文章信息
- 陈丽英, 杜克兵, 姜法祥, 彭言劼, 涂炳坤, 王翔
- Chen Liying, Du Kebing, Jiang Faxiang, Peng Yanjie, Tu Bingkun, Wang Xiang
- 淹水胁迫对2种杨树初生根细胞结构的影响
- Influences of Waterlogging Stress on Cell Structure of Primary Roots of Two Poplar Species
- 林业科学, 2015, 51(3): 163-169
- Scientia Silvae Sinicae, 2015, 51(3): 163-169.
- DOI: 10.11707/j.1001-7488.20150321
-
文章历史
- 收稿日期:2014-04-22
- 修回日期:2014-12-26
-
作者相关文章
2. 烟台市林业科学研究所 烟台 264003;
3. 烟台市农业科学研究院 烟台 265500
2. Yantai Institute of Forestry Sciences Yantai 264003;
3. Yantai Academy of Agricultural Sciences Yantai 265500
涝害是自然界植物遭受的主要非生物胁迫之一。据统计,我国涝渍性土地面积约66万 km2,占国土陆地面积近6.6%,居世界第4位。这些涝渍性土地主要分布于长江和黄河的中下游地区,仅长江中下游沿江就有江、河、湖滩地约60万hm2。这些地区每年因季节性、阶段性降雨过多或地势低洼造成的土壤淹水给植物生长造成严重危害。人工造林是目前涝渍滩地环境综合治理与资源利用的核心内容之一,不仅解决了优质林业用地问题,而且有涵养水源、拦沙减淤、维护生物多样性、净化水质等功效(黄朝禧等,2006)。杨树(Populus)以其速生、耐水湿特性,成为目前涝渍地区造林最重要的树种之一,但淹水胁迫仍是滩地杨树生长的主要限制因子,往往会造成木材产量的巨大损失(Gong et al.,2007;Imada et al.,2008)。例如,洞庭湖外滩年均淹水30~65天的滩地与淹水24天左右的滩地相比,杨树产量下降10%~35%;淹水时间超过65天的滩地,林木保存率不足20%,材积下降79%(汤玉喜,2002)。因此,揭示杨树的耐涝机制,培育耐涝、速生新品种,对于涝渍地区杨树产业的发展具有重要意义。
根系是涝害影响最直接、受害最重的部位。研究表明,根系基因型对杨树的耐涝性起关键作用(Kreuzwieser et al.,2009;Peng et al.,2013),基因表达的特性可反映在植物的形态构造上。目前普遍认为,不定根和通气组织的形成对植物的耐涝性起到了关键作用(Colmer et al.,2006)。因此,深入研究杨树根结构对淹水胁迫的响应,对杨树耐涝机理的研究具有重要意义。目前,关于淹水胁迫下根结构的研究主要集中于水稻(Oryza sativa)、玉米(Zea mays)、大豆(Glycine max)、芝麻(Sesamum indicum)、菊花(Dendranthema morifolium)等草本植物中(王文泉等,2003;封克等,2006;魏和平等,2000;僧珊珊等,2012;Yin et al.,2010),而对杨树等木本植物根结构对淹水胁迫的响应鲜有报道。本研究选取2个耐涝性差异极显著的杨树无性系为试材,进行人工模拟淹水胁迫试验,从细胞学角度初步探索杨树初生根的解剖结构与皮层细胞超微结构对淹水胁迫的响应,以期为杨树耐涝机理的深入研究以及涝渍地区杨树品种的选育提供参考。
1 材料与方法 1.1 试验材料2个耐涝性差异极显著的杨树无性系I-69杨(Populus deltoides ‘Lux’ ex I-69/55)与小叶杨(P. simonii)。其中,I-69杨耐涝性较强,小叶杨对淹水胁迫较敏感(杜克兵等,2010;Du et al.,2012)。
1.2 试验方法1)试验地概况 试验于华中农业大学校园内(30°28′ N,114°21′ E)进行。该地区气候温和,年平均温度16.3 ℃,无霜期240天,年降雨量1 269 mm,大部分雨量集中在6~8月。
2)淹水试验 3月中旬,选取小叶杨和I-69杨大小基本一致、生长健壮、无病虫害、木质化程度高的一年生枝条,剪成带3~4个芽、长约15 cm的插穗。扦插前,插穗浸水24 h,以多菌灵溶液(稀释100倍)浸泡1 h后,插于34 cm × 35 cm的塑料花盆中。基质为轻壤土、草炭土、砂土以质量比6 :1 :1混合而成,装盆前基质用甲醛消毒。每盆2株,成活后拔除1株,仅留1株生长健壮的植株。培养期间进行正常的水肥管理和病虫害防治。7月,全部植株平均高度达到90~100 cm时,进行淹水处理。试验设对照(CK)和淹水(FL)2个处理。对照植株每天正常浇水,保持土壤含水量为田间持水量的75%左右;淹水处理于70 cm深的人工水池中进行,水面高出盆内土壤表面10 cm。植株完全随机排列,15株/处理/无性系,淹水处理14天,排水恢复3天。在所有植株上方搭建透光率为75%遮阳网,用于遮阳与降温。
