林业科学  2018, Vol. 54 Issue (10): 156-163   PDF    
DOI: 10.11707/j.1001-7488.20181018
0

文章信息

袁振, 陈美谕, 贾黎明, 魏松坡.
Yuan Zhen, Chen Meiyu, Jia Liming, Wei Songpo
太行山片麻岩地区微地形土层厚度特征及其植被生长阈值
Difference of Soil Thickness among Micro-Topographies and Their Thresholds for Vegetation Growth in Gneiss Area of Taihang Mountains
林业科学, 2018, 54(10): 156-163.
Scientia Silvae Sinicae, 2018, 54(10): 156-163.
DOI: 10.11707/j.1001-7488.20181018

文章历史

收稿日期:2017-02-20
修回日期:2018-08-23

作者相关文章

袁振
陈美谕
贾黎明
魏松坡

太行山片麻岩地区微地形土层厚度特征及其植被生长阈值
袁振, 陈美谕, 贾黎明, 魏松坡     
北京林业大学省部共建森林培育与保护教育部重点实验室 北京 100083
摘要:【目的】探讨片麻岩山区不同微地形土层厚度的分异特征,明确植物生物量、平均高、盖度对土层厚度的响应规律,计算出各指标对应的土层厚度阈值,以期为片麻岩山区植被恢复提供参考依据。【方法】以7种微地形及原状坡的土层厚度、植物群落特征数据为基础,采用典型相关分析法研究影响片麻岩山区植物群落特征的主要因子,对比分析不同微地形及原状坡之间土层厚度的异质性,并运用拐点探测分析软件Change-point analyzer 2.3探讨不同植物群落数量特征指标对应的土层厚度阈值。【结果】由典型相关分析得出土层厚度、微地形均影响了植物群落数量特征和多样性的变化,而土层厚度是引起这种变化的首要因子;片麻岩山区土层浅薄,平均厚度15 cm,微地形的土层厚度多数高于原状坡,其中,U形沟、塌陷和巨石背阴的土层厚度最大(23.1,21.3和21.8 cm),显著高于其他微地形和原状坡(P < 0.05),坡顶、陡坎的土层厚度最小(4.2和7.9 cm);通过对土层厚度进行拐点探测分析,得出随着土层厚度的不断增加,植被生物量、平均高、盖度也逐渐增加,当土层厚度增加到12.5 cm时,生物量从201 g·m-2跃迁到275 g·m-2,即当土层厚度小于阈值12.5 cm时,植被生物量增长缓慢,大于12.5 cm时则增长迅速;同理,当植物平均高从30 cm跃迁到40 cm时,土层厚度阈值为9.4 cm;当盖度从38%跃迁到51%时,土层厚度阈值为10.5 cm。【结论】片麻岩山区植物群落数量特征随着土层厚度的变化呈现出显著的空间异质性(P < 0.05),表明土层厚度是限制片麻岩山区植被生长的重要因子。在植被恢复过程中,掌握片麻岩山区土层厚度的空间异质性及阈值,优先在土层厚度大于10.5 cm的区域进行植被恢复,以点带面,最终实现整个片麻岩山区植被的重建。
关键词:片麻岩山区    微地形    植物群落数量特征    土层厚度    异质性    拐点分析    阈值    
Difference of Soil Thickness among Micro-Topographies and Their Thresholds for Vegetation Growth in Gneiss Area of Taihang Mountains
Yuan Zhen, Chen Meiyu, Jia Liming , Wei Songpo    
Province-Ministry Co-Construct Key Laboratory of Silviculture and Conservation of Ministry of Education, Beijing Forestry University Beijing 100083
Abstract: 【Objective】This study was designed for analyzing the difference of soil thickness among seven micro-topographies, the responses of quantitative characteristics of plant community to soil thickness, and determining the threshold values of soil thickness response to quantitative characteristics of plant community, with the aim of supplying reference for the revegetation in the gneiss mountainous area.【Method】Based on the data of soil thickness and characteristics of plant community in gneiss mountainous area in Pingshan County of Hebei Province, this paper adopted the canonical correlation analysis to analyze the main factor which influenced the characteristics of plant community, and analyzed the differences of soil thickness on seven micro-topographies. Change-point analysis 2.3 was performed to determine the thresholds values of soil thickness response to quantitative characteristics of plant community.【Result】According to the canonical correlation analysis, the soil thickness, micro-topography influenced the change of quantitative characteristics of plant community and diversity, among which soil thickness was the main factor. And the soil thickness of gneiss mountainous area was very thin, just about 15 cm. The soil thickness on most of the micro-topographies were deeper than the undisturbed slope. U-gully, collapse, stone shadow contained significant higher soil thickness (23.1, 21.3 and 21.8 cm) than other micro-topographies and the undisturbed slope (P < 0.05), and the lowest on slope crest and scarp (4.2 and 7.9 cm). According to change-point analysis on the soil thickness, the biomass, height and coverage of the plant community were increasing gradually along with soil thickness. When soil thickness reached 12.5 cm, the biomass transited from 201 g·m-2 to 275 g·m-2, and we called this point as the threshold. It meant that the biomass increased slowly when the soil thickness was less than 12.5 cm, but increased fast when the soil thickness was greater than 12.5 cm; Similarly, when the height transited from 30 cm to 40 cm, the threshold of soil thickness was 9.4 cm; When the coverage transited from 38% to 51%, the threshold of soil thickness was 10.5 cm.【Conclusion】The quantitative characteristics of plant community varied significantly with the soil thickness (P < 0.05), indicating that soil thickness was the main factor which influenced the quantitative characteristics of plant. It's meaningful to grasp the spatial variability and thresholds of soil thickness for the revegetation in gneiss mountainous area. If revegetation was carried out first in areas with soil thickness greater than 10.5cm, the vegetation reconstruction in the whole gneiss mountain area would finally achieved by the way of from point spreading to surface.
Key words: gneiss mountainous area    micro-topography    quantitative characteristics of plant community    soil thickness    spatial variability    analysis of abrupt change    thresholds    

