文章信息
- 林文树, 穆丹, 王丽平, 邵立郡, 吴金卓
- Lin Wenshu, Mu Dan, Wang Liping, Shao Lijun, Wu Jinzhuo
- 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性
- Correlation between the Growth of Dominant Trees and Surface Soil Physiochemical Properties of Conifer and Broad-Leaved Mixed Forest at Different Succession Stages
- 林业科学, 2016, 52(5): 17-25
- Scientia Silvae Sinicae, 2016, 52(5): 17-25.
- DOI: 10.11707/j.1001-7488.20160503
-
文章历史
- 收稿日期:2015-04-16
- 修回日期:2016-03-29
-
作者相关文章
林木的生长与光照、能量、土壤养分和水分等环境因子联系密切,其中土壤作为森林生态系统的重要组分,是林木赖以生存的重要基础(Burslem et al.,2003; Costa,2008;Vieira et al.,2010)。森林土壤肥力在一定程度上影响着森林健康,长期维持和提高土壤肥力已成为维护森林生态系统稳定的关键(姜勇,2009; Fisher et al.,2000; Oliveira-Filho et al.,2001; Rocha et al.,2004; Souza et al.,2007)。受群落内部和外部因素影响,森林群落将发生一系列的演替(Lilienfein et al.,2001; 王纪军等,2004; Crisp et al.,1998),这是森林得以维持与再生的生态学过程。不同演替阶段森林的土壤理化性质不同,这又会使不同演替阶段内的许多生态过程发生变化(He et al.,2003; 贾志清,2002; 魏强等,2012)。例如,张庆费等(1999)综合评价了浙江天童植物群落次生演替过程中土壤肥力的变化,表明土壤肥力随演替进行呈提高趋势,且进一步促进了群落演替。杨晓娟(2013)研究了东北长白山系低山丘陵区不同林分类型的土壤肥力,得出土壤肥力表现为天然针阔混交林>黄花落叶松(Larix olgensis)天然林>黄花落叶松人工林>天然阔叶混交林,说明土壤肥力质量受林分类型影响。探索不同演替阶段的针阔混交林土壤理化性质特征及其与林木生长的关联性,可以了解影响林木生长的主要环境因子,为森林可持续经营提供科学依据。
我国东北东部山地以红松(Pinus koraiensis)为主的温带针阔叶混交林是该地区的顶级代表性植被。近年来,许多学者对温带针阔混交林土壤进行了大量研究。例如,张春雨等(2006)对长白山阔叶红松林林隙与林下物种组成、物种多样性和土壤理化性质进行了对比研究,发现林隙中土壤和凋落物的理化性质随着资源和空间利用有效性的改变而出现差异。王树力(2006)研究了黑龙江省伊春市汤旺河流域4种红松混交林经营类型对土壤性质的影响,得出红松混交林维护地力及水分涵养的功能较强。吴金卓等(2015)应用层次分析法、隶属度函数和森林土壤健康指数法,评价了吉林省蛟河市林业实验区管理局内4种不同演替阶段森林的土壤健康状况。但是,对不同演替阶段森林土壤肥力的综合评价及土壤肥力与林木生长的关联性研究则很少。本研究依据在吉林省蛟河林业实验区管理局进行的4种不同林龄的林分生长和表层土壤调查,研究表层土壤理化性质与树木生长之间的相关性,为探索该地区不同林分的生长规律及森林可持续经营提供依据。
1 研究区概况研究样地设置在吉林省蛟河林业实验区管理局林场内,该林场位于长白山系张广才岭西南坡余脉(127°35′—127°51′E,43°51′—44°05′N),海拔459~517 m,地势由西向东南倾斜。林场经营面积3.182 3 万hm2,林业用地面积28 646 hm2,森林覆盖率为88.4%,有林地面积2.813 4万hm2。2012年森林总蓄积量454万m3,每公顷蓄积量164 m3。该区域属于温带大陆性山地气候。土壤类型为山地暗棕色森林土壤,土层平均厚度为20~100 cm,土壤形态分布层次明显,并且所含有机质较多(代海军,2013)。
