文章信息
- 段洪浪, 吴建平, 刘文飞, 廖迎春, 张海娜, 樊后保
- Duan Honglang, Wu Jianping, Liu Wenfei, Liao Yingchun, Zhang Haina, Fan Houbao
- 干旱胁迫下树木的碳水过程以及干旱死亡机理
- Water Relations and Carbon Dynamics under Drought Stress and the Mechanisms of Drought-Induced Tree Mortality
- 林业科学, 2015, 51(11): 113-120
- Scientia Silvae Sinicae, 2015, 51(11): 113-120.
- DOI: 10.11707/j.1001-7488.20151115
-
文章历史
- 收稿日期:2014-10-31
- 修回日期:2015-02-03
-
作者相关文章
2. 南昌工程学院水利与生态工程学院 南昌 330099
2. School of Water Resources and Ecological Engineering, Nanchang Institute of Technology Nanchang 330099
工业革命以来,全球平均气温已上升了0.76 ℃,预计到21世纪末,全球平均气温还将升高 1~6.4 ℃(Christensen et al., 2007; IPCC,2007)。大气温度升高以及极端高温天气(如热浪)将对世界水循环及大气环流产生巨大影响,从而导致全球范围内干旱的频率和强度进一步增加(IPCC,2012; Dai,2011)。水是限制植物生长发育最主要的环境因子之一,因此全球的降雨格局在很大程度上决定了植被分布(Wullschleger et al., 2002; Robredo et al., 2007)。水分胁迫会降低植物的生产力(Blackman et al., 2009),而极端干旱则可能严重威胁植物存活(Tyree et al., 2002; Breshears et al., 2005)。有调查研究显示,近30年来高温和干旱导致全球范围的不同森林类型(如北方森林、温带森林及热带森林)死亡事件增加(Phillips et al., 2009; 2010; Allen et al., 2010; Peng et al., 2011),包括中国东部和西南地区(Allen et al., 2010)。大面积森林死亡改变生态系统结构及碳水循环过程,使森林生态系统从碳汇变成碳源,进一步反馈到区域乃至全球气候(Breshears et al., 2002; Anderegg et al., 2013a; 2013b)。森林生态系统在生物圈中占据举足轻重的地位,其大面积消亡会造成严重的生态后果,然而极端干旱胁迫导致树木死亡的生理机制仍不清楚(Niu et al., 2014),在中国地区还鲜有此类研究的报道。在全球变化背景下,探讨树木对极端水分胁迫的响应机理以及树木死亡的生理机制,对准确预测和评估未来气候条件下森林的碳水循环及碳汇功能具有重要的理论和现实意义。本文将从干旱胁迫下的植物的水分关系、碳动态以及干旱死亡机制研究进展几方面展开讨论。
1 干旱胁迫下的水分关系目前学界对木质部水分传输的认识主要基于Dixon提出的“内聚力-张力”学说(“Cohesion-tension” theory)(Tyree et al., 1989)。该假说指出,在蒸腾作用驱动下,由于细胞壁纤维素微纤丝的亲水性以及水分子之间的黏滞性,随之产生的内聚力将导管中的水柱向上拉升,从而将水分从土壤传输到叶片,形成从土壤(高)到大气(低)的水势梯度(Tyree et al., 1989; Brodribb et al., 2010)。在土壤-植物-大气连续体系中(soil-plant-atmosphere continuum),蒸腾作用增强以及土壤干旱会降低植物水势,从而导致木质部水分传导速率下降。通常植物会通过气孔调节水分散失,从而将叶片水势保持在水势阈值以上。但是随着干旱加剧,当植物水势进一步下降到水势阈值以下时,木质部就有发生空穴(cavitation)和栓塞(embolism)的风险,从而阻碍水分传输(Sperry,2000; Meinzer,2002; McDowell et al., 2008)。
解释水分胁迫下的木质部空穴化现象多种机制中最受关注的是“气种假说”(air seeding hypothesis)(Zimmermann,1983)。根据“气种假说”,在土壤干旱胁迫下,木质部形成足够大的负压,将黏附在管壁上细小的气种释放出来形成气泡,或从和空气相连管壁上的孔口将空气吸入输水管腔中,破坏水柱的连续性并阻塞水分传输(Zimmermann,1983; Tyree et al., 1989; Choat,2013)。当导管之间的纹孔膜所受的压力差超过纹孔膜内部空气-水界面的表面张力时,气泡就可能向邻近的导管扩散(Sperry et al., 1988; Tyree et al., 2002; Brodersen et al., 2013),从而降低水分传导速率,最终可能导致植物缺水死亡。纹孔膜所受的压力差(Pa)可以通过液体表面张力(σ)和纹孔膜最大孔径(Dp)预测,公式为:
${P_a} = 4\sigma \cos \theta /{D_p}$ | (1) |
式中:θ为纹孔膜与空气-水界面的接触角,在亲水性物质表面通常被认作0°(Tyree et al., 2002; Choat et al., 2008)。从具有不同纹孔膜的树种研究表明,空气扩散的压力阈值与纹孔膜的孔径有很大的相关性(Jansen et al., 2009)。由公式可知,较大的孔径所能承受的压力差较小,更易导致空气进入导管。事实上,气泡通过大孔径纹孔膜向周围导管扩散的现象并不常见,而且树木拥有大孔径的几率随着纹孔膜表面积的增加而增大(Choat et al., 2003; Wheeler et al., 2005; Christman et al., 2009)。导管间的压力差增大会拉伸纹孔室的细胞膜,从而引起纹孔膜孔径增大(Choat et al., 2004)。总之,树种对栓塞的抗性取决于纹孔与导管的一系列结构特征,如纹孔膜的强度与孔隙度以及纹孔膜表面积等(Wheeler et al., 2005; Choat et al., 2008; Lens et al., 2011)。而木质部栓塞抗性与水分传导效率之间存在权衡。例如,孔径较小的纹孔膜具有较强的栓塞抗性,但这一特性却会降低木质部导水效率(Choat et al., 2008; Lens et al., 2011)。