土层厚度是土壤理化性质的基础和植被生长的重要条件(卢胜等,2015; 王志强等,2007),通常被定义为土壤表层到基岩的距离(解迎革等,2015)。它是坡面水文过程的关键控制因素,也是土壤退化和生产力评价的一个重要指标(王升等,2015; 尹亮等,2013)。在风化、石漠化现象频发的区域,植被恢复的困难程度与土层厚度的分布特征密不可分(Rhoton et al., 1997)。已有学者针对土层厚度对植被的空间结构和生态系统功能的影响进行了大量研究(唐庄生等,2016; 张喜等,2016; Ferreira et al., 2007)。赵景波等(2013)对青海湖西部天然草地不同厚度土壤含水率进行研究,得出在植被一致的条件下,厚土层含水率高于薄土层。高强伟等(2016)空间异质性是土壤的基本特性,即使在几厘米的范围内,土壤的理化性质也会存在显著差异。杨喜田等(1999)对太行山天然植被进行研究得出土层厚度是影响土壤水分、养分、密度等理化性质及植被根系空间分布的重要因子。在植被生长稀疏的石质山区和沙漠化地区,土层厚度已经成为植被重建的先决条件(Buttle et al., 2004; Schenk et al., 2008)。

微地形通过坡面的起伏变化,间接导致其内部热量、土壤水分、养分、土层厚度等生境资源在局部范围内产生微小变化(董云龙等,2014),从而导致地上植物群落类型、特征和生产力的不同,对生态系统结构的形成具有重要影响(杨永川等,2005)。目前有关片麻岩山区土层厚度的研究较少,尤其是空间分布特征和微地形的异质性,作为水分和养分的空间载体,土层厚度严重制约着片麻岩山区植被构建。

当一个稳定的生态系统中某个或者几个因子发生突变时,可能会导致整个生态系统陷入突然的不稳定甚至是崩溃状态,引起这种变化的突变点对应的值称之为阈值(Lamb et al., 2005; Twidwell et al., 2013)。在退化的土地管理中,阈值反映了土壤与植被的复杂关系(Ma et al., 2013; Mcdaniel et al., 2014)。目前有关阈值的研究主要集中在植被退化(Donohue et al., 2015),生态修复(Qian et al., 2014),景观美度(Robertson et al., 2016),湖泊(张家瑞等,2011)、湿地(Larsen et al., 2015)、河流(陈小华等,2014; Yang et al., 2013)的富营养化等方面,有关土层厚度的阈值研究尚未见报道。本研究以片麻岩山区不同微地形及原状坡为研究对象,分析不同微地形及原状坡间土层厚度的异质性,找出植物群落数量特征指标的土层厚度阈值,以期为区域片麻岩山区植被恢复提供科学参考。

