南京农业大学学报  2015, Vol. 38 Issue (6): 896-900   PDF    
http://dx.doi.org/10.7685/j.issn.1000-2030.2015.06.004
0

文章信息

裴延飞, 刘廷利, 连梓伊, 杨郁文, 陈天子, 王金彦, 张保龙, 柳李旺. 2015.
PEI Yanfei, LIU Tingli, LIAN Ziyi, YANG Yuwen, CHEN Tianzi, WANG Jinyan, ZHANG Baolong, LIU Liwang. 2015.
番茄中受TYLCV诱导上调表达基因tetraspanin3的功能分析
Functional analysis of tetraspanin3 gene up-regulated by Tomato yellow leaf curl virus(TYLCV)in tomato
南京农业大学学报, 38(6): 896-900
Journal of Nanjing Agricultural University, 38(6): 896-900.
http://dx.doi.org/10.7685/j.issn.1000-2030.2015.06.004

文章历史

收稿日期: 2015-03-12
番茄中受TYLCV诱导上调表达基因tetraspanin3的功能分析
裴延飞1,2, 刘廷利2, 连梓伊2, 杨郁文2, 陈天子2, 王金彦2, 张保龙2, 柳李旺1     
1. 南京农业大学作物遗传与种质创新国家重点实验室/农业部华东地区园艺作物生物学与种质创制重点实验室/园艺学院, 江苏 南京 210095;
2. 江苏省农业科学院江苏省农业生物学重点实验室, 江苏 南京 210014
摘要: [目的]本文旨在研究tetraspanin3基因在抗番茄黄化曲叶病毒(TYLCV)病中的作用及对番茄生长发育的影响.[方法]通过MEG 5.0软件构建进化树,分析tetraspanin3基因的进化;采用实时荧光定量PCR(RT-qPCR)检测tetraspanin3在番茄各个器官中的表达量及对TYLCV诱导的响应;通过病毒诱导基因沉默技术(VIGS)将番茄中的tetraspanin3沉默,测定基因沉默后番茄的抗病性并观测沉默植株表型.[结果]构建的进化树显示:番茄的tetraspanin3基因与葡萄同源基因在一个独立的进化分支上.tetraspanin3基因在各器官中均有表达,在茎、老叶、花中表达量较高,在根、果实中表达量较低,在新叶中的表达量处于中间水平.tetraspanin3受TYLCV诱导后上调表达.沉默tetraspanin3后的植株出现了叶片扭曲,并且在接种TYLCV后,TYLCV病毒量降低50%以上.[结论]tetraspanin3与番茄叶片的生长发育有关,并且对TYLCV侵染番茄植株起正调控作用.
关键词: 番茄黄化曲叶病毒     跨膜蛋白     病毒诱导的转基因沉默     功能分析    
Functional analysis of tetraspanin3 gene up-regulated by Tomato yellow leaf curl virus(TYLCV)in tomato
PEI Yanfei1,2, LIU Tingli2, LIAN Ziyi2, YANG Yuwen2, CHEN Tianzi2, WANG Jinyan2, ZHANG Baolong2, LIU Liwang1     
1. State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboraory of Horticultural Crop Biology and Genetic Improvement(East China), Ministry of Agriculture/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
2. Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Abstract: [Objectives]The research was conducted to study the effect of tetraspanin3 on the resisitance to Tomato yellow leaf curl virus(TYLCV)and development of tomato. [Methods]The phylogenetic tree of tetranspnin3 was constructed by the MEG 5.0 software to analyse the evolution of tetraspanin3;the expression pattern of tetraspanin3 in different organs and the response of tetraspanin3 during TYLCV infection were determined by RT-qPCR;the virus induced gene silencing(VIGS)technology was used to silence the tetraspanin3 gene and the resistance to TYLCV was tested in silenced plant and the phenotypes of silenced plants was watched. [Results]tetraspanin3 and homologous gene in grape were in a distinct branch;tetraspanin3 gene was expressed in all organs,the higher expression in stem,the old leaf,flower and the lower expression in root,fruit,and the expression in the new leaf was in medium level,tetraspanin3 gene was up-regulated during TYLCV infection. The tetraspanin3-silenced plant had distorted leaves,and had an over 50% decline in the quantity of TYLCV after vaccinating the TYLCV. [Conclusions]tetraspanin3 gene has an effect on the development of tomato leaves and acts as a positive regulator of the infection of TYLCV to tomato plants.
Keywords: Tomato yellow leaf curl virus(TYLCV)     transmemberane protein     virus-induced gene silencing     functional analysis    

