南京农业大学学报  2015, Vol. 38 Issue (3): 453-458   PDF    
http://dx.doi.org/10.7685/j.issn.1000-2030.2015.03.015
0

文章信息

张伟, 彭麟, 江善祥. 2015.
ZHANG Wei, PENG Lin, JIANG Shanxiang. 2015.
超高效液相色谱-串联质谱法测定畜禽饲料中氯霉素类药物含量
Determination of chloramphenicols in the livestock and poultry feeds by UPLC-MS/MS
南京农业大学学报, 38(3): 453-458
Journal of Nanjing Agricultural University, 38(3): 453-458.
http://dx.doi.org/10.7685/j.issn.1000-2030.2015.03.015

文章历史

收稿日期:2014-11-25
超高效液相色谱-串联质谱法测定畜禽饲料中氯霉素类药物含量
张伟, 彭麟, 江善祥     
南京农业大学动物医学院, 江苏 南京 210095
摘要[目的] 建立一种畜禽饲料中氯霉素、甲砜霉素和氟苯尼考的超高效液相色谱-串联质谱(UPLC-MS/MS)检测方法,为监控畜禽饲料中违法添加该类药物提供方法指导,保障动物源食品安全。[方法] 饲料粉碎后,经碱性乙酸乙酯提取,正己烷除脂,Sep-Pak C18固相萃取柱净化,Waters Acquity UPLC BEH C18色谱柱分离,采用乙腈和水为流动相,并用梯度洗脱来提高对3种药物的分离能力。分别以d5-氯霉素、d3-甲砜霉素和d3-氟苯尼考为内标,采用负离子多反应监测模式,6个特征离子通道(m/z:321→152,257;354→185,290;356→185,336)用于氯霉素、甲砜霉素和氟苯尼考的定性和定量检测。[结果] 3种氯霉素类药物在1~20 μg·kg-1范围内线性良好,相关系数均大于0.99,方法检测限为0.1 μg·kg-1,定量限为0.3 μg·kg-1。3个加标水平(1、2和5 μg·kg-1)的平均回收率为81.41%~112.88%,日内精密度为1.24%~12.92%,日间精密度为0.64%~13.09%。[结论] 试验结果完全符合氯霉素类药物检测的相关法规要求,适用于畜禽饲料中氯霉素类药物的定性定量检测。
关键词超高效液相色谱-串联质谱     氯霉素     甲砜霉素     氟苯尼考     畜禽饲料    
Determination of chloramphenicols in the livestock and poultry feeds by UPLC-MS/MS
ZHANG Wei, PENG Lin, JIANG Shanxiang     
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
Abstract: [Objectives] The aim of this experiment was to establish a detection method for chloramphenicol, thiamphenicol, and florfenicol by ultra performance liquid chromatography-tandem mass spectrometry in the livestock and poultry feeds, which could provide a methodological guidance to monitor these medicinal additives which were illegally added in the feed and further ensure the safety of animal origin food. [Methods] The ground samples were extracted with a mixture of ammonia water/ethyl acetate by liquid-liquid extraction, and the fat was removed by hexane. Sep-Pak C18 solid phase extraction columns were used to clean up the impurities from the matrix. The separation step of chloramphenicol, thiamphenicol, and florfenicol was performed on Waters Acquity UPLC system with a column of BEH C18. The mobile phase was acetonitrile and water, and the gradient elution program was used to improve the separating capacity. d5-chloramphenicol, d3-thiamphenicol and d3-florfenicol were used as the mixed internal standards and drug monitoring mode was negative ion multiple reaction monitoring mode. Six characteristic transition reactions(m/z:321→152, 257;354 →185, 290;356→185, 336)were tested for the confirmation and quantification of chloramphenicol, thiamphenicol and florfenicol simultaneously. [Results] The results showed that the calibration curves were good linear at the concentrations of 1-20 μg·kg-1. The relative coefficients(R2)were greater than 0.99. The limit of detection of chloramphenicol, thiamphenicol and florfenicol was 0.1 μg·kg-1 and the limit of quantification was 0.3 μg·kg-1. The average recoveries of 3 drugs at the concentrations of 1, 2, 5 μg·kg-1 ranged from 81.41% to 112.88%. The intra-day RSD of this method was 1.24%-12.92%, inter-day RSD was 0.64%-13.09%. [Conclusions] The test results were fully in line with the related regulatory requirements and the method could be used to detect chloramphenicol, thiamphenicol, florfenicol in the livestock and poultry feeds.
Keywords: UPLC-MS/MS     chloramphenicol     thiamphenicol     florfenicol     livestock and poultry feeds    