1.3 试验指标观测1)植株形态 试验期间,每日观察植株的形态变化,包括叶片颜色、叶片数量、皮孔的膨大、茎基部不定根的产生等。试验结束时,统计各处理植株的存活率。
2)根解剖结构 淹水胁迫的第0,1,3,7,14天,分别取小叶杨和I-69杨植株的同级细根,用蒸馏水洗净,将距根尖2.0~3.5 cm的根段截成长0.5 cm小段后,FAA固定液(75%酒精90 mL+冰醋酸5 mL+甲醛5 mL)固定,石蜡切片法制片(李和平,2009),德国莱卡2235型切片机切片,厚度8 μm,甲苯胺蓝法染色,Nikon ECLIPSE TE2000-U观察、拍照。
3)根超微结构 淹水胁迫的第0,1,3,7,14天,分别取小叶杨和I-69杨植株的同级细根,用蒸馏水洗净,将距根尖2.0~3.5 cm的根段截成长1 mm小段后,置于4 ℃预冷的2.5%戊二醛中固定4 h。用0.1 mol ·L-1磷酸缓冲液(pH7.2)漂洗3次(每次20 min),随后于1%锇酸中固定4 h(4 ℃)。丙酮梯度脱水后,用SPI-812树脂渗透、包埋。用Leica UC6超薄切片机切片,厚度70 nm,醋酸铀-柠檬酸铅双染色,日立H-7650型透射电镜下观察,Gatan832数字成像系统记录、拍照(杜克兵等,2010)。
2 结果与分析 2.1 淹水胁迫对2种杨树形态的影响试验过程中,小叶杨和I-69杨对照植株未出现叶片干枯、脱落和植株死亡现象,均正常生长。淹水处理的植株形态发生明显变化:小叶杨在淹水第4天下部少量叶片出现失水症状(从边缘向内部开始干枯,直至脱落);至第9天,部分植株顶端出现叶片枯萎现象;试验结束时,小叶杨成活率仅为20%。而I-69杨在淹水第7天,下部叶片出现轻度失水症状;持续淹水时,上部叶片未出现干枯脱落现象;试验结束时,I-69杨成活率仍为100%,且植株生长良好。
淹水胁迫5~6天,小叶杨和I-69杨茎近水面的部位(茎基部)均出现膨大的皮孔。从膨大皮孔数量来看,小叶杨明显多于I-69杨。然而,随着淹水时间延长,小叶杨的皮孔开始变褐腐烂,逐渐导致茎干变褐失绿,而I-69杨的皮孔仍为正常白色,茎干也未出现失绿现象。由于淹水时间较短,2种杨树的茎基部均未出现不定根。试验结束时,小叶杨原有根系大量变黑腐烂、死亡,基本无新根长出; I-69杨虽然也有少量根系腐烂,但同时长出大量新根,植株仍显示出旺盛的生命力。因此,淹水胁迫下2种杨树的外观形态和根系生长情况表明,小叶杨抗涝性差,I-69杨抗涝性较强。
2.2 根解剖结构对淹水胁迫的响应杨树初生根由外到内依次为表皮、皮层和中柱(图 1)。小叶杨与I-69杨正常浇水植株(CK)的根细胞结构清晰,表皮细胞完整,皮层薄壁细胞排列紧密,细胞间隙小,无明显气腔(图 1A,F)。淹水处理第1天,2种杨树根细胞结构与对照相比未见明显变化(图 1B,G)。淹水第3天,小叶杨根皮层薄壁细胞开始扩大变形,排列紊乱,细胞间隙变大,部分皮层细胞崩溃裂解,形成少量不规则小气腔(图 1C);而I-69杨淹水植株的细胞结构仍然与对照相似,无明显变化(图 1H)。淹水第7天,小叶杨皮层薄壁细胞进一步崩解,气腔继续增大、增多,呈辐射状排列,整个皮层结构变得松散(图 1D);I-69杨根仅少量皮层薄壁细胞开始扩大变形,出现轻微离解,形成少量不规则小气腔(图 1I)。淹水处理至14天时,小叶杨根皮层薄壁细胞大量裂解,并溶合在一起形成很多不规则大气腔,且部分气腔因发生断裂而相互贯通,皮层细胞开始逐渐与中柱细胞分离(图 1E);而I-69杨根细胞仍排列紧密,仅少数部位出现细胞裂解,形成气腔的现象,皮层细胞与中柱细胞仍联系紧密(图 1J)。此外,2种杨树的中柱细胞在整个试验期间未见明显变化,没有出现细胞破裂、崩溃现象。因此,淹水胁迫下,与小叶杨相比,I-69杨初生根皮层后出现气腔,并缓慢变大,表现出较强的耐涝性。
![]() |
图 1 根解剖结构对淹水胁迫的响应
Fig.1 Response of the root antatomical structure of two poplar species subjected to waterlogging stress
小叶杨:A. 对照(正常浇水);B. 淹水1天;C. 淹水3天;D. 淹水7天;E. 淹水14天;
I-69杨:F. 对照(正常浇水);G. 淹水1天;H. 淹水3天;I. 淹水7天;J. 淹水14天;
箭头(→)所示为通气组织
P. simonii: A. Control (watered); B. Flooded for 1 day; C. Flooded for 3 days; D. Flooded for 7 days; E. Flooded for 14 days; P. deltoides ‘Lux’ ex I-69/55: F. Control (watered); G. Flooded for 1 day; H. Flooded for 3 days; I. Flooded for 7 days; J. Flooded for 14 days; Arrow(→)indicated aerenchyma in roots |
