林业科学  2015, Vol. 51 Issue (3): 34-40   PDF    
DOI: 10.11707/j.1001-7488.20150305
0

文章信息

娄永峰, 杨丽, 彭镇华, 赵韩生, 高志民
Lou Yongfeng, Yang Li, Peng Zhenhua, Zhao Hansheng, Gao Zhimin
毛竹4个B-box锌指蛋白序列和基因表达特征及PeBZF4的功能
Protein Sequences and Expression Profiles of 4 B-box Zinc Finger Genes and Functions of PeBZF4 from Phyllostachys edulis
林业科学, 2015, 51(3): 34-40
Scientia Silvae Sinicae, 2015, 51(3): 34-40.
DOI: 10.11707/j.1001-7488.20150305

文章历史

收稿日期:2014-05-30
修回日期:2014-07-16

作者相关文章

娄永峰
杨丽
彭镇华
赵韩生
高志民

毛竹4个B-box锌指蛋白序列和基因表达特征及PeBZF4的功能
娄永峰1, 杨丽1, 彭镇华2, 赵韩生1, 高志民1     
1. 国际竹藤中心 竹藤科学与技术重点开放实验室 北京 100102;
2. 中国林业科学研究院林业研究所 北京 100091
摘要【目的】 B-box锌指蛋白(BZF)在植物生长发育和应对逆境过程中发挥着重要的调控作用。强光胁迫对竹子的生长发育有着重要的影响,通过分析毛竹BZF基因编码蛋白的分子特征及组织表达模式,研究过量表达PeBZF4转基因植株的荧光动力学参数变化,以期为揭示竹子BZF基因对强光的应答与调节机制提供参考。【方法】采用同源基因比对的方法直接从BambooGDB中获得毛竹BZF基因同源序列,利用专用软件和在线公共平台分析基因及其编码蛋白序列,查找各种作用元件,预测蛋白功能结构域,分析蛋白的亲水性/疏水性。采用实时定量PCR技术分析基因在不同组织中的表达情况以及强光(1 200 μmol ·m-2s-1)和黑暗处理后基因在叶片中的表达变化。构建PeBZF4基因的过量表达载体,利用农杆菌介导法转化拟南芥,直接观察转基因植株表型,利用IMAGING-PAM荧光仪测定其叶绿素荧光参数。【结果】从毛竹数据库获得4条不同的BZF基因同源序列,编码4个不同的锌指蛋白,分别命名为PeBZF1,PeBZF2,PeBZF3PeBZF4。4个基因中均具有光应答顺式作用调控元件ACE和G-box,但它们所含光应答元件却有所差异,PeBZF 1中有MNF1和Sp1,PeBZF2中有I-box,Sp1和boxⅡ,PeBZF3PeBZF4中有GT1-motif,MNF1和Sp1。4个基因所编码的蛋白都具有2个B-box结构域和CHC3H2锌指结合域,属于B-box型锌指蛋白。在根、茎、叶片和叶鞘中的表达4个基因存在着明显差异,其中PeBZF1PeBZF3在叶片中的表达丰度最高,PeBZF2PeBZF4在叶鞘中的表达丰度最高。强光处理后4个基因的表达均受到抑制,且随着光照时间的延长PeBZF2和PeBZF3的表达呈逐渐下降趋势,而PeBZF1PeBZF4的表达却在光照1 h时比0.5 h时略微上调,随后迅速下降;黑暗对PeBZF1,PeBZF2PeBZF3的表达有明显抑制作用,而PeBZF4的表达却显著上调,约是对照的3.2倍。过量表达PeBZF4的转基因植株光系统Ⅱ的实际光合效率Y(Ⅱ)和非光化学猝灭(NPQ)值都比野生型有不同程度的提高。【结论】毛竹中有4个不同B-box型锌指蛋白基因,其表达为组成型,强光和黑暗处理4个基因的表达变化表明它们参与了光胁迫的应答调节。过量表达PeBZF4基因能够提高转基因植株的Y(Ⅱ)和NPQ值,证明PeBZF4能够增强其热耗散能力,提高强光下的光合效率。因此,BZF可能与竹子抵抗强光胁迫有关。
关键词毛竹    锌指蛋白基因    光胁迫    基因表达    
Protein Sequences and Expression Profiles of 4 B-box Zinc Finger Genes and Functions of PeBZF4 from Phyllostachys edulis
Lou Yongfeng1, Yang Li1, Peng Zhenhua2, Zhao Hansheng1, Gao Zhimin1     
1. Key Laboratory on the Science and Technology of Bamboo and Rattan International Center for Bamboo and Rattan Beijing 100102;
2. Research Institute of Forestry, Chinese Academy of Forestry Beijing 100091
Abstract: [Objective] Zinc finger proteins containing B-box (BZF) play important roles in regulating growth and development, and response to stresses in plants. Light stress has a significant impact on the growth and development of bamboo. Studies on protein sequence of BZF and expression profiles of BZF genes in Phyllostachys edulis and fluorescence parameters of transgenic plants with over expressed PeBZF4 were conducted in order to reveal the response and regulatory mechanisms of BZF genes in bamboo under high intensity of light.