文章信息
- 郑元润.
- Zheng Yuanrun.
- 森林群落稳定性研究方法初探
- COMPARISON OF METHODS FOR STUDYING STABILITY OF FOREST COMMUNITY
- 林业科学, 2000, 36(5): 28-32.
- Scientia Silvae Sinicae, 2000, 36(5): 28-32.
-
文章历史
- 收稿日期:1999-03-05
-
作者相关文章
人口的迅速增长及现代工业的发展不仅使全球环境发生着巨大的变化, 也严重威胁着作为人类生存最重要基础的生物群落的稳定性。当今世界面临的人口、资源、环境、粮食与能源五大危机都与生物多样性及其稳定性有着密切关系。稳定性的概念不仅仅具有理论价值, 面对全球生物多样性的日益减少, 必须给予稳定性问题高度的重视。在现代生态学领域有关稳定性的概念引起了广泛的争论(Sennhauser, 1991)。稳定性的概念都是和特定的研究相联系的。纯粹的稳定性在生态学上没有实际意义, 相反它是生态系统所有特点的一个综合术语。文献中有关稳定性的术语不下40多个, Pimm、Holling、Pickett等人都提出关于稳定性的概念(Pimm, 1984; Holling, 1973; Pickett et al., 1989)。其中最重要的有:恒定性(Constancy); 耐性(Resistance); 弹性(Resilience); 持久性(Persistence)(Grimm et al., 1992), 这种形势给稳定性的研究带来很大不便。因此, 探讨稳定性的统一标准, 寻找合适的稳定性研究方法不仅具有重要的理论意义, 且具有特殊的现实意义。
森林生态系统稳定性研究方法可以概括为两类, 一类是生物生态学方法, 利用野外调查数据分析生态系统的稳定性, 如采用年龄结构分析探讨植物群落的稳定性(彭少鳞, 1987); 另一类是数学生态学方法, 采用数学模型的手段分析植物群落的稳定性, 如利用微分方程模型、食物网模型等, 求取系统的平衡稳定点, 分析植物群落的稳定性(Angelis, 1975)。但是这两种方法有时会得出不同的结论, 因此, 需要更加有效的稳定性研究方法。
生态系统不同于简单的数学或物理系统, 有其自身的特殊性, 生态系统的稳定性是在正负反馈作用下的复杂过程, 虽然不少学者做了大量的工作, 但仍有许多问题值得深入研究。本文在M.Godron稳定性测定方法的基础上加以改进, 并在群落演替模型研究的基础上, 提出群落演替预测结果与比较分析相结合研究森林植物群落稳定性的新方法, 以科尔沁沙地大青沟森林群落为例对上述两种方法的有效性进行了研究, 以找出适合于森林群落稳定性研究的方法。
1 研究地区与方法 1.1 研究地区大青沟国家自然保护区位于哲里木盟科尔沁左翼后旗甘旗卡西南24 km处, 南与辽宁省彰武县接壤。地理位置为东经122°13'~122°15', 北纬42°45'~42°48'。保护区内有大小两条深沟, 大青沟长20 km, 沟深40~50 m, 沟宽平均250 m, 沟坡平均36°。小青沟长10 km, 沟深50~70 m, 沟宽平均200~ 300 m, 坡度平均28°。两沟汇合后流入柳河(辽河的支流)。水面宽2~4 m, 水深不超过1 m。海拔高度沟上225~253 m, 沟下173~200 m, 为该区海拔最低的地方。沟外为一望无际, 此起彼伏的沙丘, 沙丘一般高度在10 m以下。
大青沟周围地区在"中国气候区划"中属东北温带半湿润气候区向内蒙古温带半干旱气候区过渡的地带。年降水量500 mm左右, 主要集中在6~8月, 约占全年降水量总量的70%以上。沟内年平均相对湿度比沟外大20%~25%左右。降水年变率也较大。本区热力资源丰富, 日照时数在2800 h以上, 年总辐射130~140 cal/cm2·a。最高气温29℃, 最低气温-30℃, 年平均气温6℃左右。日平均气温稳定超过10℃的年积温在3200℃以上, 无霜期120 d左右。由于森林的影响, 大青沟内外小气候差异显著, 夏季沟内比沟外温度低, 变辐较小, 湿度较高; 冬季则较温和, 流水不冻; 夏末秋初, 沟外天空晴朗, 而沟内泉水则经常"冒烟", 形成浓雾。
大青沟地区土壤以沙土为主, 兼有沙壤土带, 主要以固定沙丘为主, 沟坡个别地段也有风积沙、冲积沙和淋溶现象。大小青沟沟底的土壤不是地带性土壤, 且有潜育层。由于森林植被枯枝落叶的积累而土壤色泽变深, 腐殖土层变厚。
1.2 野外调查方法在大青沟森林群落最有代表性的3个类型中, 设9个(每类型3个)20 m ×40 m的样带, 划分为5 m×5 m的小样方, 调查每个小样方的乔木种类, 记录其个体数、胸径、树高。
在20 m ×40 m样带中每一个5 m ×5 m样方的左下角设一个2 m ×2 m的灌木样方, 1 m ×1 m的草本样方, 调查每一种灌木的密度、盖度、高度, 每一种草本植物的密度、盖度和频度。
