Stochastic Modeling and Performance Optimization of Marine Power Plant with Metaheuristic Algorithms

Saini Monika Patel Bhavan Lal Kumar Ashish

Monika Saini, Bhavan Lal Patel, Ashish Kumar (2023). Stochastic Modeling and Performance Optimization of Marine Power Plant with Metaheuristic Algorithms. Journal of Marine Science and Application, 22(4): 751-761. https://doi.org/10.1007/s11804-023-00371-5
Citation: Monika Saini, Bhavan Lal Patel, Ashish Kumar (2023). Stochastic Modeling and Performance Optimization of Marine Power Plant with Metaheuristic Algorithms. Journal of Marine Science and Application, 22(4): 751-761. https://doi.org/10.1007/s11804-023-00371-5

Stochastic Modeling and Performance Optimization of Marine Power Plant with Metaheuristic Algorithms

https://doi.org/10.1007/s11804-023-00371-5
  • Abstract

    For the successful operation of any industry or plant continuous availability of power supply is essential. Many of the large-scale plants established their power generation units. Marine power plant having two generators is also fall in this category. In this study, an effort is made to derive and optimize the availability of a marine power plant having two generators, one switch board and distribution switchboards. For this purpose, a mathematical model is proposed using Markov birth death process by considering exponentially distributed failure and repair rates of all the subsystems. The availability expression of marine power plant is derived. Metaheuristic algorithms namely dragonfly algorithm (DA), bat algorithm (BA) and whale optimization (WOA) are employed to optimize the availability of marine power plant. It is revealed that whale optimization algorithm outperforms over dragonfly algorithm (DA), and bat algorithm (BA) in optimum availability prediction and parameter estimation. The numerical values of the availability and estimated parameters are appended as numerical results. The derived results can be utilized in development of maintenance strategies of marine power plants and to carry out design modifications.

     

    Article Highlights
    • A stochastic model of marine power plant is developed using Markovian approach for performance evaluation.
    • The availability of the marine power plant optimized using metaheuristics algorithms.
    • It is revealed that whale optimization algorithm outperforms over other considered algorithms.
  • The economic development of a country depends on its industrial growth. There are several factors including consistent power supply and raw material availability for successful operation of industrial entities. As well as sufficient transportation facilities are also required to transfer the manufactured material from plant to the trade centers. Marine transport is the backbone of the supply chain for international trade. For the operation of large marine entities sufficient power is essential and it is fulfilled by marine power plants established on the ship itself. To ensure the consistent power supply, it is recommended to ensure the high availability of the plant through identification of most sensitive components whose failure can impact the plants operation.

    The availability analysis is a key system reliability effectiveness measure. Several studies have been conducted to improve the reliability of industrial sectors. Saini et al. (2021) developed a stochastic model for availability evaluation of urea decomposition plant. Kumar and Kumar (2021) evaluated the performance of a tripod turnstile machines by investigation the impact of simultaneous failures. Kumar et al. (2021) explored the critical perspectives of reliability on performance of cyber physical systems utilized in various industries. Gupta et al. (2021) derived reliability and maintainability measures for steam turbine power plant using Markov birth death process. Kumar et al. (2022c) utilized reliability approach in performance investigation of tube wells utilized for irrigation in agriculture.

    During last few decades, several researchers tried to evaluate the reliability and performance of power sector entities including marine power plants utilizing various reliability evaluation techniques. The prominent techniques used for performance evaluation are Markov process, semi-Markov approach, RAM analysis, copula approach, and fault tree analysis. These techniques provided the local solution of the system characteristics like availability, reliability, mean time to system failure and expected number of repairs. Kumar et al. (2006) used interval valued vague sets for fuzzy reliability investigation of marine power plant. Wolfram (2006) assessed the reliability and availability of marine energy converters. Chybowski and Matuszak (2009) deliberated the impact of human reliability on operation of marine power plants. Chybowski and Matuszak (2010) explored the importance of reliable components in performance of marine technical systems. Stevens and Santoso (2013) investigated the reliability of a shipboard electrical power distribution system operated according to a breaker and a half topology. Hidalgo et al. (2013) explored the applications of Markov models in reliability evaluation of cargo carriers. Evangelos and Agapios (2013) assessed the availability of diesel generator system installed on a ship. Wu et al. (2013) developed a reliability model for marine power plant. The mean time between failures identified in different working conditions. Dash and Das (2014) performed availability evaluation of hydroelectric plant using Markovian approach. Dubey et al. (2015) analyzed a three-dimensional electrical power system. Kumar and Ram (2015) evaluated the performance of marine power plant having generator, main and distribution switchboard failures.Tsekouras and Kanellos (2016) performed reliability investigation of ship power system. Van et al. (2016) assessed the reliability of marine propulsion system using fault tree approach. Kumar and Saini (2018) suggested a mathematical model for fuzzy reliability investigation of marine power plant. Kazienko (2018) performed an analysis on the class survey methods and analyze impact on reliability of marine power plants. Gupta et al. (2020) investigated the availability of a generator of thermal power plant using Markovian approach and constant failure and repair rates. Gupta and Singh (2021) used Markov chain to analyze the reliability of power generating system.