[Method] Homologous gene alignment method was used to obtain bamboo BZF sequences from BambooGDB directly. The analysis and comparison of gene and protein, the prediction of acting elements, protein functional domains, hydrophilicity and hydrophobicity of proteins were performed using special software and online public platform. Real-time quantitative PCR was used for the analysis of gene expression in different tissues, and the changes of gene expression in leaf after the treatments of high intensity of light (1 200 μmol·m-2s-1) and darkness. The over expression vector of PeBZF4 was constructed and transferred into Arabidopsis thaliana mediated by Agrobacterium tumefanciens. The phenotype of transgenic plants was observed directly and the fluorescence parameters were measured using IMAGING-PAM.[Result] Four homologue BZF genes were obtained from BambooGDB, and designed as PeBZF 1, PeBZF2, PeBZF3 and PeBZF4 respectively. Cis-acting element analysis showed that four PeBZFs all had light-responsive cis-acting regulatory elements and light responsive elements, but the light-responsive elements were different, including MNF1 and Sp1 in PeBZF 1, I-box, Sp1 and boxⅡin PeBZF 2, GT1-motif, MNF1 and Sp1 in PeBZF 3 and PeBZF4. The analysis of protein structure showed that the proteins encoded by these genes all contained two B-box domains and CHC3H2 binding motif, indicating that they were B-box zinc finger proteins. Tissue specific expression indicated that the levels of these PeBZFs were obviously different in leaf, sheath, stem and root, among which the highest level of PeBZF 1 and PeBZF3 was found in leaf, and that of PeBZF 2 and PeBZF4 was in sheath. All the expression of these PeBZFs were inhibited by high intensity of light (1 200 μmol·m-2s-1). The expression of PeBZF 2 and PeBZF3 showed a gradual downward trend with the extension of irradiation time, while that of PeBZF 1 and PeBZF4 raised slightly after 1 h treatment compared with 0.5 h treatment, followed by a rapid decline. The expression of PeBZF 1, PeBZF2 and PeBZF3 were significantly inhibited by darkness, while that of PeBZF4 was significantly upregulated about 3.2 times of that in control. The actual photosynthetic efficiency (Y(Ⅱ)) and non-photochemical quenching (NPQ) of transgenic plants with over expressed PeBZF4 were higher than those of wild type.[Conclusion] There were four different B-box-type zinc finger protein genes expressed constitutively in Ph. edulis, the expression changes of 4 genes under high intensity of light and dark treatments suggested that they were involved in regulation of light response to stress. The values of Y (Ⅱ) and NPQ increased in transgenic plants with over expressed PeBZF4, indicating that PeBZF4 could improve the thermal dissipation capability and photochemical efficiency of transgenic plants. This result indicated that BZF might be associated with bamboo resistance to light stress.
Key words: Phyllostachys edulis    B-box zinc finger protein gene    light stress    gene expression    