1 研究区概况

试验地点位于北方地区片麻岩的典型分布区河北省平山县(113°31′—114°15′E,38°9′—38°47′N),该县地貌以丘陵、浅山为主,海拔100~2 000 m,年降水量约500 mm,且集中于7、8、9这3个月,其余时间多干旱,由于植被稀疏,土层较薄,降水多以地表径流的形式输出。片麻岩作为一种变质岩(Jemmal et al., 2016),在平山县广泛分布,但是由于其极易风化、破碎的特性,形成的土壤储水能力差、养分少、砾石量大(Favero-Longo et al., 2015),导致该区域植物生长不良,现存植被多以稀疏的灌草为主(袁振等,2017)。

现有的植被群落主要以旱生、中旱生的小灌木和草本植物为主,而且植被稀疏,覆盖度低、分布不均匀。灌木主要有酸枣(Zizyphus jujuba)、荆条(Vitex negundo var. heterophylla)、薄皮木(Leptodermis oblonga)和多花胡枝子(Lespedeza floribunda)等;草本主要有铁杆蒿(Artemisia sacrorum)、白羊草(Bothriochloa ischaemum)、达呼里胡枝子(Lespedeza davurica)、阿尔泰狗娃花(Heteropappus altaicus)、画眉草(Eragrostis pilosa)、隐子草(Cleistogenes chinensis)和黄背草(Themeda triandra)等。

2 研究方法 2.1 片麻岩微地形类型划分

本研究依据片麻岩的基本属性(赵荟等,2010杨永川等,2005)按照黄土高原和浙江丘陵地区微地形的识别和分类标准,将该区域微地形划分为坡顶、塌陷、巨石背阴、缓台、陡坎、谷坡和U形沟7种(袁振等,2017),各自特征见表 1,微地形植物群落数量特征见表 2

表 1 样地内微地形种类及特征 Tab.1 Characteristics of different micro-topographic types in sampling sites
表 2 微地形植物群落数量特征 Tab.2 Quantitative characteristics of plant communities on micro-topography
2.2 样地设置及植被调查

2016年8月,在平山县片麻岩典型分布的乡镇,利用样线法,在每个坡向(阴坡、阳坡、阴阳坡)设置20 m样线(调查的坡面坡长在20 m左右,因此布设20 m样线)。调查区域微地形内有灌木丛,加上微地形地形条件的限制,因此沿着样线方向每个微地形样方设置为3 m×3 m;原状坡内主要为稀疏的草本群落,偶尔出现小灌木,因此在每个原状坡面选取3个1 m×1 m对照样方。记录微地形样方及对照样方内植物的种名、高度、盖度、生物量等指标,其中生物量选择烘干测干重。

2.3 土层厚度测定

研究区内土壤母质为风化程度严重的片麻岩,土层厚度的测定采用钢钎法(史薪钰等,2015)。

2.4 其他微立地因子测定

记录各微地形样方所处坡位;罗盘仪测定坡向、坡度;土壤硬度计测定土壤硬度;用环刀在样方内多点混合取土壤1 kg充分混匀,筛出粒径在2 mm以上的石砾,测算含石率。

2.5 植物物种多样性的计算

根据调查的基础数据,计算样方内植物群落的香侬多样性指数(H)、丰富度指数(Ma)和均匀度指数(Ea)。

$ H = - \sum\limits_{i = 1}^s {{p_i}{\rm{ln}}{\mathit{p}_i};} $
$ {M_a} = \left({S - 1} \right)/{\rm{ln}}\mathit{N}{\rm{;}} $
$ {E_a} = H/{\rm{ln}}\mathit{S}。$

其中:S为样方内物种种类数量;N为所有物种的盖度和;Ni为物种i对应的盖度;Pi为物种i的相对盖度。

2.6 微立地因子与植物群落特征的典型相关分析

典型相关分析是采用主成分分析的方法,研究两组综合指标之间的关系进而反映两组变量的相关关系(董晓萌,2008)。两组变量对应的公式为:M=a1x1+a2x2+……+amxmN=b1y1+b2y2……+bnynMN为典型变量,a1,a2……am和b1,b2 ……bn为待定系数,MN之间的相关系数称为典型相关系数,用来度量2个线性函数的联系强度。

植被因子用子变量盖度(x1)、平均高(x2)、生物量(x3)、多样性指数(x4)、丰富度指数(x5)和均匀度指数(x6)表示(袁振等,2017),从而构成因变量M,微立地因子用子变量微地形(y1)、坡向(y2)、坡度(y3)、坡位(y4)、土层厚度(y5)、土壤硬度(y6)和含石率(y7)表示,从而构成因变量N。对坡位、坡向、微地形进行赋值:顶坡1分、上坡2分、中坡3分、下坡4分、阳坡1分、阴阳坡2分、阴坡3分、坡顶1分、陡坎2分、谷坡3分、缓台4分、巨石背阴5分、塌陷6分、U形沟7分(袁振等,2017)。