    Many studies performed by researchers to optimize the performance of industrial systems by adopting various optimization techniques. Mirjalili (2016) proposed dragonfly algorithm for optimization of single objective optimization problems. Kaur and Singh (2016) used bat algorithm for scheduling the workflow in the cloud. Talafuse and Pohl (2016) explored the applications of bat algorithm in reliability allocation problems. Chakri et al. (2016) applied bat algorithm in structural reliability assessment. Ahmed et al. (2017) performed comparative analysis of genetic algorithms and whale optimization algorithms for fault identification in power systems. Yazdani et al. (2019) suggested a novel integrated method for reliability estimation based on support vector regression and variable neighborhood search technique. Lu and Ma (2018, 2021) proposed modified whale optimization algorithms for estimation of parameters of reliability growth models. Mirjalili et al. (2020) developed whale optimization algorithm and explored its applications in design photonic crystal fitters. Lodhi et al. (2021) used dragonfly algorithm for extracting the maximum power from a grid-interfaced PV system. Sharma (2021) developed an enhanced butterfly optimization for analysis of complex optimization problems. Poljak (2022) discussed configuration and configuration of marine power systems. Long et al. (2022) estimated the parameters of solar photovoltaic systems using hybrid seagull algorithm. Kumar et al. (2022a) proposed stochastic model for reliability enhancement of cooling tower using metaheuristic algorithms. Saini et al. (2022) used genetic algorithms and particle swarm optimization for availability optimization of condenser. Kumar et al. (2022b) proposed a computational system for performance optimization of e-waste management plant. It is revealed from the literature that performance optimization aspect of marine power plants needs to be explored. That's why in the present study an effort is made to optimize the availability of a marine power plant.

    By keeping in mind all above facts, an effort is made to derive and optimize the availability of a marine power plant having two generators, one switch board and distribution switchboards. For this purpose, a mathematical model is proposed used Markov birth death process by considering exponentially distributed failure and repair rates of all the subsystems. The availability expression is derived and optimized using metaheuristic algorithms namely dragonfly algorithm (DA), bat algorithm (BA) and whale optimization (WOA) in the same search space. It is revealed that whale optimization algorithm outperforms over dragonfly algorithm (DA), and bat algorithm (BA) in optimum availability prediction and parameter estimation. The numerical values of the availability and estimated parameters are appended as numerical results. The derived results can be utilized in development of maintenance strategies of marine power plants and to carry out design modifications.

    The whole manuscript is organized into six sections including the present introduction section. Section 2 devoted to the notations, assumptions, and system description while a stochastic model of marine power plant developed in section 3. Section 4 describe various optimization techniques employed for availability optimization. Results are shown in section 5 followed by concluding section 6.

    In present study, a mathematical model is developed for a marine power plant and its availability optimized using metaheuristic algorithms namely dragonfly algorithm (DA), bat algorithm (BA) and whale optimization (WOA) in the same search space. The marine power plant is configured with two generators, two main switchboards and one distribution switchboard. One of the generators is installed at stern while other is in the bow. The distribution switchboard gets power from main switchboards which are interconnected through cables. The generators transfer the power to the main switchboards. The configuration flow chart and state transition diagrams appended in Figures 1 and 2, respectively.

    Figure  1  Configuration flowchart of marine power plant
    Download: Full-Size Img
    Figure  2  State transition diagram of marine power plant
    Download: Full-Size Img

    The nomenclature in Table 1 is used to develop the transition diagram and mathematical model.