Sperry等(1988)首次提出了栓塞脆弱性曲线(vulnerability curves to embolism)来描述木质部栓塞化过程,即实际水分传导速率相对于最大传导率所降低的百分比(percentage loss of conductivity,PLC)与木质部水势的关系(一般为Sigmoid形曲线)。此曲线表明随着木质部水势降低(即木质部内部压力越大),水分传导速率降低,PLC增大(0~100%),直到最终形成严重栓塞并完全阻止水分传输。从栓塞脆弱性曲线能获得量化栓塞抗性的常见指标,比如在PLC=50%和88% 情况下的木质部水势(即 P50和P88)(Choat et al., 2008; 2012; Brodribb et al., 2009; Brodribb et al., 2010; Meinzer et al., 2013; Urli et al., 2013)。大量研究表明,当木质部水势降到P50 或者 P88以下后,木质部水势很小的变化将引起水分传导速率大幅下降,树木也因此面临严重栓塞及死亡的风险。具有系统发生学差异的植物,其致死的水势临界点(即木质部导水性不能再恢复)与P50 或P88的关系有所差异。裸子植物中的水势临界点与P50 具有很大正相关性,但被子植物的水势临界点却与P88有更高的相关度(Brodribb et al., 2009; Brodribb et al., 2010; Urli et al., 2013)。尽管P50和P88是指示树木在极端干旱条件下栓塞抗性的重要指标,但它们并没有体现自然条件下树木通过气孔调节水分散失的现象(Meinzer et al., 2009)。因此,“水力安全范围”(hydraulic safety margin)概念应运而生,其将干旱胁迫下气孔调节与“水力失衡”(hydraulic failure)的风险有机联系起来(Pockman et al., 2000; Brodribb et al., 2004; Meinzer et al., 2009; Meinzer et al., 2013)。“水力安全范围”是指树木在自然条件下所能经历的最低水势与P50 或P88之间的差值(即Pmin-(P50 或P88))。水力安全范围越大,树木遭受“水力失衡”的几率就越小。Choat等(2012)通过对全球220多种树种水力特征调查后发现,190多种被子植物的水力安全范围均小于1 MPa(图 1),而裸子植物却比被子植物具有更大的水力安全范围。如果极端干旱事件增多,大多数被子植物均可能面临“水力失衡”的风险(Choat et al., 2012)。因此,在未来干旱强度及频率增加的气候条件下,极端干旱引起“水力失衡”现象可能会比较常见。
![]() |
图 1 全球191种被子植物与32种裸子植物水力安全范围调查(Choat et al., 2012) Fig. 1 Hydraulic safety margins for 191 angiosperms and 32 gymnosperms(Choat et al., 2012) ψ50 表示PLC=50%时的木质部水势,即P50; ψmin表示植物在野外所经历最小的木质部水势,即Pmin。水力安全范围表示从圆点到对角虚线的垂直距离。距离越大,表示安全范围越大,经历 “水力失衡”的风险就越小。 ψ50 means the xylem water potential at which 50% loss of conductivity occurs,same with P50; ψmin means the minimum xylem water potential which plants experience in the field,same with Pmin. The hydraulic safety margin is the distance between each point and the 1:1(dashed)line. The longer distance indicates larger safety margin and lower risk of “hydraulic failure”. |
树木的碳动态是一系列碳过程的反映,比如碳同化(即光合作用)、生长、碳利用(即生长呼吸和维持呼吸)以及碳存储(即非结构性碳水化合物(TNC),包括淀粉和可溶性糖)。大量研究表明干旱对以上碳交换过程均有负面影响(Chaves,1991; Atkin et al., 2009),本文主要着重于长期干旱对树木不同碳过程影响的差异以及由此引起的树木TNC含量变化。
干旱胁迫对植物生长、光合作用和呼吸作用的影响具有先后顺序(McDowell,2011)。大多数研究表明,相对于光合和呼吸作用而言,细胞生长对膨压的依赖性最高,因此生长对干旱胁迫最敏感(Hsiao,1973; Munns,1988; Bogeat-Triboulot et al., 2007)。在干旱胁迫早期,细胞膨压降低引起植物生长先于光合作用下降,因此碳水化合物的供需失衡导致TNC存储盈余(Kozlowski et al., 2002; Körner,2003; Ayub et al., 2011)。而研究也发现,干旱胁迫通常导致光合作用比呼吸作用先下降,因此光合作用比呼吸作用可能具有更高的干旱敏感性(Hsiao et al., 1976; Wilson et al., 1980; McCree et al., 1984)。理论上,随着干旱持续,当先下降的光合作用所产生的碳水化合物不再能满足维持呼吸所需的能量时,呼吸作用就要开始消耗树木存储的TNC,从而可能导致TNC含量下降(McDowell,2011)。当TNC含量下降到一定程度时,树木存储的TNC不再满足细胞代谢所需的能量需求,“碳饥饿”(carbon starvation)就会发生(McDowell et al., 2008; McDowell,2011),树木就面临死亡的风险。然而,目前还鲜有研究从整株或者器官尺度验证以上假说的合理性,特别是长期干旱胁迫对生长、光合作用和呼吸作用的制约关系以及非结构性碳水化合物动态未有试验证据支持。