氯霉素(CAP)抗菌谱广且价格便宜,但对人体血液系统具有显著的毒性作用[1]。甲砜霉素(TAP)和氟苯尼考(FF)作为氯霉素的衍生物,均以甲砜基取代了氯霉素苯环上的对位硝基(可导致再生障碍性贫血),副作用降低,因此常被作为氯霉素的替代药物广泛应用于畜禽和水产品疾病的预防与治疗。然而,甲砜霉素对白细胞、血小板有一定的抑制作用,氟苯尼考则具有胚胎毒性[2]。因此,各国对氯霉素类药物在动物产品中最高残留限量均做了严格规定,如欧盟规定在鸡组织中甲砜霉素的最高残留限量为50 μg · kg-1,氟苯尼考为100 μg · kg-1[3]

目前,关于氯霉素、甲砜霉素和氟苯尼考的检测方法很多,如微生物法、酶联免疫法[4, 5]、气相色谱法[6]、液相色谱法[7]、气质联用[8]和液质联用[9]等,但主要集中于蜂蜜、水产[10]以及肉、蛋、乳制品[11]中的残留检测。饲料中氯霉素类药物的检测方法主要是针对渔用饲料或单一品种的检测,尚未有同时使用3种内标检测畜禽饲料中氯霉素、甲砜霉素、氟苯尼考的方法报道。此外,微生物法和酶联免疫法检测容易出现假阳性,只可用于初始筛选而不能作为残留确证。而气质联用前处理需添加衍生物,操作复杂。本试验将超高效液相色谱的高分离效率和电喷雾质谱的高选择性联合起来,使得检测结果更加灵敏、快速、可靠。 1 材料与方法 1.1 材料与试剂

氯霉素(K0350706,99.5%)、甲砜霉素(K0241009,99.7%),中国兽医药品监察所;氟苯尼考(C13665000,99.0%)、d5-氯霉素(XA111200AC,100 μg · mL-1),德国Dr.Ehrenstorfer公司;d3-甲砜霉素(T344163,98.0%)、d3-氟苯尼考(F405751,98.0%),加拿大Toronto Research Chemicals公司。乙腈、甲醇均为色谱纯,德国Merck公司;乙酸乙酯、正己烷以及氨水(25%~28%)均为分析纯,南京化学试剂有限公司。 1.2 仪器与设备

高速冷冻离心机(SIGMR 3K15),北京五洲东方科技发展有限公司;涡旋混合仪(WH-3),上海泸西分析仪器有限公司;超声波清洗器(HS3120),天津恒奥科技发展有限公司;氮吹仪(DC-12),上海安谱科学仪器有限公司;Sep-Pak C18固相萃取柱(3 mL,200 mg)和超高效液相色谱-串联质谱仪(XEVO TQD),美国Waters公司。 1.3 方法 1.3.1 标准储备液的配制

准确称取适量氯霉素、甲砜霉素和氟苯尼考,用甲醇溶解定容,配成100 μg · mL-1的混合标准溶液,-20℃保存备用。 1.3.2 标准工作液的配制

移取适量100 μg · mL-1氯霉素类标准储备液,用甲醇进行稀释,分别配制成20、40、100、200和400 μg · L-1的一系列标准工作液,4℃保存备用。 1.3.3 混合内标工作液的配制

将购得的d5-氯霉素标准溶液、d3-甲砜霉素和d3-氟苯尼考标准物用甲醇进行稀释得到100 μg · L-1的混合内标工作液,4℃保存备用。 1.3.4 液相条件

Waters Acquity UPLC BEH C18柱(2.1 mm×50 mm,1.7 μm),流速0.4 mL · min-1,柱温40℃,进样量10 μL。水和乙腈不同比例梯度洗脱程序为:V(87) ∶ V(17),3 min;V(17) ∶ V(83),1 min;V(83) ∶ V(17),1 min。 1.3.5 质谱条件

电喷雾离子源(ESI),多反应监测(MRM)负离子模式,毛细管电压2.5 kV,锥孔电压40 V,离子源温度500℃。各个分析物的离子对、驻留时间、锥孔电压、碰撞能量见表 1

表 1 各分析物的质谱参数 Table 1 MS/MS conditions of all analytes
分析物Analytes母离子m/zParention子离子m/zFragmention驻留时间/sDwell time锥孔电压/VCone碰撞能量/eVCollision energy
氯霉素Chloramphenicol321152*,2570.0344018,12
甲砜霉素Thiamphenicol354185*,2900.0344023,12
氟苯尼考Florfenicol356336*,1850.034409,20
d5-氯霉素d5-chloramphenicol3261570.0344020
d3-甲砜霉素d3-thiamphenicol3571880.0344022
d3-氟苯尼考d3-florfenicol3593390.0344010
    注:*定量离子Quantitative ions
1.3.6 样品前处理