    Table  1  Notations of various states of marine power plant, failure, and repair rates
    Sr. No. Sub-systems Representation Failure rates Repair rates
    Operative Standby Fail Original Standby Original Standby
    1 Generator G Gs g λ1 λ1 μ1 μ1
    2 Main switchboard M M m λ2 λ2 μ2 μ2
    3 Distribution switchboard D ……… d λ3 λ3 μ3 μ3
    4 Common cause failure C.F. ------- λ4 μ4
    5 Pi (t) Probability that system remains at ith state at time 't'
    6 P'i (t) Derivative of probability that system remains at ith state at time 't'

    The following assumptions are made for the proposed system model of marine power plant for availability evaluation.

    • No simultaneous failures;

    • Exponentially distributed failure and repair rates;

    • Repairs and maintenances are perfect;

    • The marine power plant operates under reduced capacity after failure of one main switchboard;

    • Sufficient repair facility always remains available with marine power plant to rectify the failures.

    The set of Chapman-Kolmogorov differential equations (based on Figure 2) governs the stochastic model of marine power plant are described as follows (Appendix B):

    $$ \begin{aligned} & P_0(t+\Delta t)=\left(1-\lambda_1-2 \lambda_2-\lambda_3-\lambda_4\right) P_0(t) \Delta t \\ & \quad+\mu_1 P_1(t) \Delta t+\mu_2 P_2(t) \Delta t+\mu_3 P_4(t) \Delta t \\ & \quad+\mu_4 P_5(t) \Delta t \end{aligned} $$

    Taking limit Δt → 0, we get

    $$ \begin{gathered} \lim\limits_{\Delta t \rightarrow 0} \frac{P_0(t+\Delta t)-P_0(t)}{\Delta t}=\left(-\lambda_1-2 \lambda_2-\lambda_3-\lambda_4\right) P_0(t) \\ +\mu_1 P_1(t)+\mu_2 P_2(t)+\mu_3 P_4(t)+\mu_4 P_5(t) \end{gathered} $$
    $$ \begin{aligned} \Rightarrow(& \left.-\lambda_1-2 \lambda_2-\lambda_3-\lambda_4\right) P_0(t)+\mu_1 P_1(t)+\mu_2 P_2(t) \\ & +\mu_3 P_4(t)+\mu_4 P_5(t)=0 \end{aligned} $$

    Applying limit t → ∞, we get

    $$ \left(\lambda_1+2 \lambda_2+\lambda_3+\lambda_4\right) P_0=\mu_1 P_1+\mu_2 P_2+\mu_3 P_4+\mu_4 P_5 $$ (1)
    $$ \left(\mu_1+\lambda_1+2 \lambda_2+\lambda_3+\lambda_4\right) P_0=\lambda_4 P_0+\mu_1 P_8+\mu_2 P_3+\mu_3 P_6+\mu_4 P_7 $$ (2)
    $$ \begin{aligned} & \left(\mu_2+\lambda_1+\lambda_2+\lambda_3+\lambda_4\right) P_0= \\ & \quad 2 \lambda_2 P_0+\mu_1 P_3+\mu_2 P_{10}+\mu_3 P_9+\mu_4 P_{11} \end{aligned} $$ (3)
    $$ \begin{aligned} & \left(\mu_1+\mu_2+\lambda_1+\lambda_2+\lambda_3+\lambda_4\right) P_0= \\ & \quad \lambda_1 P_2+2 \lambda_2 P_1+\mu_1 P_{15}+\mu_2 P_{12}+\mu_3 P_{14}+\mu_4 P_{13} \end{aligned} $$ (4)
    $$ \mu_3 P_4=\lambda_3 P_0 $$ (5)
    $$ \mu_4 P_5=\lambda_4 P_0 $$ (6)
    $$ \mu_3 P_6=\lambda_3 P_1 $$ (7)
    $$ \mu_4 P_7=\lambda_4 P_1 $$ (8)
    $$ \mu_1 P_8=\lambda_1 P_1 $$ (9)
    $$ \mu_3 P_9=\lambda_3 P_2 $$ (10)
    $$ \mu_2 P_{10}=\lambda_2 P_2 $$ (11)
    $$ \mu_4 P_{11}=\lambda_4 P_2 $$ (12)
    $$ \mu_2 P_{12}=\lambda_2 P_3 $$ (13)
    $$ \mu_4 P_{13}=\lambda_4 P_3 $$ (14)
    $$ \mu_3 P_{14}=\lambda_3 P_3 $$ (15)
    $$ \mu_1 P_{15}=\lambda_1 P_3 $$ (16)

    Initial conditions: Pi= 0(t = 0) = 1 while all other states probability is zero.