3 树木干旱致死机理及研究进展树木与大气碳水交换的主要过程光合作用和蒸腾作用受植物叶片气孔控制。由于气孔对外界水分环境的敏感性,它会随着土壤水分减少以及叶片膨压降低而逐渐关闭以减少蒸腾失水,从而引起光合作用速率降低(McDowell,2011; Hartman et al., 2013a)。因此,干旱胁迫会同时影响树木的水分关系和碳平衡。轻度及中度干旱通常引起木质部导水率降低,从而限制生长和光合作用,而极端干旱将导致树木死亡(Pockman et al., 2000; Tyree et al., 2002; Breshears et al., 2005; Blackman et al., 2009; Allen et al., 2010)。然而干旱致死的生理机制仍不甚清楚。目前备受关注的 “水力失衡”假说和“碳饥饿”假说尝试着解释干旱胁迫下树木死亡过程中的碳水关系(McDowell et al., 2008; McDowell,2011)。 这2种假说具有很大的协同性和耦合性,而且存在很大争议,很大程度上还取决于干旱的强度和持续时间、树木的气孔调节行为(Isohydry- Anisohydry; 即等水行为及非等水行为)以及与生物因子(如虫害或者病原菌感染)和非生物因子(如温度升高)的交互作用。
“水力失衡”假说预测,在强度大的干旱条件下,土壤水分快速减少以及大量的蒸发需求会导致木质部导管产生栓塞,从而阻碍水分传输,并引起细胞脱水死亡(McDowell et al., 2008)。非等水行为树木在干旱胁迫时仍保持一定的气孔张开,导致进一步蒸腾失水,因此更易遭受 “水力失衡”。而 “碳饥饿”假说预测,由于碳水过程的协同性,在干旱过程中树木关闭气孔以阻止细胞快速失水,但同时又会抑制光合作用,减少碳同化量。因此,长时间持续的呼吸作用最终会耗尽储存的非结构性碳水化合物而导致植物因能量耗尽而死亡(McDowell et al., 2008)。“碳饥饿”假说更容易发生于持续时间长、但强度相对较低的干旱事件中。由于生长对膨压的敏感性,等水行为树木比非等水行为树木具有更好的气孔调节机制,因此在干旱胁迫下能较早关闭气孔以防止 “水力失衡”发生,但长时间碳收支失衡却可能增加 “碳饥饿”风险(McDowell et al., 2008; Hartmann et al., 2013a)。另外,Sala等(2010)鉴于非结构性碳水化合物在植物体内传输的重要性,后来又对 “碳饥饿”假说进行了修正。他们认为,非结构性碳水化合物在韧皮部中从源(叶)到汇(利用碳水化合物的器官)的传输如果受阻,将导致树木局部器官发生 “碳饥饿”,从而影响树木死亡的机理。而其他外界因子如虫害(McDowell et al., 2008)与温度升高(Breshears et al., 2005; Adams et al., 2009; 2013; Eamus et al., 2013; Duan et al., 2014)则可能进一步加速死亡进程。
尽管近年来很多研究尝试验证以上假说(Adams et al., 2009; 2013; Anderegg et al., 2012; Anderegg et al., 2013b; Hartmann et al., 2013a;2013b; Mitchell et al., 2013; Nardini et al., 2013; Quirk et al., 2013; Will et al., 2013; Duan et al., 2014),但研究结果并不一致,这可能跟树种功能类型、干旱的强度和持续时间及试验手段的差异有关。在以被子植物树种为对象的研究中,如桉属(Eucalyptus)和杨属(Populus),“水力失衡”制约了树木对碳水化合物的利用,因此树木死亡时TNC含量与干旱处理前相比并没有显著降低(Anderegg et al., 2012; Mitchell et al., 2013; Duan et al., 2013; 2014)。例如,以澳大利亚蓝桉(Eucalyptus globulus)和Eucalyptus radiata 为对象的研究表明,干旱条件下全树的TNC含量并没有降低,而“水力失衡”才是树木致死的决定因素(Duan et al., 2013; 2014)(图 2)。另外,相对于试验处理前,正常浇水处理和干旱处理中的全树TNC含量均有不同程度升高:蓝桉中的TNC含量增幅较大,约为20%。不同水分处理中淀粉和可溶性糖对TNC含量增加的贡献却存在差异。在正常浇水处理中,TNC的增加主要由淀粉含量增加引起。但是,在干旱处理中,TNC的增加主要基于可溶性糖的积累。显然,极端干旱胁迫改变了淀粉与可溶性糖的相对组成比例。一般情况下,淀粉是植物储存能量的主要物质。但在干旱胁迫下,可溶性糖类的积累可能有助于调节渗透压(Hsiao et al., 1976; McDowell,2011),以帮助植物维持膨压(Duan et al., 2013)。这或许是桉树在澳大利亚多干旱的气候条件下形成的适应机制。另外,区分可溶性糖的组分以及探讨各组分在干旱胁迫中的作用将对深入理解树木对干旱的响应机制具有重要意义(Sala et al., 2012)。而在以裸子植物为对象的研究中,如松属(Pinus)和刺柏属(Juniperus),尽管“水力失衡”具有显著作用,但TNC的含量具有更大的变异性。树木死亡时,TNC含量在一些研究中降低(如 Hartmann et al., 2013a; 2013b; Mitchell et al., 2013; Quirk et al., 2013; Sevanto et al., 2013),但在另外研究中没有显著变化(Anderegg et al., 2013)。Hartmann等(2013b)通过野外遮雨试验发现,欧洲云杉(Picea abies)幼树死亡后根部的TNC含量比试验开始时显著降低,但地上部分TNC含量却没有显著变化。Mitchell等(2013)在温室研究中发现北美辐射松(Pinus radiata)在死亡时全株的TNC含量下降了50%。 然而,在可食松(Pinus edulis)与Juniperus osteosperma 幼树的对比试验中,Anderegg(2013a; 2013b)并未发现这2种树的TNC含量在极端干旱处理中降低。以上研究结果的不一致体现了TNC对极端干旱响应的复杂性。综上所述,当前的研究揭示了 “水力失衡”是导致树木干旱死亡的主要机制,但“碳饥饿”在树木死亡过程中的贡献仍有待进一步研究。