2.7 数据处理

使用SPSS22.0软件进行典型相关分析和方差分析,运用Change-point analyzer 2.3拐点分析软件(Taylor Enterprises,USA)对不同土层厚度下植被生物量、平均高和盖度的拐点进行探测分析,判定不同植物群落数量特征指标对应的土层厚度阈值。

3 结果与分析 3.1 植物群落特征与微立地因子的典型相关分析

表 3可知,6组典型变量中前2组的典型相关系数μ分别为0.978和0.845,且相关性达到极显著水平(P=0.01),其余4组典型变量的相关性不显著。因此可以取前2组典型变量对植物群落特征与微立地因子的关系进行分析。

表 3 典型变量及其与原始变量相关系数 Tab.3 Canonical variables and their correlation coefficients with original variables

用第1组典型变量的系数构建典型线性模型:

M1=0.866x1+0.944x2+0.895x3+0.297x4+0.378x5+0.119x6

N1=0.735y1+0.551y2-0.313y3-0.234y4+0.959y5+0.506y6+0.094y7

式中:M1与盖度(x1)、平均高(x2)、生物量(x3)的相关系数比较大,因此可以判断M1代表植物群落的数量特征;N1与微地形(y1)、土层厚度(y5)存在较大的相关关系,与坡向(y2)、土壤硬度(y6)也存在一定的相关关系。又由于M1N1的典型相关系数为0.978,且相关性达到极显著水平,因此,可以得出:植物群落数量特征与土层厚度、微地形密切相关。

用第2组典型变量的系数构建典型模型:

M2=0.371x1-0.104x2-0.269x3-0.623x4+0.655x5-0.504x6

N2=0.509y1+0.443y2-0.473y3+0.274y4+0.861y5-0.097y6+0.264y7

式中:M2与多样性指数(x4)、丰富度指数(x5)、均匀度指数(x6)的相关系数比较大;N2与土层厚度(y5)相关关系最大。M2N2的典型相关系数为0.845,且相关性达到极显著水平。同理可以得出植物物种多样性也受土层厚度的影响。

3.2 不同微地形及原状坡土层厚度分异

表 4可知,阴坡上U形沟、塌陷、巨石背阴处土层厚度显著高于其他微地形(P<0.05),其中U形沟处最大为28.1 cm,分别是坡顶、陡坎和缓台的5.3,2.9和2.7倍;谷坡、原状坡的土层厚度为12~16 cm,显著高于坡顶(最小,仅为5.3 cm)(P<0.05)。

表 4 微地形及原状坡土层厚度 Tab.4 Soil thickness on micro-topography and undisturbed slope

表 4可知,阴阳坡上,巨石背阴处土层厚度最大,为23.1 cm,U形沟、塌陷次之,为20~23 cm,且巨石背阴、U形沟、塌陷处土层厚度显著高于原状坡及其他微地形(P<0.05);缓台、陡坎和谷坡处土层厚度为8~10 cm,显著高于坡顶(P<0.05)。

表 4可知,阳坡上,巨石背阴、塌陷和U形沟处土层厚度为18~20 cm,显著高于原状坡及其他微地形(P<0.05)。巨石背阴土层厚度最大,为19.2 cm,分别是缓台、陡坎和坡顶的3.1,3.3和6.0倍。谷坡和原状坡处土层厚度为10~12 cm,均显著高于陡坎和坡顶(分别为5.8和3.2 cm)(P<0.05)。

3.3 基于土层厚度的拐点探测分析

图 1可知,植被生物量、平均高、盖度随着土层厚度的增加,都出现了跃迁现象,图中的上下两条实线之间的区域为各指标的控制区,代表着片麻岩山区不同土层厚度下各指标数据可能出现的最大波动范围,控制区以外的点代表各指标中异常好或异常差的值。明显处于图中两块阴影之间的区域中心点坐标即可视为指标的拐点或阈值。

图 1 基于拐点探测分析的植被指标对应土层厚度阈值判定 Figure 1 Analysis of abrupt change of soil thickness response to plant indexes