番茄黄化曲叶病(Tomato yellow leaf curl virus,TYLCV)是番茄最为严重的病害之一,感病植株明显矮化,叶缘黄化,叶片变小并卷曲,其严重危害番茄生长、开花和座果,导致毁灭性绝产[1]。近年来随着烟粉虱在世界各地的爆发,TYLCV在世界许多国家和地区发生[2, 3, 4, 5, 6],在中国许多省市也大面积爆发,并有逐渐扩张的趋势[7, 8, 9, 10]。通过基因工程来提高番茄的抗病性,在番茄育种中日益受到重视。通过克隆与抗TYLCV有关基因并将之导入植物体内,或者抑制利于TYLCV侵染植物的基因的表达,可以提高植物抗病性[11]

Tetraspanin蛋白是具有高度保守的氨基酸序列和特殊结构的膜蛋白,由4个跨膜结构域和3个串联这4个跨膜结构域的环状结构组成,其中细胞膜外侧有2个环状结构,细胞膜内侧有1个环状结构,Tetraspanin蛋白的高度保守性表明tetraspanin基因家族具有相似或者相近的功能[12]tetraspanin有很长的进化史,从酵母到人等多种多样的生物体中均被发现[13]。对tetraspanin基因家族的研究起源于对动物医学的研究,在动物中对tetraspanin基因的功能和作用机制研究相当深入,Tetraspanin蛋白已经被证实有利于多种病毒侵染动物,并且当tetraspanin基因表达受到抑制后,生物体对一些病毒有更好的抵抗能力,在医学上这一理论已被用于许多病毒引起的病症防治,如人乳头癌病毒(HPV)、猫免疫缺陷病毒(FIV)、犬热病病毒(CDV)[14, 15, 16]等。tetraspanin对动物的繁殖、抗病性及生长发育有着重要作用[12, 17, 18],然而在植物中研究很少,如拟南芥tetraspanin 1/tornado2/ekeko(tet1/tet2 )[19, 20, 21, 22]tetraspanin基因家族有17个成员,tetraspanin 1~tetraspanin17 [22],而根据TYLCV诱导后番茄转录组数据[23]分析,发现tetraspanin基因家族中仅tetraspanin 3在被TYLCV诱导后显著上调表达,且tetraspanin 3在拟南芥中的同源基因对生长发育有重要作用[19, 20, 21, 22],而在番茄中tetraspanin 3 的功能尚未见报道。本研究通过生物信息学软件分析tetraspanin 3进化,利用RT-qPCR探索番茄tetraspanin 3组织表达及对TYLCV诱导响应表达模式,并通过病毒诱导的基因沉默(VIGS)将番茄中tetraspanin 3沉默,研究该基因对番茄抗TYLCV能力和生长发育的影响,为tetraspanin 3运用于抗TYLCV番茄遗传改良工作提供理论依据。

1 材料与方法 1.1 材料

含有Ty- 2 抗性基因的抗番茄黄化曲叶病番茄材料CLN2777A由江苏省农业科学院蔬菜研究所提供。农杆菌菌株EHA105由江苏省农业科学院生物技术所功能基因项目组提供。

总RNA提取试剂盒购自TIANGEN生物公司,质粒提取、DNA片段纯化/回收试剂盒购于AXYGEN公司。实时荧光定量PCR采用德国耶拿公司qTOWER2.2六通道荧光定量PCR仪。病毒诱导的基因沉默(virus-induced gene sliencing,VIGS)载体:pTRV2(空载体,用于携带目的基因)、pTRV1(辅助载体)和pTRV2-PDS(阳性对照)由清华大学刘玉乐教授提供。引物由Primer Premier 5.0软件评价生成,并由上海Invitrogen公司合成。

1.2 方法 1.2.1 tetraspanin 3基因家族进化树的构建

利用番茄tetraspanin 3(Solyc11g072480.1.1)序列在NCBI蛋白数据库(http://blast.ncbi.nlm.nih.gov/Blast.cgi)中进行对比,选择同源性较高的基因,利用软件MEG 5.0构建进化树。