蛟河林业实验区内植被属长白山植物区系,共有923种,分属108科,404属,主要林分类型为天然针阔混交林,植物种类多,分布复杂,群落垂直分层明显(姜俊等,2011)。该区域人口密度较小,林区保护较完整,林分内主要由胡桃楸(Juglans mandshurica)、千金榆(Carpinus cordata)、水曲柳(Fraxinus mandshurica)和紫椴(Tilia amurensis)等阔叶树种与红松、杉松(Abies holophylla)等针叶树种混交组成。主要乔木树种有红松、白桦(Betula platyphylla)、千金榆、胡桃楸、杉松、水曲柳、紫椴、色木槭(Acer mono)、裂叶榆(Ulmus laciniata)和怀槐(Maackia amurensis)等。主要灌木种类有暴马丁香(Syringa reticulata)、毛榛(Corylus mandshurica)、瘤枝卫矛(Euonymus pauciflorus)和乌苏里鼠李(Rhamnus ussuriensis)等。草本层种类包括东北扁果草(Isopyrum manshuricum)、黑水银莲花(Anemone amurensis)、东北羊角芹(Aegopodium alpestre)和山茄子(Scopolia acutangula)等。
2 研究方法2009—2012年,参照CTFS(center for tropical forest science)的技术规范,在吉林省蛟河市林业实验区管理局建立4块固定监测样地,包括中龄林(21.84 hm2,41~60年生)、近熟林(21.12 hm2,61~80年生)、成熟林(42 hm2,81~120年生)和老龄林(30 hm2,120年生以上)。这4块样地构成了一个由次生中龄林分逐渐向顶级老龄林分过渡的典型演替系列。其中,中龄林、近熟林和成熟林地势相对比较平坦,大部分坡度为10°~20°,平均海拔450~490 m。老龄林地势复杂,平均海拔690 m,坡度最大达40°(丁胜建等,2012)。样地的林冠郁闭度都在0.8以上; 林分密度分别为1 513,2 545,1 369和1 694株·hm-2; 胸高断面积分别为30.05,27.4,31.84和31.45 m2·hm-2(彭萱亦,2014)。中龄林和近熟林在30年前经历过强度较大的择伐,经过更新演替逐渐形成次生林; 部分成熟林(20 hm2)和老龄林受到的人为干扰则较小。为了对不同演替阶段的林分生长特征和土壤进行调查,在4个固定样地中,分别选取20 hm2样地(500 m×400 m,近熟林660 m×320 m),调查并记录样地内所有胸径DBH≥1 cm的木本植物个体的种名、胸径和树高。
土壤样品获取是在每个样地中以田字格的形式均匀选取9个样点进行剖面挖掘与取样,土壤物理性质测定采用环刀法,采集表层0~20 cm的土壤样品,土壤pH值和速效钾含量通过Rqflex便携式土壤养分速测仪测量; 用标准酸滴定来测定土壤中全氮含量; 水解氮含量采用锌-硫酸亚铁与氢氧化钠还原法测定; 全磷含量应用硫酸-高氯酸-钼锑抗比色法测定; 速效磷含量用0.5 mol·L-1碳酸氢钠浸提法提取测定; 全钾含量采用酸溶-火焰光度法测定; 有机质含量采用重铬酸钾在酸性溶液中氧化有机质方法测定(鲁如坤,1999)。
由于优势林木的树高受林分密度和间伐的影响不大,本研究以优势林木为研究对象,分析不同演替阶段针阔混交林内优势林木的平均胸径和平均树高与表层土壤理化性质之间的关系。以每公顷样地内100株胸径最大的植株作为优势木(Meng et al.,2009; Mamo et al.,2006)。本研究中各样地的面积均为20 hm2,因此,每个样地共选取2 000株胸径最大的林木作为优势木。运用R软件对优势林木胸径和树高及土壤的有关数据进行统计,分析优势林木平均树高和平均胸径与表层土壤理化性质的相关性,然后运用主成分分析法对4个演替阶段的土壤理化性质数据进行降维,并计算出4个演替阶段的表层土壤理化性质综合得分。