图 1所示,生物量随着土层厚度的增加,整体呈现不断上升的趋势,当土层厚度增加到12.5 cm时,生物量拐点出现,此时生物量从201 g·m-2跃迁到275 g·m-2。因此,可以得到基于生物量出现跃迁时的土层厚度阈值为12.5 cm。同理,可以得到当平均高从30 cm跃迁到40 cm时的土层厚度阈值为9.4 cm;当盖度从38%跃迁到51%时的土层厚度阈值为10.5 cm。

总体来看,当土层厚度为9~13 cm时,植被的生物量、平均高和盖度会出现跃迁现象,即出现阈值拐点,只有当土层厚度在大于各植物群落数量特征对应的土层厚度阈值后,植被才会生长较好。

4 讨论

在岩石风化、坡面径流严重的片麻岩山区(Agliardi et al., 2014; Cole et al., 2010),由于微地形的存在土层厚度分布不均匀,土层厚度成为评价片麻岩山区土地生产力的重要指标。本研究中土层厚度作为主导因子与其他立地因子共同影响着植物群落的数量特征和多样性,这与前人研究的结论一致(朱波等,2009)。

从整个坡面来看,U形沟、巨石背阴和塌陷处土层厚度最大;缓台、谷坡处介于中等水平;坡顶、陡坎处最小。由于U形沟、巨石背阴和塌陷等微地形的构型有利于坡面径流的汇集,进而导致径流带来的土壤或片麻岩表层风化物在微地形中进行沉淀累积,因此土层厚度在所有的微地形中最大;缓台、谷坡由于坡度比较缓和,有利于坡面土壤的沉积,并且保水、蓄水能力好(赵荟等,2010);陡坎坡度大,土壤流失严重(卜耀军,2015),土层厚度较小;坡顶接受太阳直射最强,蒸发量最大,水热条件最差(韩润燕等,2014)。另外,沟谷地带、凹陷处的植物生长状况与其他小地形相比明显较好(王晶等,2012),植物冠层和地表覆盖能在一定程度上有效减少径流冲刷,进而减少土壤流失(张清春等,2002),另外,根系也能改善土壤的物理结构性质,能够使土壤得到保存,这可能也是U形沟、塌陷等微地形土层厚度大的一个原因。微地形与植被存在互利共赢的协同进化优势。

随着土层厚度增加,植物群落数量特征指标整体呈现出不断上升的趋势(朱波等,2009; 王志强等,2007),但是这种上升速度不是均匀连续的(李骜等,2014),有时会出现拐点(张喜等,2016)。本研究中,当土层厚度增加到12.5 cm时,生物量的增长出现拐点,可以得到基于生物量出现跃迁时的土层厚度阈值为12.5 cm;同理可以得到植被平均高、盖度出现拐点时对应的土层厚度阈值分别为9.4和10.5 cm。已有研究表明,在石质山区,适合植物生长的土层厚度为大于8 cm(李程程等,2012),这与本研究结果基本一致。只有当土层厚度大于植被各指标对应的土层厚度阈值时,植被才能保持良好生长状态。

5 结论

1) 由典型相关分析得出,土层厚度、微地形均影响植物群落数量特征和多样性变化,而土层厚度是引起这种变化的首要因子。

2) 片麻岩山区土层浅薄,平均厚度为15 cm,微地形的土层厚度多数高于原状坡。其中,土层厚度分布在U形沟、塌陷和巨石背阴处最大(23.1,21.3和21.8 cm),在坡顶、陡坎处最小(4.2,7.9 cm)。

3) 在研究区内,植物群落数量特征随土层厚度变化呈现出显著的空间异质性(P<0.05)。随着土层厚度不断增加,植被生物量、平均高、盖度也逐渐增加。对土层厚度进行拐点探测分析后得出:植被生物量、平均高、盖度对应的土层厚度阈值分别为12.5,9.4和10.5 cm。因此,只有当土层厚度大于9~13 cm这个阈值区间时,植被才能保持正常生长。