    After solving equations (1)‒(16) along with initial conditions, we get

    $$ \begin{array}{lll} \boldsymbol{P}_4=\lambda_3 \cdot P_0 / \mu_3 & \boldsymbol{P}_{\mathbf{5}}=\lambda_4 \cdot P_0 / \mu_4 & \boldsymbol{P}_{\mathbf{6}}=\lambda_3 \cdot P_1 / \mu_3 \\ \boldsymbol{P}_{\mathbf{7}}=\lambda_4 \cdot P_1 / \mu_4 & \boldsymbol{P}_{\mathbf{8}}=\lambda_1 \cdot P_1 / \mu_1 & \boldsymbol{P}_{\mathbf{9}}=\lambda_3 \cdot P_2 / \mu_3 \\ \boldsymbol{P}_{10}=\lambda_2 \cdot P_2 / \mu_2 & \boldsymbol{P}_{\mathbf{1 1}}=\lambda_4 \cdot P_2 / \mu_4 & \boldsymbol{P}_{\mathbf{1 2}}=\lambda_2 \cdot P_3 / \mu_2 \\ \boldsymbol{P}_{13}=\lambda_4 \cdot P_3 / \mu_4 & \boldsymbol{P}_{\mathbf{1 4}}=\lambda_3 \cdot P_3 / \mu_3 & \boldsymbol{P}_{\mathbf{1 5}}=\lambda_1 \cdot P_3 / \mu_1 \end{array} $$
    $$ \begin{aligned} & \boldsymbol{P}_\mathit{\pmb{3}}=\left(\lambda_1 \cdot P_2+2 \lambda_2 \cdot P_1\right) /\left(\mu_1+\mu_2\right) \\ & \boldsymbol{P}_\mathit{\pmb{2}}=\left(\mu_1 \cdot P_3+2 \lambda_2 \cdot P_0\right) /\left(\mu_2+\lambda_1\right) \\ & \boldsymbol{P}_\mathit{\pmb{1}}=\left(\lambda_1 \cdot P_0+\mu_2 \cdot P_3\right) /\left(\mu_1+2 \lambda_2\right) \\ & P_o=\left(\mu_1 \cdot P_1+\mu_2 \cdot P_2\right) /\left(\lambda_1+2 \lambda_2\right) \end{aligned} $$

    After simplification above relations, P3 = 2λ1λ2P0/μ1μ2 L = P3/P0 = 2λ1λ2/μ1μ2 P2 = 2λ2P0/μ2 M = P2/P0 = 2λ2/μ2 P1 = λ1P0/μ1 N = P1/P0 = 2λ2/μ2 P0 = 1/[{1 + (λ3/μ3) + (λ4/μ4)}{1 + L + M + N }+{(λ1/μ1)}{ L + N }+ {(λ2/μ2)}{L + M}]

    By using above probabilities and normalization conditions, we get the expression for steady state availability of marine power plant as follows:

    $$ \text { Availability }(\text { Objective function })=P_0+P_1+P_2+P_3= \\ \begin{gathered} \{1+\boldsymbol{L}+\boldsymbol{M}+\boldsymbol{N}\}\left[\left\{1+\left(\lambda_3 / \mu_3\right)+\left(\lambda_4 / \mu_4\right)\right\}\{1+\boldsymbol{L}+\right. \\ \left.\boldsymbol{M}+\boldsymbol{N}\}+\left\{\left(\lambda_1 / \mu_1\right)\right\}\{\boldsymbol{L}+\boldsymbol{N}\}+\left\{\left(\lambda_2 / \mu_2\right)\right\}\{\boldsymbol{L}+\boldsymbol{M}\}\right] \end{gathered} $$ (17)

    Metaheuristic algorithms are extensively utilized for predicting the performance of industrial systems as well as their parameter estimation. In this study, availability optimization of marine power plant is performed by using metaheuristic algorithms namely whale optimization algorithm (WOA), bat algorithm (BA) and dragonfly algorithm (DA) are used. Though, several algorithms exist in literature for optimization of performance of industrial systems and power plants, but metaheuristic algorithms proved more efficient as these algorithms not influenced by size and non-linearity of problem. As well as these algorithms work on the process of natural selection and reproduction theory. The simulation results are derived in the experimental setup on Windows 10 64-bit operating system having 8 GB of RAM and Intel Core i5 8th generation CPU using R and R-Studio.