1.2.2 TYLCV接种及tetraspanin 3在侵染过程中的表达

选择生长状况良好并且长势相近的具有3片真叶的番茄苗60株,分为2组,每组30株,分别放置于具有带TYLCV病毒烟粉虱和不带病毒烟粉虱的防虫网箱中,然后均置于25 ℃,每天光照16 h,黑暗8 h,水分、营养适宜且相同的环境中培养,3 d后,消灭烟粉虱。分别取接种3和7 d后的番茄样品,通过荧光定量PCR方法测定番茄中tetraspanin 3表达量。

1.2.3 tetraspanin 3在番茄各器官中表达量

挑选3株长势一致的番茄植株,分别提取根、茎、新叶、老叶、花和未成熟果实的RNA;将RNA反转录成cDNA(TaKaRa),然后通过荧光定量检测方法,分析tetraspanin 3在番茄各器官中表达量。

1.2.4 载体构建

根据本实验室番茄RNA-seq数据中上调表达的基因tetraspanin 3(Solyc11g072480.1.1)序列的特异区段设计引物TET-F(GGAATTCCATATGATGAGAACCAGTAATCACTT)和TET-R(CGCGGATCCTTAGAAGTGTATCCTGCTAG)。以番茄自交系CLN2777A的cDNA为模板扩增出858 bp片段,然后通过XbaⅠ和BamHⅠ将该片段插入到pTRV2载体中,转化大肠杆菌DH5α,通过菌落PCR筛选阳性克隆并通过测序验证质粒pTRV2.tetraspanin 3 。通过电转化法转化农杆菌菌株EHA105,利用VIGS技术将番茄中tetraspanin 3沉默,通过子叶注射法将载体导入番茄幼苗中,注射pTRV2空载体番茄作为对照组,用番茄八氢番茄红素脱氢酶基因(pds)作为试验阳性对照[24]。观测沉默植株表型并检测沉默植株抗病性。通过观测pds基因的沉默效果初步判定VIGS沉默效果。在沉默处理2周后,选择沉默植株与非沉默植株各50株,接种TYLCV病毒。接种TYLCV病毒的方法与1.2.2相同。提取接种TYLCV 10、15和20 d后的番茄总DNA,通过荧光定量PCR测定tetraspanin 3沉默后番茄和对照组番茄的病毒量[11]

1.2.5 荧光定量PCR

引物采用Primer Premier 5.0软件,按照RT-qPCR要求设计番茄actin内参基因、tetraspanin 3基因和病毒衣壳蛋白的编码基因v2 的引物对。actin扩增引物对F/R:TGGTCGGAATGGGACAGAAG/CTCAGTCAGGAGAACAGGGT;tetraspanin 3扩增引物对F/R:AAGTTGTGGTAAG-ATGAGAAGGATT/GCAGCAACCAGACTCAATAGGAC;v2 扩增引物对F/R:GGATTTCGTTGTATGTTAGC/ATGATTATATCGC-CTGGTC。采用SYBR PrimeScriptTM RT-PCR试剂盒进行测定,每个样品设3个重复。RT-qPCR实验数据用Sequence detection software version 1.3.1软件处理,并参照Schefe等[25]的方法进行效率校正,图表数据采用SPSS 16.0软件处理。

2 结果与分析 2.1 番茄基因tetraspanin 3的进化分析

利用NCBI数据库及软件MEG 5.0构建tetraspanin 3 的进化树,结果(图 1)显示:番茄tetraspanin 3 基因与葡萄中同源基因在一个独立的分支上,与其他物种亲缘关系较远。

图 1 番茄tetraspanin 3的进化树Fig. 1 Phylogenetic tree of tetraspanin 3 in tomato
2.2 tetraspanin 3基因在番茄各器官的相对表达量

图 2可见:tetraspanin 3在番茄各个器官中均有表达。在茎、老叶、花中的相对表达量较高,在根和果实中的相对表达量较低,而在新生叶中相对表达量处于中间水平。

图 2 番茄不同器官中tetraspanin 3的相对表达量Fig. 2 Relative expression level of tetraspanin 3 in different organs of tomato
2.3 tetraspanin 3在TYLCV侵染过程中的表达

图 3可以看出:当病毒侵染番茄后,tetraspanin 3出现上调表达,与接种TYLCY后番茄RNA-seq得到的数据[23]一致,表明番茄基因tetraspanin 3与TYLCV侵染有关。