3 结果与分析 3.1 不同演替阶段针阔混交林优势树种生长状况不同演替阶段针阔混交林样地内优势树种生长状况如表 1所示。可以看出,随着演替进行,林分中主要优势树种的平均胸径呈显著增加趋势,与中龄林相比增幅分别为1.80%,26.31%和29.98%; 各演替阶段内优势树种的平均树高变化不大。从主要优势树种的数量分布情况来看,中龄林阶段,以胡桃楸、水曲柳、红松、色木槭、春榆(Ulmus davidiana var.japonica)、大果榆(Ulmus macrocarpa)和紫椴等乔木占主要优势; 近熟林时期,以胡桃楸、色木槭、红松、紫椴、水曲柳、糠椴(Tilia mandshurica)和蒙古栎(Quercus mongolica)等乔木占主要优势; 成熟林处于演替阶段的顶级,以红松、色木槭、水曲柳、紫椴、胡桃楸、蒙古栎和杉松等乔木占主要优势; 老龄林处于演替阶段的后期,林分内又以裂叶榆、红松、色木槭和紫椴等占主要优势; 随着演替的进行,胡桃楸、春榆和大果榆等乔木逐渐退出主层林。
不同演替阶段针阔混交林表层(0~20 cm)土壤物理性质如表 2所示。可以看出,随着针阔混交林演替进行,从中龄林到成熟林土壤密度均值变化不显著(F=0.190; df=2; P=0.827>0.05),而老龄林内土壤密度最小。土壤毛管持水量与最大持水量变化趋势基本一致,均随演替进行而逐渐增加,在老龄林阶段达到最大; 从中龄林到老龄林,毛管持水量与最大持水量分别增加12.98%和27.94%。土壤毛管孔隙度直接决定土壤中悬着毛管水的量,而土壤非毛管孔隙度是表征土壤通气性的指标。本研究中非毛管孔隙度随演替进行逐渐减小,而毛管孔隙度随着演替进行逐渐增大,但总孔隙度变化并不显著。
树木生长需要适宜的土壤酸碱度,并不断从土壤中吸收各种营养元素,包括土壤有机质经微生物分解后提供的营养物质。不同演替阶段下针阔混交林的表层(0~20 cm)土壤化学性质如表 3所示。可以看出,成熟林表层土壤pH值最大,近熟林最小,老龄林介于成熟林和中龄林之间,但它们之间的差别并不显著(F=2.537; df=3; P=0.074>0.05)。土壤有机质含量以近熟林最高,成熟林最低,中龄林介于成熟林与老龄林之间,从中龄林到近熟林增加了22.86%,从近熟林到成熟林减少了26%,而从成熟林到老龄林又增加了19.96%。老龄林土壤中全氮、水解氮和有效磷含量均最高。近熟林土壤中全磷、全钾和速效钾的含量均最高。
运用R软件,分别以针阔混交林4个演替阶段中优势木的生长指标(平均胸径和平均树高)为因变量,以0~20 cm表层土壤理化性质(土壤密度、最大持水量、毛管持水量、非毛管孔隙度、毛管孔隙度、pH、全氮含量、有机质含量、全钾含量、水解氮含量和有效磷含量)为自变量,分析表层土壤理化性质与优势木平均树高、平均胸径的相关性,结果如表 4所示。研究发现,不同土壤因子与不同演替阶段优势林木的平均胸径和树高生长的相关性不尽相同。不同演替阶段下优势木的平均树高、平均胸径均与有机质、全磷、全钾、有效磷和速效钾含量正相关(平均树高:r=0.980,0.447,0.921,0.341,0.546;平均胸径: r=0.003,0.803,0.083,0.252,0.448); 不同演替阶段下优势木的平均树高与土壤密度、非毛管孔隙度和pH负相关(r=-0.742,-0.358,-0.416),与有机质、全氮、全钾含量呈显著正相关(r=0.980,0.910,0.921),表明有机质含量、全氮含量和全钾含量对优势木的高生长影响显著,而平均树高与非毛管孔隙度和有效磷含量相关性不显著(r=-0.358,0.341),说明这2个因子对优势木的高生长影响有限; 不同演替阶段下优势木的平均胸径与土壤密度、非毛管孔隙度、pH、有机质含量、全磷含量、全钾含量、有效磷含量和速效钾含量均正相关,与土壤密度和全磷的正相关性较大(r=0.780,0.803),与最大持水量和水解氮含量的负相关性也较大(r=-0.562,-0.619)。可以看出,土壤中的土壤密度、最大持水量、水解氮和全磷含量对优势木的径生长有较大影响。