    Mirjalili (2016) proposed an algorithm based on the community conduct of humpback whales. It simulated the public behavior of these animals. It is based on the bubble-net hunting strategy. The implementation procedure of the whale optimization algorithm included initialization of first random population of whales, evaluation of fitness of whales and identification of best position of whale. The next stage is updating the position of whale using appropriate strategy and position of best whale. If any new whale is identified having best position, then update the best position. Finally check the execution conditions if condition met best position is best solution otherwise go back and update the best position.

    The following steps followed by algorithm to optimize the system availability:

    • Initialization;

    • Position upgradation;

    • Check termination criteria.

    Yang (2011) proposed this algorithm by motivating the echolocation of bats. The aspirant solution itself represented by bat in this algorithm. Bats movement based on the flying speed, pulse rate, loudness and pulse frequency. The optimal solution is achieved by following steps:

    • Initialization of random population of bats;

    • Every bat moves forward on basis of velocity and pulse frequency;

    • Randomly move some bats (candidate solutions) near the global best;

    • Global best is replaced by candidate solution if it achieved better fitness than global;

    • Increase pulse rate and decrease loudness;

    • Check stopping criteria either maximum iteration or sufficient fitness achieved exit the solution process otherwise move every bat forward.

    Mirjalili (2016) coined the dragonfly algorithm after getting inspiration from static and dynamic behavior of dragonflies. This algorithm works on the exploration and exploitation are designed by investigating the dragonfly's public behavior including navigation, searching and escape from enemies. Following methodology is utilized for optimization the solution in DA:

    • Initialize first random population of dragonflies, determine their fitness values and identify best and worst dragonfly by utilizing the information of food source and enemy position respectively.

    • Evaluate the behavior weight. Behavior weight influences the fly direction and distance. It includes separation, alignment, cohesion, attracted toward food sources and distraction from enemy.

    • Renew the location of each dragonfly by utilizing behavior weight and velocity.

    • Evaluate the revised fitness value, updated food and enemy position.

    • Check stopping criteria if condition satisfied stop and claim food position as global solution otherwise recalculate behavior weight.

    In this section, the numerical results of marine power plant's availability are derived using metaheuristic algorithms namely whale optimization algorithm (WOA), bat algorithm (BA) and dragonfly algorithm (DA). The global value of marine power plant is discovered in the search space given in Table 2.

    Table  2  Search space of marine power plant
    Subsystem Failure rate Repair rate
    Generator λ1 = [ 0.027, 0.913] μ1 = [ 0.42, 1.08 ]
    Main Switchboard λ2 = [ 0.039, 0.792 ] μ2 = [ 0.69, 1.99 ]
    Distribution switchboard λ3 = [ 0.041, 0.926 ] μ3 = [ 0.59, 2.02 ]
    Catastrophic failure λ4 = [ 0.021, 0.891] μ4 = [ 0.76, 1.49 ]

    The availability of marine power plant at various iteration sizes having different populations is given in Table 3. From Table 3, it is observed that maximum availability 0.997 797 1 of marine power plant is achieved after 200 iterations on population size 2 100 While in bat algorithm maximum availability is 0.990 244 3 that is achieved initially at population size 600 after 50 iterations. The Whale optimization attained the maximum value only after 50 iterations on population size 600. Table 4 depicted that elapsed time of the whale optimization algorithm is minimum. The estimated value of the failure and repair rate parameters (decision variables) are derived and shown in Table 5 as well as in supplementary Tables A1-A5 given in Appendix A. The comparative analysis of all algorithms' estimated values is shown in Table 6 after 140 iterations and population size 600.