1)提取:称取2.00 g饲料,置于50 mL离心管中,加入100 μL混合内标工作液,再加入0.3 mL氨水和10 mL乙酸乙酯,涡旋混匀2 min,振荡提取10 min,6 000 r · min-1离心10 min,转移上清液于50 mL离心管中。重复提取1次后合并上清液,45℃氮气吹干。2)净化:向残渣中加4 mL体积分数为5%的甲醇溶液复溶,再加4 mL经5%甲醇溶液饱和过的正己烷,涡旋1 min,6 000 r · min-1离心10 min,弃去上层,重复除脂1次。取Sep-Pak C18小柱,依次用3 mL甲醇、3 mL水活化,上样4 mL,3 mL水淋洗,3 mL甲醇洗脱。收集洗脱液于45℃氮气吹干。用17%乙腈溶液复溶至1 mL,混匀,0.22 μm有机滤膜过滤,待测。 1.3.7 标准曲线绘制

取氯霉素、甲砜霉素、氟苯尼考标准工作液,稀释使其质量浓度分别达到1、2、5、10和20 μg · L-1,同时加内标溶液,自动进样分析。以目标物质与对应内标的峰面积比为纵坐标,目标物质浓度为横坐标,绘制标准曲线。 1.3.8 检测限与定量限测定

取空白饲料添加氯霉素、甲砜霉素、氟苯尼考标准工作液和内标溶液,按1.3.6节方法进行样品前处理,按1.3.4节液相条件和1.3.5节质谱条件进样分析,每个浓度6个重复。 1.3.9 方法回收率与精密度测定

分别在空白混合饲料、浓缩料、预混料中添加高(5 μg · kg-1)、中(2 μg · kg-1)、低(1 μg · kg-1)3种不同水平的混合标准溶液和内标混合标准溶液进行加标回收试验。每个水平5个平行样品,连续测定3 d,计算回收率和精密度。 2 结果与分析 2.1 方法的专属性

试验得到空白样品和加标样品进样检测所得的多反应监测色谱图(图 1)。空白基质在3种药物及其对应内标的出峰位置均没有干扰峰,方法的专属性较高(图 1-a)。由图 1-b可知:加标样品中氯霉素的保留时间为1.69 min,甲砜霉素为0.78 min,氟苯尼考为1.46 min;出峰时间稳定,分离完全。

图 1 空白样品(a)和加标样品(b)的多反应监测色谱图 Fig. 1 Multiple reaction monitoring chromatograms of the blank feed sample(a) and the fortified feed spiked at 5 μg · kg-1(b)
2.2 方法的线性、检测限和定量限

3种药物在1~20 μg · kg-1范围内线性良好,相关系数(R2)均在0.99以上(表 2)。以3倍信噪比的浓度作为检测限,10倍信噪比的浓度作为定量限,得到该药物在畜禽饲料中的检测限为0.1 μg · kg-1,定量限为0.3 μg · kg-1

表 2 各分析物标准溶液回归方程和相关系数 Table 2 Regression equation and correlation coefficient of all analytes
分析药物Analytes回归方程Regression equation相关系数Correlation coefficient
氯霉素Chloramphenicoly=1.262 18x-0.054 528 30.999
甲砜霉素Thiamphenicoly=1.236 69x+0.136 693 00.995
氟苯尼考Florfenicoly=0.553 37x+0.250 866 00.991
2.3 方法的回收率和精密度

加标水平为1、2和5 μg · kg-1的平均回收率为81.41%~112.88%,日内精密度为1.24%~12.92%,日间精密度为0.64%~13.09%(表 3),符合欧盟委员会2002/657/EC的决议要求[12]