由于土壤各理化性质并非相互独立,而是相互影响和联系的,因此,不能只进行单因子分析,还需进行多元统计分析。本研究应用SPSS19.0统计软件,对针阔混交林4个演替阶段下土壤密度(X1)、最大持水量(X2)、毛管持水量(X3)、非毛管孔隙度(X4)、毛管孔隙度(X5)、pH值(X6)、有机质含量(X7)、全氮含量(X8)、全磷含量(X9)、全钾含量(X10)、水解氮含量(X11)、有效磷含量(X12)和速效钾含量(X13)共13项指标测定值进行主成分分析,找出土壤质量主要影响因子,并对不同演替阶段下表层土壤质量进行排序及评价。由表 5可看出,针阔混交林不同演替阶段主成分前3项(t1,t2和t3)的累积贡献率达到98.996%,已包含了绝大部分信息,且前3项特征根均大于1,因此,决定选取前3个主成分。
由表 6可以看出,X2,X3,X4,X5,X8,X11和X12对第1主成分的影响比较大,第1主成分可以看作是这些指标的综合因子,毛管孔隙度的特征向量在第1主成分中值最大,说明毛管孔隙度对不同演替阶段的表层土壤质量和林木生长起着主要作用。X6,X7,X10和X13对第2主成分影响比较大,其中速效钾的特征向量在第2主成分中值最大,因此,钾形态中的速效钾对不同演替阶段的表层土壤质量及林木生长起了极其重要的作用。在第3主成分中,X1,X2,X9,X11和X13特征向量比较大,其中最大的是全磷的特征向量,说明全磷对林木生长以及不同演替阶段的表层土壤质量起到了决定性作用。
综上所述,毛管孔隙度、速效钾和全磷含量是影响不同演替阶段表层土壤质量和林木生长的最主要土壤因子。由表 5可知,所选前3项主分量特征值分别为6.769,3.914和2.318,由此计算出它们的权重分别为0.521,0.301和0.178。 将各演替阶段主成分特征向量与标准化的数据相乘,即得到各主成分得分F1,F2和F3。 不同演替阶段的表层土壤质量综合得分按以下方法计算: 第1主成分F1乘以第1主成分的贡献率加上F2乘以第2主成分的贡献率加上F3乘以第3主成分的贡献率,再以此3项之和除以3个主成分的贡献率之和,经计算得到各个演替阶段的综合得分为-1.83,0.95,-0.43和1.32。因此,各林龄的土壤理化性质综合得分表现为中龄林<成熟林<近熟林<老龄林。
4 讨论森林土壤肥力和林木生长之间的关系一直是森林经营者重点关注的问题。通过分析土壤的理化性质对林木生长的影响,找出影响林木生长的主要环境因子,对于实现森林的可持续经营与管理具有重要。温带针阔混交林是我国东北地区的地带性植被。国内学者在针阔混交林土壤方面主要围绕土壤理化性质、土壤肥力、土壤微生物等展开研究,但是在针阔混交林不同演替阶段土壤肥力与林木生长的关联性方面的研究则比较有限。本研究以吉林省蛟河市林业实验区管理局林场内4个不同演替阶段下的针阔混交林为研究对象,分析表层土壤理化性质与优势林木生长的关联性,为了解该地区林木生长的状况以及实现森林可持续经营与管理奠定了一定的基础。研究发现: 随着演替进行,最大持水量、毛管持水量和毛管孔隙度均增大,非毛管孔隙度逐渐减小,总孔隙度变化并不显著。李文影等(2009)对小兴安岭地区4个林龄的白桦次生林的土壤特性研究表明,土壤非毛管孔隙度和总孔隙度随林龄呈波动性变化。本研究中非毛管孔隙度的变化趋势有所不同,这可能是由于以前采伐树木根系空洞的影响在逐渐变弱。土壤密度从中龄林阶段到成熟林阶段均值变化不显著,在老龄林阶段达到最小,说明土壤渗透性和水源涵养功能有所提高,土壤物理性质逐渐改善,这与王琳琳等(2008)关于小兴安岭不同演替阶段红松阔叶混交林土壤物理性质的研究结论相一致。近熟林土壤中全磷、全钾和速效钾的含量均最高; 老龄林土壤中全氮、水解氮和有效磷的含量均最高。土壤的供磷能力主要来自于有效磷,老龄林土壤中的有效磷含量最高说明其土壤供磷能力最大; 随着林龄增加,土壤中氮元素含量逐渐增加。土壤中氮元素主要是通过凋落物的分解得来。(陈立新等,2015)。