    Table  3  Availability of marine power plant
    Meta heuristic techniques Population/Iteration 600 900 1 200 1 500 1 800 2 100
    DA 50 0.995 031 3 0.870 081 6 0.997 797 1 0.927 049 0.983 157 0.995 916 9
    80 0.799 655 3 0.997 761 7 0.894 959 6 0.997 797 1 0.942 621 7 0.990 836 1
    110 0.995 259 0.997 797 1 0.991 239 8 0.978 564 3 0.996 867 1 0.997 797 1
    140 0.997 732 1 0.959 658 5 0.951 281 6 0.960 795 5 0.701 411 4 0.997 712 9
    170 0.992 534 9 0.996 677 4 0.914 495 0.996 122 9 0.997 797 1 0.997 754 6
    200 0.995 830 5 0.997 796 5 0.997 795 2 0.997 601 2 0.880 245 8 0.997 797 1
    BA 50 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    80 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    110 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    140 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    170 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    200 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    WOA 50 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    80 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    110 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    140 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    170 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    200 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    Table  4  Elapsed time of metaheuristic techniques in availability optimization of marine power plant
    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA 50 8.19 9.98 8.92 8.18 17.89 8.99
    80 8.61 11.13 10.11 13.28 14.29 20.18
    110 13.83 19.78 15.75 14.42 14.49 12.98
    140 13.45 12.81 13.36 13.83 14.04 17.15
    170 8.53 8.61 8.54 7.97 8.3 8.5
    200 7.85 8.65 8.5 8.88 8.47 11.27
    BA 50 0.53 0.49 1.36 1.28 1.28 1.2
    80 0.48 0.55 0.51 0.49 0.48 1.14
    110 0.48 1.12 1.11 1.01 0.5 1.34
    140 0.47 1.28 1.2 1.13 1.22 1.28
    170 0.47 0.49 0.5 1.17 0.5 1.22
    200 0.47 1.24 1.16 0.49 0.5 0.53
    WOA 50 1.91 0.56 0.53 1.52 1.29 1.27
    80 0.76 1.19 0.53 1.53 1.36 1.47
    110 0.55 0.56 1.39 1.32 1.57 1.42
    140 0.53 1.28 1.36 1.4 0.56 1.44
    170 0.53 0.56 0.57 0.54 0.56 0.53
    200 0.86 0.53 0.55 0.55 0.55 1.89
    Table  5  Decision variables estimated value at different iterations with population size = 50
    Meta heuristic techniques Iteration 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.002 7 0.522 167 7 0.002 7 0.002 7
    λ2 0.003 9 1.051 058 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.025 317 16 0.002 1
    μ1 2.08 2.08 2.08 1.679 649 1.614 23 0.42
    μ2 0.69 2.99 2.99 2.99 1.875 106 2.99
    μ3 1.327 625 3.02 3.02 2.167 779 0.59 3.02
    μ4 1.145 487 0.76 2.49 0.76 2.49 0.780 827 5
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ 3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49
    Table  6  Comparative Analysis of availability of marine power plant at 600 iterations and population size 140
    Algorithm Optimum variables Optimum availability Elapsed time
    λ1 λ2 λ3 λ4 μ1 μ2 μ3 μ4
    DA 0.002 7 0.003 9 0.004 1 0.002 1 2.08 0.69 3.02 2.49 0.997 732 1 13.45
    BA 0.002 7 0.003 9 0.004 1 0.002 1 0.42 0.69 0.59 0.76 0.990 244 3 0.47
    WOA 0.002 7 0.003 9 0.004 1 0.002 1 2.08 2.99 3.02 2.49 0.997 797 1 0.53

    In present investigation, a stochastic model developed to optimize the performance of the marine power plant. As availability is a key system effectiveness measure so an effort is made to predict the availability of marine power plant using metaheuristic algorithms. The estimated values of parameters are derived for identification of most sensitive subsystem. From the above discussed numerical results, it is revealed that distribution switchboard is the most sensitive subsystem in marine power plant and special maintenance strategies are required for its proper functionality. The optimum availability is predicted by whale optimization algorithm at minimum population size after least iterations in minimum elapsed time. So, the system designers can utilize the information of failure and repair rates in proposing the maintenance strategies. It is very helpful for the system designers of marine power plants. Further the study can be extended to identify the effect of simultaneous failures, warm redundancy and arbitrary distribution of failure and repair rates of subsystems on system performance. The proposed methodology can be applied in other kind of power plants as well as process industries.

