:Henan Agricultural University,2011:17-29(in Chinese with English abstract)] |
| [26] | Baset M M,Shamsuddin Z H,Wahab Z,et al. Effect of plant growth promoting rhizobacterial(PGPR)inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition[J]. Australian Journal of Crop Science,2010,4:85-90 |
| [27] | Perez-Garcia A,Romero D,de Vicente A. Plant protection and growth stimulation by microorganisms:biotechnological applications of Bacilli in agriculture[J]. Current Opinion in Biotechnology,2011,22:187-193 |
| [28] | Mantelin S,Touraine B. Plant growth-promoting bacteria and nitrate availability:impacts on root development and nitrate uptake[J]. Journal of Experimental Botany,2003,55:27-34 |
| [29] | Adesemoye A O,Torbert H A,Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system[J]. Canadian Journal of Microbiology,2008,54:876-886 |
2015, Vol. 38