随着演替进行,林分中主要优势树种的平均胸径呈增加趋势,与中龄林相比增幅分别为1.80%,26.31%和29.98%,优势树种平均树高的变化不大。主林层中,红松优势木数量逐渐增加,而胡桃楸优势木数量逐渐减少,春榆和大果榆等乔木树种随演替进行逐渐退出主林层。不同演替阶段优势林木的平均树高和平均胸径均与有机质、全磷、全钾、有效磷和速效钾含量正相关(平均树高:r=0.980,0.447,0.921,0.341,0.546;平均胸径: r=0.003,0.803,0.083,0.252,0.448); 优势木的平均树高与土壤密度、非毛管孔隙度和pH值负相关(r=-0.742,-0.358,-0.416),与有机质、全氮含量和全钾含量显著正相关(r=0.980,0.910,0.921); 优势木的平均胸径还与土壤密度和全磷含量正相关(r=0.780,0.803),与最大持水量和水解氮含量负相关(r=-0.562,-0.619),说明土壤最大持水量、土壤密度、全磷含量和水解氮含量对优势木的径生长过程有较大的影响。由主成分分析可知,影响不同演替阶段土壤质量的最主要土壤因子为毛管孔隙度、速效钾和全磷含量,这与纪浩等(2012)和吴金卓等(2015)关于土壤肥力主要影响因子的研究结果相近。 因此,各林龄的土壤理化性质综合得分表现为中龄林<成熟林<近熟林<老龄林。
5 结论综上所述,本研究得出了不同演替阶段针阔混交林优势林木生长与表层土壤理化性质之间的关联性,并分析了影响不同演替阶段土壤质量的最主要土壤因子,为该地区其他方面的研究积累了重要基础数据。但是,本研究还存在一定的局限性。由于选取的土壤样本数量偏少,不可避免地存在研究结果的不确定性,后续还需进一步探索研究。
[1] |
陈立新, 姜一, 段文标, 等. 2015. 红松混交林凋落物氮储量及分解释放对土壤氮的影响. 生态学杂志, 34 (1)
:114–121.
( Chen L X, Jiang Y, Duan W B, et al.2015. Effect of litter nitrogen storage and nitrogen release of litter decomposition on soil nitrogen in Pinus koraiensis mixed forests. Chinese Journal of Ecology, 34 (1) :114–121 . [in Chinese] ) (0) |
[2] |
代海军. 2013. 吉林蛟河阔叶红松林主要树种异速生长模型. 北京: 北京林业大学硕士学位论文. ( Dai H J. 2013. Allometric models of dominant tree species in Korean Pine Broadleaf forest in Jiaohe, Jilin Province. Beijing: MS thesis of Beijing Forestry University.[in Chinese][in Chinese]) |
[3] |
丁胜建, 张春雨, 夏富才, 等. 2012. 老龄阔叶红松林下层木空间分布的生境关联分析. 生态学报, 32 (11)
:3334–3342.
( Ding S J, Zhang C Y, Xia F C, et al.2012. Habitat associations of understorey species spatial distribution in old growth broad-leaved Korean pine (Pinus koraiensis) forest. Acta Ecologica Sinica, 32 (11) :3334–3342 . [in Chinese] ) (0) |
[4] |
纪浩, 董希斌. 2012. 大兴安岭低质林改造后土壤肥力综合评价. 林业科学, 11 (48)
:117–123.