    A1  Decision variables estimated value at different iterations with population size = 80
    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.558 400 3 0.079 440 28
    λ2 0.003 9 0.003 9 0.783 953 9 0.003 9 0.003 9 0.003 9
    λ3 0.753 903 8 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 1.273 85 0.478 371 2 0.42 2.08 2.08 2.08
    μ2 0.825 976 1 2.99 2.585 056 2.99 2.039 729 2.99
    μ3 3.02 3.02 2.704 694 3.02 2.025 484 2 0.59
    μ4 2.49 2.49 2.49 2.49 1.150 296 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49
    A2  Decision variables estimated value at different iterations with population size = 110
    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.000 27 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.323 371 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 1.984 255 2.08 0.42 2.08 1.838 82 2.08
    μ2 0.717 245 2.99 1.715 347 2.99 2.594 337 2.99
    μ3 1.064 207 3.02 0.59 2.360 61 1.850 885 3.02
    μ4 2.49 2.49 1.152 107 2.49 2.285 843 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49
    A3  Decision variables estimated value at different iterations with population size = 140
    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.404 303 1 0.411 3904 0.611 685 1 0.002 7
    λ2 0.003 9 0.470 897 0.165 751 15 0.003 953 422 0.008 932 097 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 166 693 0.0041 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 147 224 0.648 979 1 0.002 1
    μ1 2.08 1.175 834 2.08 2.08 1.248 821 0.836 765 9
    μ2 0.69 2.99 2.99 2.99 2.99 0.69
    μ3 3.02 1.251 324 0.738 222 9 0.59 1.349 64 3.02
    μ4 2.49 2.49 1.907 282 2.49 2.49 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49
    A4  Decision variables estimated value at different iterations with population size = 170
    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.023 881 36 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.787 175 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 1.613 278 2.08 0.560 086 2.08 0.990 710 6
    μ2 2.99 1.202 833 2.99 2.99 2.99 0.980 460 9
    μ3 0.627 926 1 3.02 2.355 051 1.359 365 3.02 3.02
    μ4 2.49 1.078 574 2.49 2.49 2.49 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ 4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ 4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49
    A5  Decision variables estimated value at different iterations with population size = 200
    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.054 855 27 0.003 9 0.003 9 0.003 9 0.983 713 7 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 2.08 1.541 957 2.08 0.42 2.08
    μ2 1.900 512 2.798 75 2.99 0.69 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 1.017 272 3.02
    μ4 2.002 375 2.49 2.49 2.154 07 2.159 438 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49

    As per the assumption that failure and repair rates of marine power plants are exponentially distributed. So, by using Markov birth death process the set of Chapman-Kolmogorov differential difference equations are derived as follows:

    Suppose at time t, the system is present in state Si, then probability of system remain in that state is described as: Probability that system is in state Si at time t and remain there during time interval (t, t + Δt) and/or if system is at any other state at time t, then it should come back at state Si in time interval (t, t + Δt) subject to transition between states and Δt → 0.

    Applying above definition, the probability that system remain at state S0 in time (t, t + Δt) is given by:

    $$ \begin{aligned} & P_0(t+\Delta t)=\left(1-\lambda_1-2 \lambda_2-\lambda_3-\lambda_4\right) P_0(t) \Delta t \\ & \quad+\mu_1 P_1(t) \Delta t+\mu_2 P_2(t) \Delta t+\mu_3 P_4(t) \Delta t+\mu_4 P_5(t) \Delta t \end{aligned} $$

    Taking limit Δt → 0, we get

    $$ \begin{aligned} & \lim\limits_{\Delta t \rightarrow 0} \frac{P_0(t+\Delta t)-P_0(t)}{\Delta t}=\left(-\lambda_1-2 \lambda_2-\lambda_3-\lambda_4\right) P_0(t) \\ & \quad+\mu_1 P_1(t)+\mu_2 P_2(t)+\mu_3 P_4(t)+\mu_4 P_5(t) \\ & \Rightarrow\left(-\lambda_1-2 \lambda_2-\lambda_3-\lambda_4\right) P_0(t)+\mu_1 P_1(t)+\mu_2 P_2(t) \\ & \quad+\mu_3 P_4(t)+\mu_4 P_5(t)=0 \end{aligned} $$

    Applying limit t → ∞, we get

    $$ \left(\lambda_1+2 \lambda_2+\lambda_3+\lambda_4\right) P_0=\mu_1 P_1+\mu_2 P_2+\mu_3 P_4+\mu_4 P_5 $$
    Competing interest
    The authors have no competing interests to declare that are relevant to the content of this article.
  • Figure  1   Configuration flowchart of marine power plant

    Download: Full-Size Img

    Figure  2   State transition diagram of marine power plant

    Download: Full-Size Img

    Table  1   Notations of various states of marine power plant, failure, and repair rates