图 3 tetraspanin 3在TYLCV侵染过程中的表达Fig. 3 The expression of tetraspanin 3 in the process of the infection of TYLCV
2.4 tetraspanin 3沉默植株的表型及对TYLCV的抗性

番茄植株注射pds基因2~3周后,叶片表现出白化表型(图 4-A),表明pds基因已被沉默。此时,检测tetraspanin 3表达量,沉默植株tetraspanin 3表达量约为对照组的35%,达到显著沉默效果。

图 4 tetraspanin 3沉默番茄植株的表型Fig. 4 The phenotype of tetraspanin 3-silenced tomato plantA.沉默pds基因表型,左侧为pds基因沉默植株,右侧为对照植株;B.tetraspanin 3沉默后番茄植株表型,左侧为对照植株,右侧为tetraspanin 3基因沉默植株;C.tetraspanin 3沉默后番茄叶片表型,左侧为对照植株叶片,右侧为沉默植株叶片
A.The phenotype of pds gene-silenced plant,the left was pds gene-silenced plant,the right was the control;B.The phenotype of tetraspanin 3-silenced tomato,the left was the control,the right was the gene-silenced tomato;C.The phenotype of the leaf of the tetraspanin 3-silenced tomato,the left was the leaf of the control,the right was the leaf of the gene-silenced tomato.

tetraspanin 3被沉默后的50株番茄中,33株出现与对照组有显著差异的表型(图 4-B、C),叶片出现严重扭曲,表明该基因与番茄叶片生长发育有关,这与其同源基因tornado 1tornado2影响拟南芥根部径向分化和平周分化相似[21],对植物生长发育都有影响。

2.5 tetraspanin 3沉默植株对TYLCV的抗性

tetraspanin 3沉默植株接种TYLCV。对接种后TYLCV病毒量检测发现,沉默植株中TYLCV病毒量比对照组(没有沉默tetraspanin 3)低50%以上(图 5),表明tetraspanin 3表达被抑制后,降低了TYLCV对番茄植株的侵染程度,番茄对TYLCV抗性增强。

图 5 tetraspanin 3沉默番茄植株对TYLCV的抗性Fig. 5 The resistance to TYLCV of tetraspanin 3- silenced tomato plant
3 讨论

目前,对植物中tetraspanin基因家族的研究相对较少,其作用机制和生化途径更是鲜有报道[19, 20, 21, 22]tetraspanin 3基因是tetraspanin基因家族的一员,Tetraspanin蛋白具有高度保守的氨基酸序列,动物中tetraspanin已经被证实与许多病毒侵染有关[12, 14, 15, 16, 17, 18],从理论上推断在番茄中tetraspanin 3 可能与病毒侵染植物体有关系,而番茄中tetraspanin 3的功能未见报道。本试验对TYLCV诱导后番茄的RNA-seq数据[23]及实时荧光定量表达结果分析得出,经TYLCV诱导后番茄的tetraspanin 3 上调表达,表明tetraspanin 3与病毒感染植物确实存在着某种关系。进一步利用VIGS技术将tetraspanin 3沉默后并进行抗TYLCV能力检测,研究tetraspanin 3与TYLCV侵染番茄的关系。从tetraspanin 3 沉默后的番茄植株抗病性鉴定结果可以看出,tetraspanin 3沉默后的番茄,TYLCV病毒量比对照组番茄低50%以上,这与Tetraspanin3蛋白在虾中的同源蛋白(FCTetraspanin3蛋白)的细胞膜外较大环状结构缺失后,使白斑综合病毒(WSSV)对虾的感染程度显著下降相似[26],表明tetraspanin 3被沉默后,TYLCV对番茄植株侵染受到抑制,即番茄对TYLCV抗性增强,反之,tetraspanin 3表达利于TYLCV对番茄侵染。tetraspanin 3利于病毒侵染生物体,可能与 Tetraspanin蛋白结构有密切关系,Tetraspanin蛋白有4个保守跨膜结构域,能为病毒侵染细胞提供途径[13]