参考文献(References)
卜耀军.2015.陕北黄土坡面微地形生境条件及植被恢复评价研究.北京: 北京林业大学硕士学位论文.
(Bu Y J. 2015. Research on habitat conditions and evaluation of vegetation restoration of microtopography in the Loess Plateau, North Shaanxi. Beijing: MS thesis of Beijing Forestry University. [in Chinese])
陈小华, 李小平, 王菲菲, 等. 2014. 苏南地区湖泊群的富营养化状态比较及指标阈值判定分析. 生态学报, 34(2): 390-399.
(Chen X H, Li X P, Wang F F, et al. 2014. Research on the difference in eutrophication state and indicator threshold value determination among lakes in the Southern Jiangsu Province, China. Acta Ecologica Sinica, 34(2): 390-399. [in Chinese])
董晓萌.2008.多个数量性状间的相关性研究.杨凌: 西北农林科技大学硕士学位论文.
(Dong X M. 2008. Correlation study among quantitative traits. Yangling: MS thesis of Northwest Agriculture and Forestry University. [in Chinese])
董云龙, 张德罡, 陈建纲, 等. 2014. 东祁连山高寒草地不同生境条件下植物群落结构特征及多样性比较——以甘肃省天祝抓喜秀龙乡为例. 草地学报, 22(3): 481-487.
(Dong Y L, Zhang D G, Chen J G, et al. 2014. Comparison of community structure and biodiversity of Alpine meadow at different habitats in eastern Qilian Mountains: a case study in Zhuaxixiulong Township of Tianzhu County, Gansu Province. Acta Agrestia Sinica, 22(3): 481-487. [in Chinese])
高强伟, 代斌, 罗承德, 等. 2016. 蜀南竹海毛竹林土壤物理性质空间异质性. 生态学报, 36(8): 2255-2263.
(Gao Q W, Dai B, Luo C D, et al. 2016. Spatial heterogeneity of soil physical properties in Phyllostachys heterocycla cv. pubescens forest, South Sichuan Bamboo Sea. Acta Ecologica Sinica, 36(8): 2255-2263. [in Chinese])
韩润燕, 陈彦云, 李旺霞. 2014. 不同微地形固定沙丘地上植被、土壤种子库、和土壤含水量的分布特征. 草业科学, 31(10): 1825-1832.
(Han R Y, Chen Y Y, Li W X. 2014. The distribution and relationships of ground vegetation, soil seed bank and soil water content of fixed sand under different micro-landform conditions. Pratacultural Science, 31(10): 1825-1832. DOI:10.11829/j.issn.1001-0629.2014-0164 [in Chinese])
李骜, 段兴武. 2014. 利用黑土层厚度评价东北黑土区土地生产力——以鹤北小流域为例. 水土保持通报, 34(1): 154-159.
(Li A, Duan X W. 2014. Productivity assessment for black soil region in Northeastern China using black soil thickness—a case study of Hebei watershed. Bulletin of Soil and Water Conservation, 34(1): 154-159. [in Chinese])
李程程, 程星, 杨士超. 2012. 岩溶山区植物生长的土壤厚度因素研究——以贵州相宝山为例. 贵州师范学院学报, 28(9): 38-41.
(Li C C, Cheng X, Yang S C. 2012. Study on the soil thickness factor of plant growth in Karst mountains—take the Guizhou Xiangbao Mountain as an example. Journal of Guizhou Normal College, 28(9): 38-41. DOI:10.3969/j.issn.1674-7798.2012.09.010 [in Chinese])
卢胜, 张志毅, 黄丽, 等. 2015. 花岗岩和片麻岩发育土壤性状的水平地带性分异. 土壤通报, 46(2): 272-279.
(Lu S, Zhang Z Y, Huang L, et al. 2015. Horizontal distinction of granite and gneiss derived soils. Chinese Journal of Soil Science, 46(2): 272-279. [in Chinese])
史薪钰, 陈梦华, 齐国辉, 等. 2015. 片麻岩山地土壤团聚体分布及养分特征. 水土保持学报, 29(5): 172-175.
(Shi X Y, Chen M H, Qi G H, et al. 2015. Distribution and nutrient characteristics of soil aggregates in gneiss mountainous region. Journal of Soil and Water Conservation, 29(5): 172-175. [in Chinese])
唐庄生, 安慧, 邓蕾, 等. 2016. 荒漠草原沙漠化植物群落及土壤物理变化. 生态学报, 36(4): 991-1000.
(Tang Z S, An H, Deng L, et al. 2016. Changes in the plant community and soil physical properties during grassland desertification of steppes. Acta Ecologica Sinica, 36(4): 991-1000. [in Chinese])
王晶, 朱清科, 秦伟, 等. 2012. 陕北黄土区封禁流域坡面微地形植被特征分异. 应用生态学报, 23(3): 694-700.
(Wang J, Zhu Q K, Qin W, et al. 2012. Differentiation of vegetation characteristics on slope micro-topography of fenced watershed in loess area of north Shaanxi Province, Northwest China. Chinese Journal of Applied Ecology, 23(3): 694-700. [in Chinese])