( Ji H, Dong X B.2012. Comprehensive evaluation of soil fertility after transformation of the low-quality forest in the Daxing'anling mountains. Scientia Silvae Sinicae, 11 (48) :117–123 . [in Chinese] ) (0) |
[5] |
贾志清. 2002. 太行山封育区森林土壤肥力的特性研究. 水土保持通报, 22 (3)
:28–31.
( Jia Z Q.2002. Forest soil fertility characteristics in closure area of Taihang Mountain. Bulletin of Soil and Water Conservation, 22 (3) :28–31 . [in Chinese] ) (0) |
[6] |
姜俊, 赵秀海. 2011. 吉林蛟河针阔混交林群落优势种群种间联结性. 林业科学, 47 (12)
:149–153.
( Jiang J, Zhao X H.2011. Interspecific correlations among dominant tree species in the coniferous and broad-leaved mixed forest communities in Jiaohe, Jilin Province. Scientia Silvae Sinicae, 47 (12) :149–153 . [in Chinese] ) (0) |
[7] |
姜勇. 2009. 森林生态系统微量元素循环及其影响因素. 应用生态学报, 20 (1)
:197–204.
( Jiang Y.2009. Micronutrient cycling and its affecting factors in forest ecosystems. Chinese Journal of Applied Ecology, 20 (1) :197–204 . [in Chinese] ) (0) |
[8] |
李文影, 满秀玲, 张阳武. 2009. 不同林龄白桦次生林土壤特性及其水源涵养功能. 中国水土保持科学, 7 (5)
:63–69.
( Li W Y, Man X L, Zhang Y W.2009. Soil properties and water conservation function of Betula platyphylla secondary forest with different stand ages. Science of Soil and Water Conservation, 7 (5) :63–69 . [in Chinese] ) (0) |
[9] |
鲁如坤. 1999. 土壤农业化学分析方法. 北京: 中国农业科技出版社 .
( Lu R K. 1999. Soil agricultural chemical analysis method. Beijing: China Agricultural Science and Technology Publishing House . [in Chinese] ) |
[10] |
彭萱亦. 2014. 不同演替阶段针阔混交林生物多样性评价指标体系研究. 哈尔滨: 东北林业大学硕士学位论文. ( Peng X Y. 2014. Study on forest biodiversity evaluation system for conifer and broad-leaved mixed forest at different successional stages. Harbin: MS thesis of Northeast Forestry University.[in Chinese][in Chinese]) |
[11] |
王纪军, 裴铁璠. 2004. 气候变化对森林演替的影响. 应用生态学报, 15 (10)
:1722–1730.
( Wang J J, Pei T F.2004. Effects of climate change on forest succession. Chinese Journal of Applied Ecology, 15 (10) :1722–1730 . [in Chinese] ) (0) |
[12] |
王琳琳, 陈立新, 刘振花, 等. 2008. 红松阔叶混交林不同演替阶段土壤肥力与林木生长的关系. 中国水土保持科学, 6 (4)
:59–65.
( Wang L L, Chen L X, Liu Z H, et al.2008. Relationship between soil fertility and tree growth in the broad-leaved Pinus korariensis forest at different growth periods. Science of Soil and Water Conservation, 6 (4) :59–65 . [in Chinese] ) (0) |
[13] |
王树力. 2006. 不同经营类型红松林对汤旺河流域土壤性质的影响. 水土保持学报, 20 (2)
:90–93.
( Wang S L.2006. Effects of different management types of Pinus koraiensis forest on soil properties around Tangwang River. Journal of Soil and Water Conservation, 20 (2) :90–93 . [in Chinese] ) (0) |
[14] |
魏强, 凌雷, 柴春山, 等. 2012. 甘肃兴隆山森林演替过程中的土壤理化性质. 生态学报, 32 (15)
:4700–4713.
( Wei Q, Ling L, Chai C S, et al.2012. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu. Acta Ecologica Sinica, 32 (15) :4700–4713 . [in Chinese] ) (0) |
[15] |
吴金卓, 蔡小溪, 林文树. 2015. 吉林蛟河不同演替阶段针阔混交林土壤健康评价. 东北林业大学学报, 43 (6)
:78–82.