![]() |
图 2 2种桉树(E. globulus和E. radiata)的全株TNC含量在不同水分处理(正常浇水与干旱处理)的时间动态 Fig. 2 Temporal changes of whole-plant TNC content(mg·g-1)in seedlings exposed to well-watered and drought conditions in E. globulus and E. radiata over the experimental period 所有的值都是4种[CO2]与温度处理的平均值(n=4)。图中柱子上面的数字代表试验结束时的值与试验开始前处理的相对比值。“*”代表显著性差异(P ≤ 0.05)。 All the values are means among the four [CO2] and temperature treatments. Values are means(n=4). Numbers represent the relative changes of final harvest values compared with pre-drought values. “*” indicates that the relative change is significantly different(P ≤ 0.05). |
事实上,在试验过程中很难剔除“水力失衡”的作用,来探讨“碳饥饿”是否单独能导致树木死亡。因此,“碳饥饿”是否能在死亡过程中发生仍是未知。最近有研究通过改变外界环境条件(比如低CO2浓度以及遮荫)的方法验证了在没有水分胁迫时 “碳饥饿”在以上特殊条件下可能发生(Hartmann et al., 2013b; Quirk et al., 2013; Sevanto et al., 2013)。例如,Hartmann等(2013b)发现在低CO2浓度条件下(即75 mL·L-1),正常浇水的欧洲云杉幼树各器官的TNC储存几乎耗尽,但却比相同CO2浓度条件下干旱胁迫的幼树多存活7周。可见,“水力失衡”具有显著作用。Sevanto等(2013)发现接受遮荫处理的可食松死亡时叶片和枝条中的TNC含量显著降低,但是在干旱与不遮光处理中,可食松却死于 “水力失衡”。以上研究表明,尽管在特殊条件下“碳饥饿”可能发生,但是在高强度干旱胁迫条件下,“水力失衡”仍是导致树木死亡的最主要原因。而 “碳饥饿”是否能导致干旱死亡则需要在更长周期(多年)和低强度干旱试验中去验证。
4 结语与展望本文从树木的碳水过程入手,既阐述了树木在干旱胁迫下的水分传输、木质部栓塞化以及抗旱性,又揭示了树木不同的碳过程受干旱胁迫影响的差异性以及由此引起的TNC存储的变化。进而从水力学和碳代谢两方面综述了目前备受关注的干旱致死的生理机制,同时对当前的研究进展进行了总结归纳。总而言之,“水力失衡”在树木干旱死亡过程中发挥主要作用,而“碳饥饿”是否发生、如何发生以及与“水力失衡”的协同性可能与干旱程度、树种的功能类型和试验条件有很大关系。在此,对以后的研究方向提出以下几点建议:
1)当前的研究具有很大的地域和树种限制性。它们主要集中在北半球少数地区(北美和欧洲)以及南半球的澳洲,树种也只局限于少数树种,如松属、柏属、杨属、栎属(Quercus)和桉属(McDowell et al., 2013)。因此,在亚洲及中国地区以乡土树种为研究对象开展此类研究,将会为进一步揭示树木在极端干旱中死亡的机理提供更广泛的科学数据并开拓新的视野。另外,具有系统发生学差异的树木(如被子植物和裸子植物)具有不同的水力安全范围,然而其应对极端干旱的对比研究相对匮乏。通过比较不同水力安全范围树种在干旱过程中碳水过程的差异,对准确预测森林生态系统应对干旱的能力以及全球变化背景下森林生物多样性的保护具有重要意义。
2)干旱胁迫可能改变可溶性糖及一些植物激素(如脱落酸ABA、脯氨酸等)的组成比例。在干旱胁迫下,区分可溶性糖的组分以及植物激素的动态将有助于深入理解树木对干旱的响应机制。而一些试验手段的运用(如干旱与复水)可能会为此类研究找到突破口。 Brodribb等(2013)通过干旱胁迫与复水的试验方法从2个截然相反的过程清楚地阐明了2种不同水分利用策略树种,即北美辐射松和澳洲丝柏松(Callitris rhomboidea)的气孔开闭与叶片中ABA含量关系的差异性,为深入探讨不同植物应对干旱的策略和生理进化机制提供了新的思路。
3)全球变化背景下,CO2浓度与温度协同升高将不可避免。然而,当前很少有研究涉及到二者的交互作用如何影响树木干旱死亡过程。 据笔者所知,目前仅有Duan等(2013;2014)以桉树(E. globulus和E. radiata)为对象发表过相关研究。 研究结果表明CO2浓度升高并不能缓解高温和干旱对树木死亡的负效应。然而,此结论是否具有普遍意义仍需要进一步验证。因此,CO2浓度与温度升高的交互对极端干旱作用的机制应成为新的研究方向(Way,2013),从而为准确评估未来气候环境下森林生态系统碳水平衡及碳源汇功能提供科学依据。
[1] |
Adams H D, Germino M J, Breshears D D, et al. 2013. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 197(4):1142-1151.(![]() |