锌指蛋白对植物生长发育和应对逆境起着重要的调控作用,其中B-box类锌指蛋白亚家族含有1个或多个由保守的半胱氨酸和组氨酸组合而成的B-box结构域,通过与Zn离子结合来稳定其特有的三级结构。B-box结构域可能参与锌指蛋白与其他蛋白之间的相互作用(Klug et al.,1995;Torok et al.,2001)。对水稻(Oryza sativa)B-box锌指结构域蛋白基因OsBBX 25 的该基因的表达受盐和干旱诱导,在拟南芥(Arabidopsis thaliana)中异源表达该基因,转基因植株对盐和干旱的耐受性增强,且盐胁迫条件下转基因植物中KIN1,RD29A和COR 15 的表达上调,干旱胁迫下 KIN1,RD29A和RD22的表达上调。OsBBX25可能作为转录调控的辅助因子调节胁迫应答相关基因的表达,进而参与植物对非生物胁迫的响应(刘焱等,2012)。研究表明拟南芥的B-box类锌指蛋白STH3(SALT TOLERENCE HOMOLOGO3)/BBX22可以与光信号系统的2个关键调节因子HY5和COP1相互作用,参与调控植物光依赖性的发育过程;STH3/BBX22在体外可以被COP1泛素化降解(Datta et al.,2008)。对拟南芥锌指蛋白DBB亚家族中8个基因的转录表达分析结果表明,在长日照和短日照条件下该家族中6个基因的转录都具有光周期节律性,并且其中4个基因的表达受光诱导,有1个基因的表达受光抑制,1个基因的表达不受光调节;而不同光质光对基因表达的影响不大,变化趋势都相同(汪启明等,2009)。

竹子是重要的森林资源,在开发利用资源的同时,人们对竹子的适应性等基础研究也给予了高度关注。目前的报道既有关于竹子抗盐(顾大形等,2011)、抗旱(应叶青等,2011刘济明等,2013)、抗寒(黄程前等,2013)等方面的生理基础研究,也有关于抗逆相关基因的分子生物学研究,其中包括了锌指结构蛋白基因PeZFP(刘志伟等,2010)、BoBZF(高志民等,2012)等,从一定程度上为揭示竹子对环境的适应机制奠定了基础。然而,关于竹子锌指结构蛋白基因在光胁迫适应中的研究尚未见报道。竹子主要分布在低纬度的热带、亚热带地区,其生长经常处于强光环境,因此对强光的应答与调节机制是竹子适应强光环境的重要因素,而研究光照对竹子光合作用的影响对于揭示其对光能的利用效率具有重要意义。本研究以重要经济竹种毛竹(Phyllostachys edulis)为材料,分析其B-box类锌指蛋白基因的分子特征,研究其表达模式,并借助模式植物拟南芥来鉴定基因的功能,旨在为揭示竹类植物锌指类蛋白基因参与强光胁迫响应的分子机制奠定基础。

1 材料与方法 1.1 试验材料

从广西桂林购买毛竹种子,在实验室内栽培,培养温度25 ℃,以蛭石为培养介质,用1/3 B5培养液培养,1年生的盆栽毛竹实生苗用于试验。

1.2 基因序列获得与分析

以绿竹(Bamusa oldhamii)BoBZF(EU606025)基因为诱饵(高志民等,2012),在BambooGDB数据库(http://www.bamboogdb.org/)中搜索,获得B-box锌指蛋白基因的同源序列。采用生物信息学方法对获得的基因序列及其编码蛋白进行初步分析,查找各种作用元件(Lescot et al.,2002)、预测蛋白功能结构域(Sigrist et al.,2010)以及蛋白的亲水性/疏水性(Kyte et al.,1982)。

1.3 实时定量PCR分析

分别提取毛竹嫩根、嫩茎、幼叶和叶鞘的RNA(Gao et al.,2006),反转录试剂盒合成cDNA(Promega公司试剂盒),用Real-time PCR方法检测BZF基因的组织表达特异性。分别在黑暗处理24 h后和强光(1 200 μmol ·m-2s-1)处理0,0.5,1.0,2.0,4.0,8.0,12.0 h后采取叶片,提取总RNA,检测黑暗、强光处理条件下叶片内BZF基因的表达变化,同时以正常培养(150 μmol ·m-2s-1)的植株为对照。实时荧光定量PCR引物序列(表 1)由上海生工技术有限公司合成,采用NTB作为内参(Fan et al.,2013)。