表 3 畜禽饲料中添加氯霉素、甲砜霉素和氟苯尼考的回收率及精密度 Table 3 Recovery and precision results of chloramphenicol,thiamphenicol and florfenicol in the livestock and poultry feeds
饲料种类Feeds分析药物Analytes添加剂量/(μg·kg-1)Added dosage回收率/% Recovery rate日内精密度/% Intra-day RSD日间精密度/%Inter-day RSD
1st day2nd day3rd day1st day2nd day3rd day
配合饲料Complete formulafeed氯霉素Chloramphenicol1103.41108.17112.003.037.345.723.99
2106.61107.8291.664.963.907.118.82
5107.01103.9997.151.241.944.354.92
甲砜霉素Thiamphenicol192.6286.00100.006.8111.887.617.54
289.6881.4196.294.365.986.388.36
593.8689.5694.788.003.274.793.00
氟苯尼考Florfenicol189.1988.2789.713.396.086.890.82
292.5091.9196.977.142.716.922.95
595.2696.93101.406.453.486.413.24
浓缩料Concentrated feed氯霉素Chloramphenicol1103.7795.65102.506.624.255.244.34
296.0097.05112.888.519.105.319.27
589.64105.39106.724.735.453.599.45
甲砜霉素Thiamphenicol187.48104.9599.686.596.908.879.20
291.9493.5988.0310.433.0810.843.13
595.8693.6281.954.389.012.778.25
氟苯尼考Florfenicol192.5492.57100.009.683.994.354.52
289.3999.5691.615.506.977.345.72
596.29110.6990.093.975.915.1610.67
预混料Premix氯霉素Chloramphenicol193.75103.7495.818.067.283.865.40
299.0692.68100.305.737.456.834.20
5102.86100.72105.465.907.336.992.30
甲砜霉素Thiamphenicol198.8388.2996.586.4112.9212.545.87
2105.4192.80106.414.7610.239.397.47
5101.1892.3288.474.395.665.586.93
氟苯尼考Florfenicol184.5983.4788.069.227.546.172.80
2108.4183.2796.606.317.6810.3813.09
599.1299.87100.392.432.224.690.64
2.4 实际样品的测定

从南京市多个饲料厂购买的8份饲料样品,按照1.3.6节前处理方法对样品进行提取后测定,其中3份饲料样品中检测出了少量的氟苯尼考,其余5份样品中未检测出氯霉素类药物(图 2)。

图 2 实际样品检测总离子流色谱图 Fig. 2 The TIC(total ion current)chromatogram of the practical samples
3 讨论

本试验发现,相比氯霉素和氟苯尼考,甲砜霉素不易提取。而在乙酸乙酯中加入少量氨水可以在减少共萃取杂质的同时最大限度地提取饲料中的氯霉素、甲砜霉素和氟苯尼考这3种物质。郝凯[13]发现,相对超声提取,振荡提取不易破坏甲砜霉素的分子结构,故本试验最终采用加入少量氨水的碱性乙酸乙酯振荡作为提取方法。

与动物组织相比,饲料成分复杂,杂质对样品检测影响很大,在提取后期进行固相萃取可以有效净化样品,同时添加d5-氯霉素、d3-甲砜霉素和d3-氟苯尼考3种内标物质,有效减小前处理及质谱离子化过程中产生的误差,降低基质效应的影响。这样在检测过程中不需要为每一种饲料做一个基质标准曲线来进行定量校正,使得该检测方法应用更加方便。国内外报道的检测氯霉素类药物的文献中,普遍使用的固相萃取柱包括C18[14, 15]、Oasis HLB[16]、MCX。我们在试验中比较发现:在Agilent Bond Elut C18柱、Waters HLB柱和 Sep-Pak C18柱中,Agilent Bond Elut C18柱在上样和淋洗过程时容易丢失样品,对目标物的吸附能力不足。HLB的柱子价格较贵且保留太强,不易洗脱。试验最后选择的Sep-Pak C18柱,上样和淋洗过程均不会有损失,且3 mL甲醇就可以洗脱全部的目标物。

通过注射泵将1 000 μg · L-1的3种药物混合标准溶液以10 μL · min-1的流速注射进离子源中。在负离子模式下进行一级质谱扫描,得到各个组分的分子离子峰,然后再对各组分的分子离子进行二级质谱扫描,得到各自的子离子信息。选取丰度较强的两对子离子优化其锥孔电压、碰撞能量等质谱参数,选取丰度最强的子离子作为定量离子。

综上,本试验建立了测定畜禽饲料中氯霉素类药物含量的超高效液相色谱-串联质谱法。该方法简单、方便、快速、灵敏度高,满足同时检测畜禽饲料中氯霉素、甲砜霉素和氟苯尼考的要求,为检测饲料中该类药物提供可靠的标准依据。