王升, 陈洪松, 付智勇, 等. 2015. 基于探地雷达的典型喀斯特坡地土层厚度估测. 土壤学报, 52(5): 1024-1030.
(Wang S, Chen H S, Fu Z Y, et al. 2015. Estimation of thickness of soil layer on typical Karst hillslopes using a ground penetrating radar. Acta Pedologica Sinica, 52(5): 1024-1030. [in Chinese])
王志强, 刘宝元, 海春兴. 2007. 土壤厚度对天然草地植被盖度和生物量的影响. 水土保持学报, 21(4): 164-167.
(Wang Z Q, Liu B Y, Hai C X. 2007. Effects of soil depth on vegetation cover and above ground biomass in east part of inner Mongolia. Journal of Soil and Water Conservation, 21(4): 164-167. DOI:10.3321/j.issn:1009-2242.2007.04.038 [in Chinese])
解迎革, 李霞, 张风宝, 等. 2015. 基于电阻率断层扫描技术探测林地土层厚度. 农业工程学报, 31(4): 212-216.
(Xie Y G, Li X, Zhang F B, et al. 2015. Detection of soil thickness in forest land based on electrical resistivity tomographic scanning technology. Transactions of the Chinese Society of Agricultural Engineering, 31(4): 212-216. DOI:10.3969/j.issn.1002-6819.2015.04.030 [in Chinese])
杨喜田, 董惠英, 刘明强, 等. 1999. 太行山荒废地土壤厚度与植被类型关系的研究. 河南农业大学学报, 33(s1): 8-11.
(Yang X T, Dong H Y, Liu M Q, et al. 1999. Study on the relationship between soil thickness and vegetation type on degraded land in Mountain Taihang. Journal of Henan Agricultural University, 33(s1): 8-11. [in Chinese])
杨永川, 达良俊, 由文辉. 2005. 浙江天童国家森林公园微地形与植被结构的关系. 生态学报, 25(11): 2830-2840.
(Yang Y C, Da L J, You W H. 2005. Vegetation structure in relation to micro-landform in Tiantong National Forest Park, Zhejiang, China. Acta Ecologica Sinica, 25(11): 2830-2840. DOI:10.3321/j.issn:1000-0933.2005.11.006 [in Chinese])
尹亮, 崔明, 周金星, 等. 2013. 岩溶高原地区小流域土壤厚度的空间变异特征. 中国水土保持科学, 11(1): 51-58.
(Yin L, Cui M, Zhou J X, et al. 2013. Spatial variability of soil thickness in a small watershed of Karst plateau. Science of Soil and Water Conservation, 11(1): 51-58. DOI:10.3969/j.issn.1672-3007.2013.01.008 [in Chinese])
袁振, 魏松坡, 贾黎明, 等. 2017. 河北平山片麻岩山区微地形植物群落异质性. 北京林业大学学报, 39(2): 49-57.
(Yuan Z, Wei S P, Jia L M, et al. 2017. Differentiation of vegetation characteristics on micro-topography in gneiss mountainous area of Pingshan County, Hebei Province. Journal of Beijing Forestry University, 39(2): 49-57. [in Chinese])
张家瑞, 曾勇, 赵彦伟. 2011. 白洋淀湿地水华暴发阈值分析. 生态学杂志, 30(8): 1744-1750.
(Zhang J R, Zeng Y, Zhao Y W. 2011. Threshold analysis of water blooms in Baiyangdian wetlands. Chinese Journal of Ecology, 30(8): 1744-1750. [in Chinese])
张清春, 刘宝元, 翟刚. 2002. 植被与水土流失研究综述. 水土保持研究, 9(4): 96-101.
(Zhang Q C, Liu B Y, Zhai G. 2002. Review on relationship between vegetation and soil and water Loss. Research of Soil and Water Conservation, 9(4): 96-101. DOI:10.3969/j.issn.1005-3409.2002.04.030 [in Chinese])
张喜, 王莉莉, 刘延惠, 等. 2016. 喀斯特天然林植物多样性指数和土壤理化指标的相关性. 生态学报, 36(12): 3609-3620.
(Zhang X, Wang L L, Liu Y H, et al. 2016. Correlation on plant diversity indices and soil physical and chemical indicators of karstnatural forest, Southern Guizhou Province, China. Acta Ecologica Sinica, 36(12): 3609-3620. [in Chinese])
赵荟, 朱清科, 秦伟, 等. 2010. 黄土高原干旱阳坡微地形土壤水分特征研究. 水土保持通报, 30(3): 64-68.
(Zhao H, Zhu Q K, Qin W, et al. 2010. Soil moisture characteristics on microrelief of dry south-slope on the Loess Plateau. Bulletin of Soil and Water Conservation, 30(3): 64-68. [in Chinese])
赵景波, 魏君平, 邵天杰. 2013. 青海省刚察县吉尔孟地区不同厚度土壤水分研究. 水土保持通报, 33(3): 68-73.
(Zhao J B, Wei J P, Shao T J. 2013. Soil moisture of different thicknesses in Jiermeng area of Gangcha County, Qinghai Province. Bulletin of Soil and Water Conservation, 33(3): 68-73. [in Chinese])