表 1 实时荧光定量PCR引物序列 Tab.1 Primer sequences used in real-time quantitative PCR analysis

反应体系10 μL:Maxima® SYBR Green Mix(2×)5 μL,正、反向引物(10 μmol ·L-1)各0.4 μL,cDNA 1 μL,ddH2O 3.2 μL。PCR反应在耶拿qTower仪器上进行,反应程序:95 ℃ 2 min;95 ℃ 30 s,58 ℃ 60 s,45个循环。每个反应重复3次。反应结束后,分析荧光值变化曲线和融解曲线,并应用2-△△Ct算法分析(Livak et al.,2001)。

1.4 基因植物表达载体的构建

根据PeBZF4(FP100973)序列的酶切位点设计添加酶切位点的引物。PeBZF4-F1: 5′ -tctagaATGA GGATCCAGTGCGACGC-3′(5′添加XbaⅠ酶切位点);PeBZF4-R1: 5′-TggtaccTCCGAGATCAGGAACG ATGAG-3′(5′添加KpnⅠ酶切位点)。以毛竹叶片cDNA为模板,采用Pyrobest酶进行PCR扩增,回收产物加A与pGEM-T easy连接后转化大肠杆菌(Eschrichia coli)DH5α,经测序验证,用双酶切直接将目的片段插入到经改造的pBI121(增加了KpnⅠ酶切位点)(李雪平等,2012)多克隆位点,形成含有PeBZF 4 的植物表达载体。

1.5 拟南芥转化、检测与荧光动力学参数测定

用电击法将PeBZF4的植物表达载体质粒转入农杆菌(Agrobacterium tumefaciens)EHA105,并转化拟南芥(Clough et al.,1998)。收获种子并进行抗性筛选(卡那霉素50 mg ·L-1),获得纯系后用于下一步试验。采用半定量PCR的方法,以拟南芥Ubiquitin基因(NM180850)为内参(引物为AtUbi-F: 5′-ATGGAAAATCCCACCTACTAAATT-3′;AtUbi-R: 5′-TTGAACAACTCGTAGCAACTCATC-3′),用PeBZF4引物对检测目的基因在转基因植株中的相对表达量,同时以野生型拟南芥为对照。

在抽薹之前,强光(1 800 μmol ·m-2s-1)处理1 h后,经暗适应20 min,用IMAGING-PAM荧光仪分别测定转基因植株和野生型拟南芥的光系统Ⅱ的实际光合效率Y(Ⅱ)和非光化学淬灭NPQ,进行比较分析。

2 结果与分析 2.1 基因序列获得与编码蛋白分析

通过同源序列搜索,在NCBI数据库共找到毛竹编码B-box锌指蛋白的cDNA序列6条,其中FP100973与EU606024、FP091761与FP101358编码的蛋白完全一致,因此有4条基因序列编码4个不同的锌指蛋白,即FP091761,FP095703,FP099065和FP100973,分别命名为PeBZF1,PeBZF2,PeBZF3PeBZF4(表 2)。

表 2 毛竹PeBZF基因编码蛋白的信息 Tab.2 Basic information of proteins encoded byPeBZF genes in Ph. edulis

蛋白结构分析表明,PeBZF1PeBZF2PeBZF3PeBZF4编码的蛋白都具有2个B-box结构域和1个LIM区域(表 2),而且都具有CHC3H2锌结合域,属于B-box型锌指蛋白。PeBZF1和PeBZF4的2个B-box的氨基酸序列完全一致,PeBZF2的第1个B-box仅与其他3个的相差1个氨基酸,PeBZF2和PeBZF3的第2个B-box相差5个氨基酸。而4个蛋白氨基酸序列的C端差异明显(图 1),这意味着它们在竹子中可能具有不同的生物学功能。

图 1 毛竹4个PeBZF基因编码蛋白的比对分析 Fig. 1 Comparative analysis of four proteins encoded by PeBZF genes in Ph. edulis 实线:B-box1;虚线:B-box2。 Solid line: B-box1; Dashed line: B-box2.
 