正常处理下(CK),小叶杨与I-69杨根的皮层细胞超微结构一致。细胞壁厚,细胞质浓,液泡膜清晰。线粒体结构完整,圆型或椭圆型,膜清晰,内嵴丰富,基质浓。内质网、高尔基体等细胞器丰富、完整,细胞含有少量淀粉粒与嗜锇体。细胞核近圆球形,核膜清晰、完整,染色质均匀分布(图 2A,B,C,D)。
![]() |
图 2 皮层细胞超微结构对海水胁迫的响应
Fig.2 Response of the root cortical cell ultrastructure of two poplar species subject to waterlogging stress
小叶杨:A,B. 对照(正常浇水);E,F. 淹水1天:细胞核被膜开始模糊;I,J. 淹水3天:出现质壁分离($\nwarrow$所示),嗜锇体增加,部分线粒体结构破坏,淀粉粒基本消失;M,N. 淹水7天:细胞膨大变圆,细胞壁严重扭曲变形,严重质壁分离,细胞质电子密度降低;Q,R. 淹水14天:细胞壁破裂($\nwarrow$所示),线粒体数量明显减少,细胞器降解,细胞基质内残留着大量的细胞器碎片。
I-69杨:C,D. 对照(正常浇水);G,H. 淹水1天;K,L. 淹水3天;O,P 淹水7天:出现轻微的质壁分离现象($\nwarrow$所示);S,T. 淹水14天: 部分细胞器解体,基质内仍分布着较多线粒体,且结构较完整,仅少量线粒体内嵴部分解体消失,出现小空洞。
P. simonii: A, B. Control (watered); E, F. Flooded for 1 day: Ambiguous membrane of nuclear; I, J. Flooded for 3 days: Plasmolysis (shouing by arrow), osmophore increased, some mitochondrias destroyed and starch dispeared; M, N. Flooded for 7 days: Cell inflated, cell wall distorted, seriously plasmolysis occurred, and electron density of cytoplasma decreased; Q, R. Flooded for 14 days: cell wall cracked (showing by arrow), mitochondria significantly decreased, organelles decomposed and its fractions scattered in cytoplasma. P. deltoides‘Lux’ ex I-69/55: C, D. Control (Watered); G, H. Flooded for 1 day; K, L. Flooded for 3 days; O, P Flooded for 7 days: Light plasmolysis (showing by arrow); S, T. Flooded for 14 days: Some organelles decomposed, many fine mitochondria distributed in cytoplasma, few cristae in some mitochondria decomposed and little multivesicular structure occurred. CW:细胞壁Cell wall;ER:内质网Endoplasmic reticulum;G:高尔基体Golgi apparatus;M:线粒体Mitochondria;N:细胞核Nucleus;NM:核膜Nuclear membrane;Nu:核仁Nucleolus;O:嗜锇体Osmophore;S:淀粉粒Starch;V:液泡Vacuole |
淹水处理1天后,小叶杨与I-69杨根的皮层细胞超微结构均未出现明显变化。细胞内部结构完整,轮廓清晰,基质内线粒体、内质网等细胞器数量丰富。但小叶杨细胞核的被膜开始模糊,细胞内未见淀粉粒(图 2E,F,G,H)。淹水第3天,小叶杨细胞壁开始弯曲变形,出现明显的质壁分离现象。基质内线粒体、内质网、高尔基体数量减少,且部分结构破坏,淀粉粒基本消失,嗜锇体数量增加(图 2I,J)。而此时,I-69杨根的皮层细胞超微结构结构与对照相比,仍未见明显变化(图 2K,L)。
淹水7天时,小叶杨的细胞膨大变圆,细胞壁严重扭曲变形,质壁分离严重,细胞质电子密度降低。线粒体等细胞器继续解体、减少,基质中残留着降解的细胞器碎片(图 2M,N)。但I-69杨根的皮层细胞形状仍然正常,仅少量部位出现轻微的质壁分离现象。细胞内细胞器数量仍然非常丰富,结构完整(图 2O,P)。至淹水14天时,小叶杨的部分细胞壁出现降解、破裂,导致多个细胞基质贯通。细胞基质内残留着大量的细胞器碎片,几乎没有结构完整的细胞器。由于破坏降解,线粒体数量明显减少(图 2Q,R)。此时,I-69杨根细胞结构仍然较清晰,虽然部分细胞器解体,但基质内仍分布着较多线粒体,且结构较完整,仅少量线粒体内嵴部分解体消失,出现小空洞(图 2S,T)。