[2] |
Adams H D, Guardiola-Claramonte M, Barron-Gafford G A, et al. 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences, 106(17):7063-7066.(![]() |
[3] |
Allen C D, Macalady A K, Chenchouni H, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4):660-684.(![]() |
[4] |
Anderegg W R, Anderegg L D. 2013a. Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiology, 33(3):252-260.(![]() |
[5] |
Anderegg W R, Kane J M, Anderegg L D. 2013b. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1):30-36.(![]() |
[6] |
Anderegg W R, Berry J A, Smith D D, et al. 2012. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences, 109(1):233-237.(![]() |
[7] | Atkin O K, Macherel D. 2009. The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany, 103(4):581-597. |
[8] |
Ayub G, Smith R A, Tissue D T, et al. 2011. Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytologist, 190(4):1003-1018.(![]() |
[9] |
Blackman C J, Brodribb T J, Jordan G J. 2009. Leaf hydraulics and drought stress:response, recovery and survivorship in four woody temperate plant species. Plant, Cell and Environment, 32(11):1584-1595.(![]() |
[10] | Bogeat-Triboulot M B, Brosché M, Renaut J, et al. 2007. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiology, 143(2):876-892. |
[11] |
Breshears D D, Allen C D. 2002. The importance of rapid, disturbance-induced losses in carbon management and sequestration. Global Ecology and Biogeography, 11(1):1-5.(![]() |
[12] |
Breshears D D, Cobb N S, Rich P M, et al. 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102(42):15144-15148.(![]() |
[13] |
Brodersen C R, McElrone A J, Choat B, et al. 2013. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiology, 161(4):1820-1829.(![]() |
[14] |
Brodribb T J, Bowman D J, Nichols S, et al. 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist, 188(2):533-542.(![]() |
[15] |
Brodribb T J, Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149(1):575-584.(![]() |
[16] |
Brodribb T J, Holbrook N M. 2004. Stomatal protection against hydraulic failure:a comparison of coexisting ferns and angiosperms. New Phytologist, 162(3):663-670.(![]() |
[17] |
Brodribb T J, McAdam S A M. 2013. ABA mediates a divergence in the drought response of two conifers. Plant Physiology, 162(3):1370-1377.(![]() |
[18] |
Chaves M M. 1991. Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42(1):1-16.(![]() |
[19] |
Choat B. 2013. Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 33(7):669-671.(![]() |
[20] |
Choat B, Ball M, Holtum J. 2003. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131(1):41-48.(![]() |
[21] |