光调控顺式作用元件参与基因表达的调控,光应答元件参与光信号的应答,它们在基因表达中发挥着重要作用。分析表明,在PeBZF1PeBZF2PeBZF3PeBZF4的ORF区均包含光应答顺式作用调控元件ACE和G-box,但它们所含光应答元件却有所差异,PeBZF 1 中有MNF1和Sp1,PeBZF 2 中有I-box,Sp1和boxⅡ,PeBZF3PeBZF4中有GT1-motif,MNF1和Sp1。因此,可以推测4个基因均参与毛竹对光的应答调控。

2.2 基因的表达分析

毛竹组织特异性表达结果(图 2)表明:在不同组织中,4个基因的表达存在着一定的差异,其中PeBZF1PeBZF3在叶片中的表达丰度最高;PeBZF2PeBZF4 在叶鞘中的表达丰度最高,尤其是PeBZF4在叶鞘中明显高于在其他组织中的表达。

图 2 毛竹4个PeBZF基因的组织特异性表达 Fig. 2 Tissue-specific expression of four PeBZF genes in Ph. edulis 1:根;2:幼茎;3:叶片;4:叶鞘
1: Root; 2: Stem; 3: Leaf; 4: Sheath

以叶片cDNA为材料,实时定量PCR结果表明:在强光条件下(1 200 μmol ·m-2s-1),PeBZF1,PeBZF2,PeBZF3PeBZF4的表达均受到抑制,其中随着光照时间的延长PeBZF2PeBZF3的表达呈逐渐下降趋势,而PeBZF1PeBZF4的表达却在光照1 h时比0.5 h的略微上调,随后迅速下降(图 3);经黑暗处理后,与对照相比PeBZ F1,PeBZF2PeBZF3 的表达明显受到抑制,而PeBZF4的表达却显著上调,约是对照的3.2倍(图 4)。

图 3 光照处理后PeBZF基因在毛竹叶片中的表达变化 Fig. 3 Expression changes of PeBZF genes in leaf of Ph. edulis after high light treatment
图 4 黑暗处理后PeBZF基因在毛竹叶片中的表达情况 Fig. 4 Expression of PeBZF genes in leaf of Ph. edulis after darkness treatment
2.3 植物表达载体及转基因拟南芥植株检测

为验证PeBZF4基因的功能,构建PeBZF4基因的过量表达植物载体。用引物PeBZF4-F1和PeBZF4-R1进行扩增,获得的PCR产物测序结果可知,插入片段为780 bp,包含了酶切位点XbaⅠ(tctaga)6 bp、PeBZF4基因的编码区768 bp以及KpnⅠ(gagctc)12 bp。直接用XbaⅠ和KpnⅠ双酶切将PeBZF4基因的编码区连接到已改造的pBI121的多克隆位点之间,形成由CaMV 35S启动的PeBZF4过量表达植物载体。

PeBZF4转入拟南芥,收获种子并进行抗性筛选,共获得5个抗性植株,经继续筛选获得T3代不发生分离的3个株系。PCR检测显示,在3个抗性株系中均检测到了与阳性(表达载体质粒)对照一致的目的片段,而阴性对照(野生型拟南芥)中没有检测到(图略)。证明获得了PeBZF4转基因植株。半定量RT-PCR结果表明,在3个不同株系的转基因植株中PeBZF4均得到了表达,其中基因在株系2中表达量略低于株系1和株系3,而野生型对照中没有检测到表达(图 5)。

图 5 转基因拟南芥植株中PeBZF4表达的半定量RT-PCR检测 Fig. 5 Semi-quantitative RT-PCR analysis of PeBZF4 in transgenic Arabidopsis thaliana WT:野生型;1:转基因株系1; 2:转基因株系2;3:转基因株系3。下同。
WT: Wild type; 1: Transgenic line 1; 2: Transgenic line 2; 3: Transgenic line 3. The same below.
2.4 转基因植株荧光动力学分析