本研究中,当tetraspanin 3 被沉默后,番茄叶片出现扭曲,表明tetraspanin 3 与番茄叶片生长发育有关,这与tetraspanin 3 在拟南芥中的同源基因tornado 1tornado2的功能相似。当tornado1tornado2 突变后,拟南芥根发育不正常[22],2个试验共同表明不同物种的tetraspanin基因缺失,影响的组织器官可能不同。tetraspanin 3影响番茄叶片生长发育,可能是因为Tetraspanin3蛋白作为一种细胞膜上的跨膜蛋白,具有信号识别和物质运输的功能,当tetraspanin 3被沉默后,影响了植物细胞及组织、器官间信号传递及物质交流[13, 14, 15, 16, 17],进而影响了番茄叶片生长发育。本研究中,tetraspanin 3 在番茄各器官中均有表达,但是当tetraspanin 3 表达被抑制后,只有叶片出现扭曲,说明tetraspanin 3在各器官均有作用,但是对叶片生长发育影响较大。

基因工程育种已经成为培育生物新品种的有效途径[11]tetraspanin 3被沉默后能够有效抑制TYLCV对番茄侵染,因此,理论上可将tetraspanin 3基因用于抗TYLCV番茄种质创新,但是由于tetraspanin 3对TYLCV侵染植物起重要作用的生化途径及机制尚未阐明,且沉默tetraspanin 3 对叶片生长发育有一定影响,因此需对tetraspanin 3及其基因家族功能进行深入研究,以期早日将该基因运用于抗TYLCV番茄新品种选育工作中。