由此可见,淹水胁迫下,相对于I-69杨而言,小叶杨根的皮层细胞超微结构受害时间早,破坏程度重;I-69杨能够长时间维持正常的细胞超微结构与功能,可能是其耐涝的重要原因。
3 讨论小叶杨与I-69杨对淹水胁迫的不同响应表明,茎基部膨大的皮孔、根系的稳定细胞结构与新根的生长、根系良好的通气组织以及皮层细胞中丰富稳定的线粒体等细胞器对杨树的耐涝性具有重要意义。
3.1 皮孔与根系变化的意义淹水胁迫过程中,小叶杨和I-69杨均出现生长减缓,叶片萎蔫、干枯、脱落以及茎基部皮孔膨大等现象,这与前人研究结果一致(Du et al.,2012;Shiba et al.,2003)。但是与小叶杨相比,I-69杨出现受害症状的时间晚、程度轻。试验结束时,I-69杨的成活率为小叶杨的5倍,进一步说明小叶杨耐涝弱,而I-69杨的耐涝性较强。淹水胁迫下,膨大的皮孔可以提高植株吸收O2的面积,是植物适应淹水胁迫的机制之一(Kozlowski,1997)。本试验中,在淹水后期,小叶杨的肥大皮孔变褐腐烂,影响了植株对O2等的吸收。同时,其原有根系大量腐烂、死亡,排水恢复期间基本没有新根长出,亦减弱了植株对水分与矿质营养的吸收(Tang et al.,1984),这些可能是小叶杨对淹水胁迫敏感的重要原因之一;I-69杨则与小叶杨有所不同,其皮孔肥大但正常,而且植株原有根系腐烂较少,排水恢复期间又有大量新根长出,这些均有助于植株抗涝性的提高,与Du等(2012)的研究结果一致。
3.2 通气组织的作用通气组织的形成是植物耐涝的重要机制(Colmer et al.,2006),源于活细胞的程序化死亡(PCD)和溶解(封克等,2006;Vasellati et al.,2001)。本试验中,小叶杨的通气组织形成快,且迅速变大,但维持时间短,淹水7天就开始出现皮层细胞与中柱细胞联系疏松、并逐渐分离脱落的现象,导致根结构严重破坏,影响了植株对O2等的传输。与之相比,I-69杨的通气组织形成相对较晚,缓慢变大,但能够长时间维持正常状态,淹水14天时皮层细胞与中柱仍联系紧密,这使得根系与茎叶的空腔和细胞间隙相通,极大地降低空气在植物体内的扩散阻力,利于暂时缓解根际的低氧状况,并促进CO2排泄(Suralta et al.,2008)。已有研究表明,淹水胁迫下,乙烯在通气组织形成的过程中起了关键作用,但乙烯的过量积累会对植物造成伤害(Fukao et al.,2006)。小叶杨在淹水后期通气组织无法维持正常的结构与功能,根结构严重破坏可能与乙烯的大量积累有关,这还有待进一步深入研究。
3.3 线粒体变化的意义线粒体是根系内最主要的细胞器之一,是三羧酸循环和氧化磷酸化的中心,为根系细胞内外的离子交换以及代谢物排放提供能量,其结构的完整性是呼吸代谢的根本保障(Andreev et al.,1991;Yamamoto et al.,2002)。近年来的研究表明,逆境胁迫下植物线粒体的结构和功能都会发生一定变化(Halestrap et al.,2000)。本研究中,淹水胁迫导致小叶杨与I-69杨的线粒体均有不同程度破坏,与前人研究结果一致。小叶杨的线粒体结构破坏严重,并大量降解,数量明显减少,这影响了细胞的相关生理功能。而I-69杨则线粒体数量丰富、结构稳定,有助于维持细胞代谢,促进植株对O2、水分、矿质营养的吸收与利用。线粒体也是活性氧产生的主要部位和易发生脂质过氧化的细胞器(Yamamoto et al.,2002),因此,2种杨树线粒体结构的破坏可能与膜脂质氧化有关。线粒体结构和功能的改变也是细胞程序化死亡(PCD)的关键性环节(Halestrap et al.,2000)。小叶杨线粒体的快速破坏与降解可能是其通气组织迅速形成的重要原因。可见,淹水胁迫下根皮层细胞中线粒体等细胞器数量与稳定的结构对杨树的生长和存活具有重要意义。此外,与淹水胁迫下小叶杨与I-69杨叶片的超微结构相比(杜克兵等,2010),根的皮层细胞超微结构的破坏出现得更早,更严重,这亦佐证了根系是淹水胁迫下植株受伤最早、最敏感的部位。
[1] |
杜克兵,许林,涂炳坤,等.2010.淹水胁迫对2种杨树1年生苗叶片超微结构和光合特性的影响.林业科学,46 (6): 58-64. (Du K B, Xu L, Tu B K, et al. 2010. Influences of soil flooding on ultrastructure and photosynthetic capacity of leaves of one-year old seedlings of two poplar clones. Scientia Silvae Sinicae, 46(6): 58-64[in Chinese]).( ![]() |
[2] |