荧光动力学参数测定结果表明,在强光处理1 h后,3个转基因株系的光系统Ⅱ的实际光合效率Y(Ⅱ)和非光化学猝灭NPQ都比野生型有不同程度的提高(图 6),但不同转基因株系存在着一定的差异,其中株系2和株系3的Y(Ⅱ)明显提高,分别达到极显著(P<0.01)和显著水平(P<0.05),株系2的NPQ达到显著水平(P<0.05)。表明在拟南芥中过量表达PeBZF4基因能够增强抵抗强光胁迫的热耗散能力,有助于提高其强光下的光合效率。

图 6 强光处理后转基因拟南芥植株实际光合效率(Y(II))和非光化学猝灭(NPQ)分析 Fig. 6 Actual photosynthetic efficiency (Y(II)) and non-photochemical quenching (NPQ) analysis of wild type and transgenic Arabidopsis thaliana
3 讨论

光照是植物生长发育不可或缺的外在条件,而基因表达的内在调节是植物适应环境的本质。对毛竹编码4个不同B-box锌指蛋白的基因研究表明,它们在不同组织中的表达水平存在显著差异,而且光照处理后的表达变化也不同,尤其是PeBZF4的表达受黑暗诱导,明显不同于其他3个基因的表达。究其原因,这可能与4个基因各自的启动子所包含的调控元件及应答元件差异有关,同时与基因的结构差异有关,尤其是基因编码转录因子的C端存在明显差异;另外,可能与4个基因所参与的光应答调控机制存在差异有关,但这些都需要进一步试验证实。

叶绿素荧光是光合作用的有效探针(Papageorgiou et al.,2004)。在拟南芥中过量表达PeBZF4基因,利用叶绿素荧光技术测定转基因植株的Y(Ⅱ)和NPQ表明,转基因植株都比野生型的有所提高,初步证明PeBZF4基因的表达有助于提高植物强光胁迫条件下的热耗散能力,改善其光合效率。而B-box锌指蛋白基因在植物生长发育中发挥着多重作用,其中包括了对植物形态建成的调控。如拟南芥STH2是光形态建成的正调控因子,其B-box结构域在激活转录过程中起着直接的作用(Datta et al.,2007);STH3在拟南芥光形态建成中与STH2和HY5一起发挥着正调节作用,而且是COP1介导的泛素化的靶蛋白,推测B-box蛋白作为HY5的协同因子来调控光介导的转录和发育(Datta et al.,2008)。B-box锌指蛋白基因编码的转录因子在毛竹中是如何发挥调控作用的,有待于开展系统深入的研究,才能对其具体功能做出科学的解释。