参考文献(References)
[1] 余文贵,赵统敏,杨玛丽,等. 黄化曲叶病及其抗病育中的研究进展[J]. 江苏农业学报,2009,25(4):925-930 [Yu W G,Zhao T M,Yang M L,et al. Research progress on Tomato yellow leaf curl disease and resistance breeding[J]. Jiangsu Journal of Agricultural Sciences,2009,25(4):925-930(in Chinese with English abstract)]
[2] Lee H,Song W,Kwak H R,et al. Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus(TYLCV)and Bemisia tabaco in Korea[J]. Molecules and Cells,2011,30(5):467-476
[3] Huanssen I M,Lapidot M,Thomma B P H J. Emerging viral diseases of tomato crops[J]. Molecular Plant-Microbe Interactions,2010,23(5):539-548
[4] Klan A J,Idris A M,Al-Saady N A,et al. A divergent isolate of Tomato yellow leaf curl virus from Oman with an associated DNA beta satellite an evolutionary link between Asian and the Middle Eastren virus-satellite complexes[J]. Virus Genes,2008,36:169-176
[5] Banuelos-Hernandez B,Mauricio-Castillo J A,Cardenas-Conejo Y,et al. A new strain of tomato severe leaf curl virus and a unique variant of Tomato yellow leaf curl virus from Mexico[J]. Arch Virol,2012,157:1835-1841
[6] Fazeli R,Heydarnejad J,Massumi H,et al. Genetic diversity and distribution of tomato-infecting begomoviruses in Iran[J]. Virus Genes,2009,38:311-319
[7] 王冬生,匡开源,袁永达,等. 番茄黄化曲叶病毒在上海发生流行初步观察[J]. 上海蔬菜,2007(4):61-62 [Wang D S,Kuang K Y,Yuan Y D,et al. Research progress on Tomato yellow leaf curl virus in Shanghai[J]. Shanghai Vegetables,2007(4):61-62(in Chinese with English abstract)]
[8] 何自福,虞皓,毛明杰,等. 中国台湾番茄黄化曲叶病毒侵染引起广东番茄黄化曲叶病毒病[J]. 农业生物技术学报,2007,15(1):119-123 [He Z F,Yu H,Mao M J,et al. Tomato yellow leaf curl disease in Guangdong caused by tomato leaf curl Taiwan virus[J]. Journal of Agricultural Biotechnology,2007,15(1):119-123(in Chinese with English abstract)]
[9] 岳宁,丁铭,董家红,等. 中国番茄黄化曲叶病毒在云南的发生分布及其遗传多样性[J]. 云南大学学报:自然科学版,2008,30(S1):57-62 [Yue N,Ding M,Dong J H,et al. Genetic diversity and distribution of tomato yellow leaf curl China virus in Yunnan Province[J]. Journal of Yunnan University:Natural Sciences Edition,2008,30:57-62(in Chinese with English abstract)]
[10] 余文贵,赵统敏,杨玛丽,等. 山东、安徽两省栽培番茄烟粉虱传双生病毒的PCR检测及序列分析[J]. 江苏农业学报,2009,25(4):747-751 [Yu W G,Zhao T M,Yang M L,et al. PCR detection and sequence analysis of white fly transmitted geminivirus in tomato from Anhui and Shandong Provinces[J]. Jiangsu Journal of Agricultural Sciences,2009,25(4):747-751(in Chinese with English abstract)]
[11] 李楠,杨玛丽,陈天子,等. 番茄抗黄化曲叶病毒相关基因CLNLR的功能分析[J]. 园艺学报,2014,41(5):889-897 [Li N,Yang M L,Chen T Z,et al. Functional characterization of CLNLR gene involved in tomato defense against tomato yellow leaf curl disease[J]. Acta Horticulturae Sinica,2014,41(5):889-897(in Chinese with English abstract)]
[12] Huang S,Tian H,Chen Z,et al. The evolution of vertebrate tetraspanins:gene loss,retention,and massive positive selection after whole genome duplications[J]. BMC Evolution Biology,2012,10:306
[13] Peter N,Lynda J. Tetraspanins-gateways for infection[J]. Infectious Disorders-Drug Targets,2102,12:4-17
[14] Richards K F,Mukherjee S,Bienkowska-Haba M,et al. Human papillomavirus species-specific interaction with the basement membrane-resident non-heparan sulfate receptor[J]. Viruses,2014,6:4856-4879
[15] Hoffmann G,Thum J,Ackley C,et al. Decline in CD4+cell numbers in cats with naturally acquired feline immunodeficiency virus infection[J]. Journal of Virology,1992,66(3):1484-1488
[16] Kurzeder C,Koppold B,Suer G,et al. CD9 promotes adeno-associated virus type 2 infection of mammary carcinoma cells with low cell surface expression of heparin sulphate proteoglycans[J]. International Joural of Molecular Medicine,2007,19(2):325-330
[17] Davis C,Harris H J,Ke H,et al. In silico directed mutagenesis identifies the CD81/claudin-1 hepatitis C virus receptor interface[J]. Cellular Microbiology,2012,14(12):1892-1903
[18] Michael T,Karin S,Gunnar H,et al. Production of human tetraspanin proteins in Escherichia coli[J]. Protein Expression and Purification,2012,82:373-379
[19] Ernesto O,Bernd R,Koen D. The ekeko mutant demonstrates a role for tetraspanins-like protein in plant development[J]. Biochemical and Biophysical Research Communications,2003,310:1054-1061
[20] Cnops G,Neyt P,Raes J,et al. The tornado1 and tornado2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana[J]. The Plant Cell,2006,18:852-866
[21] Cnops G,Wang X,Linstead P,et al. Tornado1 and tornado2 are required for the specification of radial and circumferential pattern in the Arabidopsis root[J]. Development,2000,127:3385-3394
[22] Feng W,Klaas V,Mieke L. Tetraspanin genes in plants[J]. Plant Science,2012,190:9-15
[23] Chen T Z,Lv Y D,Zhao T M,et al. Comparative transcriptome profiling of a resistant vs.susceptible tomato(Solanum lycopersicum)cultivar in response to infection by Tomato yellow leaf curl virus[J]. PLoS ONE,2008,8(11):810-816
[24] 刘廷利,杨玛丽,刘小双,等. 一个受TYLCV诱导上调表达的番茄基因LeFLS2的功能分析[J]. 江苏农业学报,2014,30(2):376-380 [Liu T L,Yang M L,Liu X S,et al. Functional annalysis of gene LeFLS2 of tomato infected by Tomato yellow leaf curl virus(TYLCV)[J]. Jiangsu Journal of Agricultural Sciences,2014,30(2):376-380(in Chinese with English abstract)]
[25] Schefe J H,Lehmann E,Buschmann R,et al. Quantitative real-time RT-PCR data analysis:current concepts and the novel""gene expression's CT difference""formula[J]. Journal of Molecular Medicine,2006,84:901-910
[26] Gu L,Wang B,Li F H,et al. Blcoking the large extracellular loop(LEL)domain of FcTetraspanin-3 could inhibit the infection of white spot syndrome virus(WSSV)in Chinese shrimp,Fenneropenaeus chinensis[J]. Fish and Shellfish Immunology,2012,doi:10.1016/j.fsi.2012.02.022
番茄中受TYLCV诱导上调表达基因tetraspanin3的功能分析
裴延飞, 刘廷利, 连梓伊, 杨郁文, 陈天子, 王金彦, 张保龙, 柳李旺