参考文献(References)
[1] 陈杖榴. 兽医药理学[M]. 3版. 北京:中国农业出版社, 2007:218-220[Chen Z L. Veterinary Pharmacology[M]. 3rd ed. Beijing:China Agriculture Press, 2007:218-220(in Chinese)]
[2] 姚宜林. 鸡蛋中甲砜霉素、氟苯尼考和氟苯尼考胺残留检测方法及其消除规律的研究[D]. 扬州:扬州大学, 2010:4-5[Yao Y L. Residues and elimination of thiamphenicol, florfenicol and florfenicol amine in eggs[D]. Yangzhou:Yangzhou University, 2010:4-5(in Chinese with English abstract)]
[3] Commission E U. European Commission Decision 2377/90/EC[S]. Brussels:Official Journal of the European Communities, 2003:224
[4] Terence L F, Suja E G, Imelda M T, et al. Approaches for the simultaneous detection of thiamphenicol, florfenicol and florfeniol amine using immunochemical techniques[J]. Journal of Immunological Methods, 2013, 393:30-37
[5] Luo P J, Jiang W X, Chen X, et al. Development of an enzyme-linked immunosorbent assay for the determination of florfeniol and thiamphenicol in swine feed[J]. Journal of Animal Science, 2011, 89:3612-3616
[6] 沈美芳, 吴光红, 费志良, 等. 气相色谱法测定水产品中氯霉素残留前处理方法的比较[J]. 水产学报, 2005, 29(1):103-108[Shen M F, Wu G H, Fei Z L, et al. Comparison of pre-treatment methods for the determination of chloramphenicol residues in aquatic products by gas chromatography[J]. Journal of Fisheries of China, 2005, 29(1):103-108(in Chinese with English abstract)]
[7] Evaggelia N E, Victoria F S. Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream(Sparus aurata)tissue according to the European Union Decision 2002/657/EC[J]. Food Chemistry, 2013, 136:1322-1329
[8] 冷凯良, 孙伟红, 王志杰, 等. GC/MS法同时测定水产品中氯霉素、氟甲砜霉素及甲砜霉素残留量[J]. 海洋水产研究, 2007, 28(5):95-99[Leng K L, Sun W H, Wang Z J, et al. Simultaneous determination of chloramphenicol, florfenicol and thiamphenicol residues in aquatic products with gas chromatography/mass spectrometry[J]. Marine Fisheries Research, 2007, 28(5):95-99(in Chinese with English abstract)]
[9] Zhang S X, Liu Z W, Guo X, et al. Simultaneous determination of chloramphenicol, thiamphenicol and florfenicol in chicken muscle by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2008, 875:399-404
[10] 贾宏新, 邹淼, 林盛. 超高效液相色谱-串联质谱法测定河蟹中氯霉素类药物残留[J]. 中国卫生检验杂志, 2013, 23(13):2726-2729[Jia H X, Zou M, Lin S. Determination of chloramphenicol, thiamphnicol, florfenicol residues in river crab by UPLC-MS/MS[J]. Chinese Journal of Health Laboratory Technology, 2013, 23(13):2726-2729(in Chinese with English abstract)]
[11] 任佳, 郑小平, 黄菲菲, 等. UPLC-MS/MS法测定乳制品中的氯霉素类药物[J]. 食品与机械, 2011, 27(4):75-77[Ren J, Zheng X P, Huang F F, et al. Determination of chloramphenicol, thiamphnicol, florfenicol residues in dairy by UPLC-MS/MS[J]. Food and Machinery, 2011, 27(4):75-77(in Chinese with English abstract)]
[12] Commission E U. European Commission Decision 2002/657/EC[S]. Brussels:Official Journal of the European Communities, 2002:221
[13] 郝凯. 水产品中甲砜霉素残留控制研究[D]. 无锡:江南大学, 2006:75-76[Hao K. Studies on control of thiamphenicol residues in fishery[D]. Wuxi:Jiangnan University, 2006:75-76(in Chinese with English abstract)]
[14] 晏苒, 曾明华, 苏婷婷, 等. 鸡组织中阿德呋啉药物残留的高效液相色谱-串联质谱法测定[J]. 南京农业大学学报, 2014, 37(3):112-118. doi:10.7685/j.issn.1000-2030.2014.03.017[Yan R, Zeng M H, Su T T, et al. Determination of Adprin in chicken tissues by high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Nanjing Agricultural University, 2014, 37(3):112-118(in Chinese with English abstract)]
[15] 李红权, 孙良娟, 伍志强, 等. 高效液相色谱串联质谱法同时测定饲料中氯霉素、甲砜霉素与氟甲砜霉素残留[J]. 分析测试学报, 2012, 31(11):1396-1400[Li H Q, Sun L J, Wu Z Q, et al. Simultaneous determination of chloramphenicol, thiamphenicol and florfenicol residues in feedstuff by isotope dillution high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrument Analysis, 2012, 31(11):1396-1400(in Chinese with English abstract)]
[16] Aurore B, Cédric G, Terence P, et al. Development of a multi-class method for the quantification of veterinary drug residues in feeding stuffs by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217:6394-6404