参考文献(References)
[1] 高志民,刘青,牟少华,等.2012.绿竹锌指蛋白基因BoBZF克隆及功能初步分析.林业科学,48(10): 49-54.
(Gao Z M,Liu Q,Mu S H,et al.2012.Cloning and primary functional analysis of a zinc finger protein gene of BoBZF from Bambusa oldhamii.Scientia Silvae Sinicae,48(10): 49-54[in Chinese]).(2)
[2] 顾大形,陈双林.2011.四季竹对不同浓度NaCl胁迫的生理响应.西北植物学报,31(6): 1209-1215.
(Gu D X,Chen S L.2011.Physiological response of Oligostachyum lubricum to different NaCl stress.Acta Botanica Boreali-Occidentalia Sinica,31(6): 1209-1215[in Chinese]).(1)
[3] 黄程前,黄滔,刘玮,等.2013.20种观赏丛生竹的抗寒性测定.湖南城市学院学报:自然科学版,22(2): 59-62.
(Huang Q C,Huang T,Liu W,et al. 2013.The determination of frost resistance of 20 kinds of ornamental cluster bamboo.Journal of Hunan City University: Natural Science,22(2): 59-62[in Chinese]).(1)
[4] 李雪平,彭镇华,高志民,等.2012.抑制COMT基因表达对转基因烟草木质素合成的影响.分子植物育种,10(6): 689-692.
(Li X P,Peng Z H,Gao Z M,et al. 2012.The effects of depressing expression of COMT on lignin synthesis of transgenic tobacco.Molecular Plant Breeding,10(6): 689-692[in Chinese]).(1)
[5] 刘济明,李鹏,廖小锋,等.2013.干旱胁迫对小蓬竹生理生化特性的影响.西北农业学报,22(9): 153-157.
(Liu J M,Li P,Liao X F,et al. 2013.Effect of drought stress on physiological and biochemical characteristics in Drepanostachyum luodianense.Acta Agriculturae Boreali-Occidentalis Sinica,22(9): 153-157[in Chinese]).(1)
[6] 刘焱,邢立静,李俊华,等.2012.水稻含有B-box锌指结构域的OsBBX25蛋白参与植物对非生物胁迫的响应.植物学报,47(4): 366-378.
(Liu Y,Xing L J,Li J H,et al. 2012.Rice B-box zinc finger protein OsBBX25 is involved in the abiotic response.Chinese Bulletin of Botany,47(4): 366-378[in Chinese]).(1)
[7] 刘志伟,张智俊,杨丽.2010.毛竹抗逆锌指蛋白基因cDNA克隆与序列分析.生物技术通报,(1): 87-92.
(Liu Z W,Zhang Z J,Yang L.2010.cDNA cloning and sequence analysis of a zinc-finger protein gene involved in stress-tolerance in Phyllostachys edulis. Biotechnology Bulletin,(1): 87-92[in Chinese]).(1)
[8] 汪启明,屠小菊,赵小英,等.2009.受光调节的拟南芥锌指蛋白DBB(Double B-box)亚家族基因的转录表达.植物生理学通讯,45(8): 785-790.
(Wang Q M,Tu X J,Zhao X Y,et al. 2009.Transcription of zinc finger protein DBB(double B-box)subfamily respond to light in Arabidopsis thaliana. Plant Physiology Communications,45(8): 785-790[in Chinese]).(1)
[9] 应叶青,郭璟,魏建芬,等.2011.干旱胁迫对毛竹幼苗生理特性的影响.生态学杂志,30(2): 262-266.
(Ying Y Q,Guo J,Wei J F,et al. 2011.Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings.Chinese Journal of Ecology,30(2): 262-266[in Chinese]).(1)
[10] Clough S J,Bent A F.1998.Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,16(6): 735-743.(1)
[11] Datta S,Hettiarachchi C,Johansson H,et al. 2007.SALT TOLERANCE HOMOLOG2,a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development.Plant Cell,19(10): 3242-3255.(1)
[12] Datta S,Johansson H,Hettiarachchi C,et al. 2008.LZF1/SALT TOLERANCE HOMOLOG3,an Arabidopsis B-box protein involved in light-dependent development and gene expression,undergoes COP1-mediated ubiquitination.Plant Cell,20(9): 2324-2338.(2)
[13] Fan C,Ma J,Guo Q,et al. 2013.Selection of reference genes for quantitative real-time PCR in bamboo(Phyllostachys edulis).PLoS ONE,8(2): e56573.(1)
[14] Gao Z M,Li X P,Li L B,et al. 2006.An effective method for total RNA isolation from bamboo.Chinese Forest Sci Tech,5(3): 52-54.(1)
[15] George C P,Govindjee.2004.Chlorophyll a fluorescence:A signature of photosynthesis.Dordrecht,The Netherlands:Springer.
[16] Klug A,Schwabe J W.1995.Protein motifs 5.Zinc fingers.FASEB J,9(8): 597-604.(1)
[17] Kyte J,Doolittle R F.1982.A simple method for displaying the hydropathic character of a protein.J Mol Biol,157(1): 105-132.(1)
[18] Lescot M,Déhais P,Thijs G,et al. 2002.PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences.Nucleic Acids Res,30(1): 325-327.(1)
[19] Livak K J,Schmittgen T D.2001.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method.Methods,25(4): 402-408.(1)
[20] Sigrist C J A,Cerutti L,de Castro E,et al. 2010.PROSITE,a protein domain database for functional characterization and annotation.Nucleic Acids Res,38(Database issue): D161-D166.(1)
[21] Torok M,Etkin L D.2001.Two B or not two B? Overview of the rapidly expanding B-box family of proteins.Differentiation,67(3),63-71.(1)