在各类型群落的每个样地内找出主要优势树种进入主林层和主要伴生树种进入相应最高层次的植株, 将林冠大小的投影用小绳圈出其范围, 两树冠联接处间隙小于10 m2, 则平分归入其相邻林冠, 大于10 m2就作为林间空地处理。
记录项目:①调查林木种名、胸径、树高。②用生长锥钻取不同种、不同径级的样木, 计算树木年龄。③按逐个林冠投影范围记录下层木(DBH >7.5 cm)、幼树(DBH2.5~7.5 cm)、幼苗(BDH < 2.5cm)的种名、高度、胸径。
1.3 稳定性研究方法 1.3.1 M.Godron稳定性测定方法M.Godron稳定性测定方法是法国生态学工作者从工业生产中发现并引入到植物生态学研究中的。它是由所研究的植物群落中所有种类的数量和这些种类的频度进行计算。首先把所研究群落中不同种植物的频度测定值按由大到小的顺序排列, 并把植物的频度换算成相对频度, 按相对频度由大到小的顺序逐步累积起来, 然后将整个群落内植物种类的总和取倒数, 按着植物种类排列的顺序也逐步累积起来, 由对应的结果可以看出百分之多少的种类占有多大的累积相对频度。将植物种类百分数同累积相对频度一一对应, 画出散点图, 并将各点以一条平滑的曲线连接起来, 在两个坐标轴的100处连一直线, 与曲线的交点即为所求点。根据这种方法, 种百分数与累积相对频度比值越接近20/80群落就越稳定, 在20/80这一点上是群落的稳定点。本方法的理论基础参见文献(Godron, 1972)。
M.Godron稳定性测定方法的缺陷是:在确定散点平滑曲线与直接的交点坐标时, 要靠在方格纸上5期郑元润:森林群落稳定性研究方法初探29确定。1是所得坐标可能不很准确, 2是该法不符合现代数据自动化处理的要求。因此, 本文在绘制散点图及曲线平滑的过程中, 首先建立数学模型, 模拟散点图平滑曲线, 方法如下:
平滑曲线模拟模型为:
(1) |
直线方程为:
(2) |
将(2)代入(1)得:
得x解为:
方程有两个解, 一个解远大于100, 另一个解应在0~100之间, 根据研究情况, 交点x轴的坐标应大于0小于100, 所以应采用第2个解。这样可以客观地求出交点坐标, 并可实现计算程序的自动化处理。
1.3.2 群落演替与比较分析相结合的方法本文采用的方法是建立在马尔柯夫群落演替模型研究基础上的。群落演替研究可以从不同的时间跨度来考虑。时间跨度的研究包括永久样地的观察、现存植被与昔日记录的比较。基于对残遗物种的性质及存在与否的研究, 基于化石孢粉资料及地质历史资料的研究。时间跨度较小的研究方法有植物群落中龄级分配的研究, 不同演替系列的对比分析研究及利用各种演替模型进行现状分析及预测。马尔柯夫演替模型建立过程如下。
达到目前状态与历史无关的称为无后效的过程, 达到这个状态与时间无关的过程称为时齐性, 无后效的、时齐的随机过程称为马尔柯夫过程。时间和状态离散的马尔柯夫过程称为马尔柯夫链。马尔柯夫链的无后效性应用于森林生态系统特别合适。天然林的演替是长期的变化过程, 是时间上大尺度的变化。经过数十年或千百年这样漫长的时间变化积累的信息, 在达到某一阶段时已经得到充分体现。因而下一阶段的状况可以由现阶段推断。马尔柯夫链在植被演替上的应用, 一个关键步骤就是转移概率的确定。本文用下述公式确定转移概率(阳含熙, 1985)。
对于线性演替, 转移概率确定以后, 就需求出马尔柯夫链的不动点向量, 也即平衡时的物种组成比例。
采用群落演替研究预测结果, 将平衡时各种群所占比例与现状各种群所占比例作比较分析。如果2者结果一致, 可认为现状群落分布状态接近于稳定时群落数量分布状态, 则群落是稳定的; 否则, 群落数量分布状态与稳定时群落数量分布状态存在差异, 群落正处于演替过程的不稳定状态中。
2 研究结果采用上述方法, 用Quick Basic编制计算程序, 完成平滑曲线模拟, 求出交点坐标并作图, 模拟平衡时树种组成比例, 并作比较分析。结果见表 1~2, 图 1~3。
从表 1、表 2、图 1~3可见, 经比较分析, 变豆菜(Sanicula chinensis)+野大豆(Glycine soja)-短梗五加(Acanthopanax sessilif lorus)+金银忍冬(Lonicera maackii)-水曲柳(Fraxinus mandshurica)群落平衡时树种组成比例与现状树种组成比例非常接近, 表明群落处于稳定状态。交点坐标为22/78, 接近稳定交点座标。苔草(Carex spp.)+铁杆蒿(Artemisia sacrorum)-山里红(Crataegus pinnatifida)、胡枝子(Lespedeza bicolor)-蒙古栎(Quercus mongolica)群落稳定时树种组成比例与现状树种组成比例很接近, 群落处于稳定状态。交点坐标为26/74, 接近于20/80, 表明群落处于稳定状态。苔草-山里红-大果榆群落稳定时树种组成比例与现状组成比例差异较大, 群落正处于演替过程之中, 群落处于不稳定状态。表 2所示结果不仅验证了Godron法的结果, 而且还表明了群落C将由以蒙古栎为主的群落向以大果榆为主的群落演替, 阐明了群落的动态趋势。