Choat B, Cobb A R, Jansen S. 2008. Structure and function of bordered pits:new discoveries and impacts on whole-plant hydraulic function. New Phytologist, 177(3):608-626.(![]() |
[22] |
Choat B, Jansen S, Brodribb T J, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature, 491(7426):752-755.(![]() |
[23] |
Choat B, Jansen S, Zwieniecki M A, et al. 2004. Changes in pit membrane porosity due to deflection and stretching:the role of vestured pits. Journal of Experimental Botany, 55(402):1569-1575.(![]() |
[24] |
Christensen J H, Hewitson B, Busuioc A, et al. 2007. Regional climate projections//Climate change:The physical science basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,847-940.(![]() |
[25] |
Christman M A, Sperry J S, Adler F R. 2009. Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer. New Phytologist, 182(3):664-674.(![]() |
[26] |
Dai A. 2011. Drought under global warming:a review. Wiley Interdisciplinary Reviews:Climate Change, 2(1):45-65.(![]() |
[27] |
Duan H, Amthor J S, Duursma R A, et al. 2013. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated[CO2] and elevated temperature. Tree Physiology, 33(8):779-792.(![]() |
[28] |
Duan H, Duursma R A, Huang G, et al. 2014. Elevated[CO2] did not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant, Cell and Environment, 37(7):1598-1613.(![]() |
[29] |
Eamus D, Boulain N, Cleverly J, et al. 2013. Global change-type drought-induced tree mortality:vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecology and Evolution, 3(8):2711-2729.(![]() |
[30] |
Hartmann H, Ziegler W, Kolle O, Trumbore S. 2013a. Thirst beats hunger-declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist, 200(2):340-349.(![]() |
[31] |
Hartmann H, Ziegler W, Trumbore S. 2013b. Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Functional Ecology, 27(2):413-427.(![]() |
[32] |
Hsiao T C. 1973. Plant responses to drought. Annual Review of Plant Physiology, 24(1):519-570.(![]() |
[33] |
Hsiao T C, Acevedo E, Fereres E, et al. 1976. Drought, growth, and osmotic adjustment. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 273(927):479-500.(![]() |
[34] |
IPCC. 2007. Climate change 2007:the physical science basis//Solomon S, Qin D, Manning M, et al. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change Cambridge, UK & New York, NY, USA:Cambridge University Press.(![]() |
[35] |
IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation//Field C B, Barros V, Stocker T, et al.Special report of the intergovernmental panel on climate change. Cambridge, UK & New York, NY, USA:Cambridge University Press,582.(![]() |
[36] |