( Wu J Z, Cai X X, Lin W S.2015. Assessment on the soil health of conifer and broad-leaved mixed forests at different sucessional stages in Jiaohe, Jilin Province. Journal of Northeast Forestry University, 43 (6) :78–82 . [in Chinese] ) (0) |
[16] |
杨晓娟. 2013. 东北长白山系低山丘陵区不同林分土壤肥力质量研究. 北京: 北京林业大学硕士学位论文. ( Yang X J. 2013. Soil fertility quality of different stands in the low mountains and hills of Changbai Mountain Region, Northeast China. Beijing: MS thesis of Beijing Forestry University.[in Chinese][in Chinese]) |
[17] |
张春雨, 赵秀海, 郑景明. 2006. 长白山阔叶红松林林隙与林下土壤性质对比研究. 林业科学研究, 19 (3)
:347–352.
( Zhang C Y, Zhao X H, Zheng J M.2006. A study on soil properties in forest gaps and under canopy in broad-leaved Pinus koriensis forest in Changbai Mountain. Forest Research, 19 (3) :347–352 . [in Chinese] ) (0) |
[18] |
张庆费, 宋永昌, 由文辉. 1999. 浙江天童植物群落次生演替与土壤肥力的关系. 生态学报, 19 (2)
:174–178.
( Zhang Q F, Song Y C, You W H.1999. Relationship between plant community secondary succession and soil fertility in Tiantong, Zhejiang Province. Acta Ecologica Sinica, 19 (2) :174–178 . [in Chinese] ) (0) |
[19] | Burslem D, Swaine M D.2003. Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest. Journal of Tropical Ecology, 19 (2) :109–125 . (0) |
[20] | Costa A, Madeira M, Oliveira A C.2008. The relationship between cork oak growth patterns and soil, slope and drainage in a cork oak woodland in Southern Portugal. Forest Ecology and Management, 255 (5/6) :1525–1535 . (0) |
[21] | Crisp P N, Dickinson K J M, Gibbs G W.1998. Dose native inverte-brate diversity reflect native plant diversity?A case study from New Zealand and implications for conservation. Biological Conservation, 83 (2) :209–220 . (0) |
[22] | Fisher R F,Binklet D. 2000. Ecology and management of forest soils. 3rd ed. New York: John Wiley and Sons. |
[23] | He Y Q, Shen Q R, Wang X X.2003. Dynamic of nutrients in artificial forest soil in low hill red soil region. Soils, 35 (3) :222–226 . (0) |
[24] | Lilienfein, Wilcke W, Thomas R, et al.2001. Effects of Pinus caribaea forests on the C, N, P, and S status of Brazilian Savanna Oxisols. Forest Ecology and Management, 147 (2/3) :171–182 . (0) |
[25] | Mano N, Sterba H.2006. Site index functions for Cupressus lusitanica at Munesa Shashemene, Ethiopia. Forest Ecology and Management, 237 (1/3) :429–435 . (0) |
[26] | Meng S, Huang S, Yang Y, et al.2009. Evaluation of population-averaged and subject-specific approaches for modeling the dominant or codominant height of lodgepole pine species. Canadian Journal of Forest Research, 39 :1148–1158 . (0) |
[27] | Oliveira-Filho A T, Curi N, Vilela E A, et al.2001. Variation in tree community composition and structure with changes in soil properties within a fragment of semideciduous forest in south-eastern Brazil. Edinburgh J Bot, 58 :139–158 . (0) |
[28] | Rocha G N, Goncalves J L M, Moura I M.2004. Changes in soil fertility and growth of an Eucalyptus grandis plantation fertilized with biosolid. Revista Brasileira de Ciência do Solo, 28 (4) :623–639 . (0) |
[29] | Souza J P D, Araújo G M, Haridasan M.2007. Influence of soil fertility on the distribution of tree species in a deciduous forest in the Triângulo Mineiro region of Brazil. Plant Ecology, 191 (2) :253–263 . (0) |
[30] | Vieira S R, Pierre L H, Grego C R, et al.2010. A geostatistical analysis of rubber tree growth characteristics and soil physical attributes. Quantitative Geology and Geostatistics, 16 :255–264 . (0) |