朱波, 况福虹, 高美荣, 等. 2009. 土层厚度对紫色土坡地生产力的影响. 山地学报, 27(6): 735-739.
(Zhu B, Kuang F H, Gao M R, et al. 2009. Effects of soil thickness on productivity of sloping cropland of purple soil. Journal of Mountain Science, 27(6): 735-739. DOI:10.3969/j.issn.1008-2786.2009.06.014 [in Chinese])
Agliardi F, Zanchetta S, Crosta G B. 2014. Fabric controls on the brittle failure of folded gneiss and schist. Tectonophysics, 637(637): 150-162.
Buttle J M, Dillon P J, Eerkes G R. 2004. Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield. Journal of Hydrology, 287(1-4): 161-177. DOI:10.1016/j.jhydrol.2003.09.022
Cole D M, Mathisen L U, Hopkins M A, et al. 2010. Normal and sliding contact experiments on gneiss. Granular Matter, 12(1): 69-86. DOI:10.1007/s10035-010-0165-z
Donohue K, Burghardt L T, Runcie D, et al. 2015. Applying developmental threshold models to evolutionary ecology. Trends in Ecology & Evolution, 30(2): 66-77.
Favero-Longo S E, Accattino E, Matteucci E, et al. 2015. Weakening of gneiss surfaces colonized by endolithic lichens in the temperate climate area of northwest Italy. Earth Surface Processes & Landforms, 40(15): 2000-2012.
Ferreira J N, Bustamante M, Garcia-Montiel D C, et al. 2007. Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna. Oecologia, 153(2): 417-430. DOI:10.1007/s00442-007-0747-6
Jemmal Y, Zari N, Maaroufi M. 2016. Thermophysical and chemical analysis of gneiss rock as low cost candidate material for thermal energy storage in concentrated solar power plants. Solar Energy Materials & Solar Cells, (157): 377-382.
Lamb D, Erskine P D, Parrotta J A. 2005. Restoration of degraded tropical forest landscapes. Science, 310(5754): 1628-1632. DOI:10.1126/science.1111773
Larsen S, Alp M. 2015. Ecological thresholds and riparian wetlands: an overview for environmental managers. Limnology, 16(1): 1-9. DOI:10.1007/s10201-014-0436-1
Ma H, Wang Y, Yue H, et al. 2013. The threshold between natural recovery and the need for artificial restoration in degraded lands in Fujian Province, China. Environmental Monitoring & Assessment, 185(10): 8639-8648.
Mcdaniel M D, Wagner R J, Rollinson C R, et al. 2014. Microclimate and ecological threshold responses in a warming and wetting experiment following whole tree harvest. Theoretical and Applied Climatology, 116(1): 287-299.
Qian S S. 2014. Ecological threshold and environmental management: a note on statistical methods for detecting thresholds. Ecological Indicators, (38): 192-197.
Rhoton F E, Lindbo D L. 1997. A soil depth approach to soil quality assessment. Journal of Soil and Water Conservation, 52(1): 66-72.
Robertson B P, Savage C, Gardner J P A, et al. 2016. Optimising a widely-used coastal health index through quantitative ecological group classifications and associated thresholds. Ecological Indicators, (69): 595-605.
Schenk H J. 2008. Soil depth, plant rooting strategies and species' niches. New Phytologist, 178(2): 223-225. DOI:10.1111/j.1469-8137.2008.02427.x
Twidwell D, Fuhlendorf S D, Taylor C A, et al. 2013. Refining thresholds in coupled fire-vegetation models to improve management of encroaching woody plants in grasslands. Journal of Applied Ecology, 50(3): 603-613. DOI:10.1111/jpe.2013.50.issue-3
Yang S C, Shih S S, Hwang G W, et al. 2013. The salinity gradient influences on the inundation tolerance thresholds of mangrove forests. Ecological Engineering, 51(1): 59-65.