Jansen S, Choat B, Pletsers A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96(2):409-419.(![]() |
[37] |
Körner C. 2003. Carbon limitation in trees. Journal of Ecology, 91(1):4-17.(![]() |
[38] |
Kozlowski T T, Pallardy S G. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review, 68(2):270-334.(![]() |
[39] |
Lens F, Sperry J S, Christman M A, et al. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190(3):709-723.(![]() |
[40] |
McCree K J, Kallsen C E, Richardson S G. 1984. Carbon balance of sorghum plants during osmotic adjustment to drought. Plant Physiology, 76(4):898-902.(![]() |
[41] |
McDowell N, Pockman W T, Allen C D, et al. 2008. Mechanisms of plant survival and mortality during drought:Why do some plants survive while others succumb to drought? New Phytologist, 178(4):719-739.(![]() |
[42] |
McDowell N G. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155(3):1051-1059.(![]() |
[43] |
McDowell N G, Beerling D J, Breshears D D, et al. 2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology and Evolution, 26(10):523-532.(![]() |
[44] |
McDowell N G, Ryan M G, Zeppel M J, et al. 2013. Feature:improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling. New Phytologist, 200(2):289-293.(![]() |
[45] |
Meinzer F C. 2002. Co-ordination of vapour and liquid phase water transport properties in plants. Plant, Cell and Environment, 25(2):265-274.(![]() |
[46] |
Meinzer F C, Johnson D M, Lachenbruch B, et al. 2009. Xylem hydraulic safety margins in woody plants:coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23(5):922-930.(![]() |
[47] |
Meinzer F C, McCulloh K A. 2013. Xylem recovery from drought-induced embolism:where is the hydraulic point of no return? Tree Physiology, 33(4):331-334.(![]() |
[48] |
Mitchell P J, O'Grady A P, Tissue D T. 2013. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 197(3):862-872.(![]() |
[49] |
Munns R. 1988. Why measure osmotic adjustment? Functional Plant Biology, 15(6):717-726.(![]() |
[50] |
Nardini A, Battistuzzo M, Savi T. 2013. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytologist, 200(2):322-329.(![]() |
[51] |
Niu S, Luo Y, Li D, et al. 2014. Plant growth and mortality under climatic extremes:an overview. Environmental and Experimental Botany, 98(1):13-19.(![]() |
[52] |
Peng C, Ma Z, Lei X, et al. 2011. A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 1(9):467-471.(![]() |
[53] |
Phillips O L, Aragão L E O C, Lewis S L, et al. 2009. Drought sensitivity of the amazon rainforest. Science, 323(5919):1344-1347.(![]() |
[54] |
Phillips O L, Van der Heijden G, Lewis S L, et al. 2010. Drought-mortality relationships for tropical forests. New Phytologist, 187(3):631-646.(![]() |