上述结果表明, 大青沟地区沟底小生境条件下的水曲柳群落处于相对的稳定状态, 但它仅与沟底潮湿的生境相联系; 以蒙古栎为主的群落则是与大气候条件相适应的稳定群落; 而以大果榆为主的群落分布于干旱而易于变化的沟坡上坡, 处于不稳定的状态中。M.Godron稳定性测定方法、群落演替与比较分析相结合的方法得出较为一致的结果, 说明这两种方法可以作为森林群落稳定性的测度方法, 可以互相验证。但M.Godron法结果仅能提供稳定与否的信息, 而演替与比较分析相结合的方法不仅能提供群落稳定与否的信息, 而且可以表达群落演替方向及趋势的信息。因此, 它有助于理解群落的发展过程、群落的演替规律及稳定状态下的群落结构、数量特征、种类组成, 为我们组建人工生态系统提供了如何创建, 并按演替特点进行经营管理的直观模式。因此是一种较为适用的方法。
3 讨论在以线性演替模型为基础的稳定性研究测定时, 首先应注意转移概率的确定, 取样越精确, 结果越可靠。本方法是以乔木上层树种的动态规律及更新情况为基础的。因此, 它主要反映乔木层的动态规律, 由于乔木种对群落具有支配作用, 决定着群落的发展趋势, 因此, 搞清乔木种的稳定性问题, 基本可以认定群落的稳定状态。
对M.Godron法的改进, 是以群落整体特征为依据的, 它包括了群落乔、灌、草的全部种类, 应该说是一种更为全面系统的方法, 可以反映群落的发展及变化趋势。如果与以线性演替模型为基础的测定法相互验证, 则可能得出更为可信的结果。M.Godron法结果仅能提供稳定与否的信息, 而演替与比较分析相结合的方法不仅能提供群落稳定与否的信息, 而且可以表达群落演替方向及趋势的信息。因此, 它有助于理解群落的动态过程, 是一种较为适用的方法。
由于在改进法中引入数学模拟, 使经典的M.Godron定量化, 具有较高的可信度, 同时使得测定过程更加容易, 摒弃了人为主观影响, 并可实现高速自动化, 符合生态学发展规律。但值得注意的是模型模拟应十分准确, 特别在交点坐标附近, 更应达到高度准确, 必要时可以牺牲模型的整体可信度, 而追求交点坐标处的高度吻合。当然还可构造更为复杂的数学模型, 甚至使指数小数化, 但这将导致解交点坐标时的难度增加, 当然随计算方法的改进, 这个目标可以实现, 但在准确的前提下, 应尽量采用简单的方法, 便于推广使用。
彭少麟. 1987. 森林群落稳定性与动态测度. 广西植物, 7(1): 67-72. |
阳含熙, 潘愉德, 伍业钢, 等. 1988. 长白山阔叶红松林马氏链模型. 生态学报, 8(3): 211-219. |
Angelis D L. 1975. Stability and connectance in food web models. Ecology, 56(4): 238-243. |
Holling C S. 1973. Resilience and stability of ecological systems. Ann.Rev.Ecol.Syst., 4: 1-23. |
Godron M. 1972. Some aspects of heterogeneity in grasslands of Cantal. Statistical Ecology, 3: 397-415. |
Grimm V, Schmidt E, Wissel C. 1992. On the application of stability concepts in ecology. Ecol.Modelling, 63: 143-161. DOI:10.1016/0304-3800(92)90067-O |
Pickett S T A, Kolasa J, Armesto J, Collins S. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos, 54: 129-136. DOI:10.2307/3565258 |
Pimm S L. 1984. The com plexity and stability of ecosystem. Nature, 307: 321-326. DOI:10.1038/307321a0 |
Sennhauser E B. 1991. The concept of stability in connection with the gallery forests of the Chaco region. Vegetatio, 94: 1-13. |