封克,司江英,汪晓丽,等.2006.不同水分条件下水稻根解剖结构的比较分析.植物营养与肥料学报,12(3):346-351. (Feng K, Si J Y, Wang X L, Sheng H J, et al. 2006. Comparative analysis on rice root anatomical structure under different soil moisture. Plant Nutrition and Fertilizer Science, 12(3): 346-351[in Chinese]).( ![]() |
[3] |
黄朝禧,张波清,郭朝霞.2006.发展库区消落区两栖林业的探讨—以湖北富水库区为例.安徽农业科学,34(2):238-239,246. (Huang C X, Zhang B Q, Guo Z X. 2006. Development of amphibious forestry for income-increasing of farmer in reservoir area. Journal of Anhui Agricultural Sciences, 34(2): 238-239, 246[in Chinese]).( ![]() |
[4] |
李和平.2009.植物显微技术.北京:科学出版社. (Li H P. 2009. Plant microscopy technique. Beijing: Science Press.[in Chinese])( ![]() |
[5] |
汤玉喜.2002.滩地淹水胁迫条件下杨树造林立地选择及生长预测研究.长沙:中南林学院硕士学位论文. (Tang Y X. 2002. Site election and growth calculation of Populus afforestation under flooding stress in beach land of Dongting lake. Changsha: MS thesis of Central South University of Forestry and Technology[in Chinese]).( ![]() |
[6] |
王文泉,郑永战,梅鸿献,等.2003.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化.植物遗传资源学报,4(3):214-219. (Wang W Q, Zheng Y Z, Mei H X, et al. 2003. Physiological and structural adaptation in roots of genotypes with different tolerance to waterlogging in Sesame (Sesamum indicum L.) under anoxia stress. Journal of Plant Genetic Resources, 4(3): 214-219[in Chinese]).( ![]() |
[7] |
魏和平,利容千.2000.淹水对玉米不定根形态结构和ATP酶活性的影响.植物生态学报,24(3):293-297. (Wei H P, Li R Q. 2000. Effect of flooding on morphology, structure and atpase activity in adventitious root apical cells of maize seedlings. Acta Phytoecologica Sinica, 24(3): 293-297[in Chinese]).( ![]() |
[8] |
僧珊珊,王群,李潮海,等.2012.淹水胁迫下不同玉米品种根结构及呼吸代谢差异.中国农业科学,45(20):4141-4148. (Zeng S S, Wang Q, Li C H, et al. 2012. Difference in root structure and respiration metabolism between two maize cultivars under waterlogging stress. Scientia Agricultura Sinica, 45(20): 4141-4148[in Chinese]).( ![]() |
[9] |
Andreev V Y, Generozova I P, Vartapetian B B. 1991. Energy status and mitochondrial ultrastructure of excised pea root at anoxia and postanoxia. Plant Physiology and Biochemistry, 29(2): 171-176.(![]() |
[10] |
Colmer T D, Cox M C H, Voesenek L A C J. 2006. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide and ethylene as possible regulators of root acclimatizations. New Phytologist, 170(4): 767-778.(![]() |