[55] |
Pockman W T, Sperry J S. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. American Journal of Botany, 87(9):1287-1299.(![]() |
[56] |
Quirk J, McDowell N G, Leake J R, et al. 2013. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under cenozoic atmospheric carbon dioxide starvation. American Journal of Botany, 100(3):582-591.(![]() |
[57] |
Robredo A, Pérez-López U, de la Maza H S, et al. 2007. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and Experimental Botany, 59(3):252-263.(![]() |
[58] |
Sala A, Piper F, Hoch G. 2010. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist, 186(2):274-281.(![]() |
[59] |
Sala A, Woodruff D R, Meinzer F C. 2012. Carbon dynamics in trees:feast or famine? Tree Physiology, 32(6):764-775.(![]() |
[60] |
Sevanto S, McDowell N G, Dickman T, et al. 2013. How do trees die? A test of the hydraulic failure and carbon starvation. Plant, Cell and Environment, 37(1):153-161.(![]() |
[61] |
Sperry J S. 2000. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology, 104(1):13-23.(![]() |
[62] |
Sperry J S, Donnelly J R, Tyree M T. 1988a. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11(1):35-40.(![]() |
[63] |
Sperry J S, Tyree M T. 1988b. Mechanism of water stress-induced xylem embolism. Plant Physiology, 88(3):581-587.(![]() |
[64] |
Tyree M T, Sperry J S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1):19-38.(![]() |
[65] |
Tyree M T, Zimmermann M H. 2002. Xylem structure and the ascent of sap, 2nd ed. Berlin:Heidelberg and New York, Springer.(![]() |
[66] |
Urli M, Porté A J, Cochard H, et al. 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 33(7):672-683.(![]() |
[67] |
Way D A. 2013. Will rising CO2 and temperature exacerbate the vulnerability of trees to drought? Tree Physiology, 33(8):775-778.(![]() |
[68] |
Wheeler J K, Sperry J S, Hacke U G, et al. 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants:a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell and Environment, 28(6):800-812.(![]() |
[69] |
Will R E, Wilson S M, Zou C B, et al. 2013. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytologist, 200(2):366-374.(![]() |
[70] |
Wilson D R, van Bavel C H M, McCree K J. 1980. Carbon balance of water-deficient grain sorghum plants. Crop Science, 20(2):153-159.(![]() |
[71] |
Wullschleger S, Tschaplinski T, Norby R. 2002. Plant water relations at elevated CO2-implications for water-limited environments. Plant, Cell and Environment, 25(2):319-331.(![]() |
[72] |
Zimmermann M H. 1983. Xylem structure and the ascent of sap. Berlin/Heidelberg/New York/Tokyo:Springer-Verlag,143.(![]() |