[11] |
Du K B, Xu L, Wu H, et al. 2012. Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance. Flora, 207(2): 96-106.(![]() |
[12] |
Fukao T, Xu K, Ronald P C, et al. 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to flooding in rice. Plant Cell, 18(8): 2021-2034.(![]() |
[13] |
Gong J R, Zhang X S, Huang Y M, et al. 2007. The effects of flooding on several hybrid poplar clones in Northern China. Agroforestry Systems, 69(1): 77-88.(![]() |
[14] |
Halestrap A P, Gillespie J P, O'Toole A, et al. 2000. Mitochondria and cell death: A pore way to die? In: Bryant J A, Hughes(![]() |
[15] |
Imada S, Yamanaka N, Tamai S. 2008. Water table depth affects Populus alba fine root growth and whole plant biomass. Functional Ecology, 22(6): 1018-1026.(![]() |
[16] |
Kozlowski T T. 1997. Responses of woody plants to flooding and salinity. Tree Physiology Monograph, 1(1): 1-29.(![]() |
[17] |
Kreuzwieser J, Hauberg J, Howell K A, et al. 2009. Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiology, 149(1): 461-473.(![]() |
[18] |
Peng Y J, Dong Y M, Tu B K, et al. 2013. Roots play a vital role in flood-tolerance of poplar demonstrated by reciprocal grafting. Flora, 208(8/9): 479-487.(![]() |
[19] |
Shiba H, Daimon H. 2003. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant and Soil, 255(1): 209-215.(![]() |
[20] |
Suralta R R, Yamauchi A. 2008. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environmental and Experimental Botany, 64(1): 75-82.(![]() |
[21] |
Tang Z C, Kozlowski T T. 1984. Water relations, ethylene production, and morphological adaptation of Fraxinus pennsylvanica seedlings to flooding. Plant and Soil, 77(2/3): 183-192.(![]() |
[22] |
Yamamoto Y, Kobayashi Y, Devi S R, et al. 2002. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant physiology, 128(1): 63-72.(![]() |
[23] |
Yin D M, Chen S M, Chen F D, et al. 2010. Morpho-anatomical and physiological responses of two dendranthema species to waterlogging. Environmental and Experimental Botany, 68(2): 122-130.(![]() |
[24] |
Vasellati V, Oesterheld M, Medan D, et al. 2001. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Annals of Botany, 88(3): 355-360.(![]() |