    Sr. No. Sub-systems Representation Failure rates Repair rates
    Operative Standby Fail Original Standby Original Standby
    1 Generator G Gs g λ1 λ1 μ1 μ1
    2 Main switchboard M M m λ2 λ2 μ2 μ2
    3 Distribution switchboard D ……… d λ3 λ3 μ3 μ3
    4 Common cause failure C.F. ------- λ4 μ4
    5 Pi (t) Probability that system remains at ith state at time 't'
    6 P'i (t) Derivative of probability that system remains at ith state at time 't'

    Table  2   Search space of marine power plant

    Subsystem Failure rate Repair rate
    Generator λ1 = [ 0.027, 0.913] μ1 = [ 0.42, 1.08 ]
    Main Switchboard λ2 = [ 0.039, 0.792 ] μ2 = [ 0.69, 1.99 ]
    Distribution switchboard λ3 = [ 0.041, 0.926 ] μ3 = [ 0.59, 2.02 ]
    Catastrophic failure λ4 = [ 0.021, 0.891] μ4 = [ 0.76, 1.49 ]

    Table  3   Availability of marine power plant

    Meta heuristic techniques Population/Iteration 600 900 1 200 1 500 1 800 2 100
    DA 50 0.995 031 3 0.870 081 6 0.997 797 1 0.927 049 0.983 157 0.995 916 9
    80 0.799 655 3 0.997 761 7 0.894 959 6 0.997 797 1 0.942 621 7 0.990 836 1
    110 0.995 259 0.997 797 1 0.991 239 8 0.978 564 3 0.996 867 1 0.997 797 1
    140 0.997 732 1 0.959 658 5 0.951 281 6 0.960 795 5 0.701 411 4 0.997 712 9
    170 0.992 534 9 0.996 677 4 0.914 495 0.996 122 9 0.997 797 1 0.997 754 6
    200 0.995 830 5 0.997 796 5 0.997 795 2 0.997 601 2 0.880 245 8 0.997 797 1
    BA 50 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    80 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    110 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    140 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    170 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    200 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3 0.990 244 3
    WOA 50 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    80 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    110 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    140 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    170 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1
    200 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1 0.997 797 1

    Table  4   Elapsed time of metaheuristic techniques in availability optimization of marine power plant

    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA 50 8.19 9.98 8.92 8.18 17.89 8.99
    80 8.61 11.13 10.11 13.28 14.29 20.18
    110 13.83 19.78 15.75 14.42 14.49 12.98
    140 13.45 12.81 13.36 13.83 14.04 17.15
    170 8.53 8.61 8.54 7.97 8.3 8.5
    200 7.85 8.65 8.5 8.88 8.47 11.27
    BA 50 0.53 0.49 1.36 1.28 1.28 1.2
    80 0.48 0.55 0.51 0.49 0.48 1.14
    110 0.48 1.12 1.11 1.01 0.5 1.34
    140 0.47 1.28 1.2 1.13 1.22 1.28
    170 0.47 0.49 0.5 1.17 0.5 1.22
    200 0.47 1.24 1.16 0.49 0.5 0.53
    WOA 50 1.91 0.56 0.53 1.52 1.29 1.27
    80 0.76 1.19 0.53 1.53 1.36 1.47
    110 0.55 0.56 1.39 1.32 1.57 1.42
    140 0.53 1.28 1.36 1.4 0.56 1.44
    170 0.53 0.56 0.57 0.54 0.56 0.53
    200 0.86 0.53 0.55 0.55 0.55 1.89

    Table  5   Decision variables estimated value at different iterations with population size = 50

    Meta heuristic techniques Iteration 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.002 7 0.522 167 7 0.002 7 0.002 7
    λ2 0.003 9 1.051 058 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.025 317 16 0.002 1
    μ1 2.08 2.08 2.08 1.679 649 1.614 23 0.42
    μ2 0.69 2.99 2.99 2.99 1.875 106 2.99
    μ3 1.327 625 3.02 3.02 2.167 779 0.59 3.02
    μ4 1.145 487 0.76 2.49 0.76 2.49 0.780 827 5
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ 3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49

    Table  6   Comparative Analysis of availability of marine power plant at 600 iterations and population size 140

    Algorithm Optimum variables Optimum availability Elapsed time
    λ1 λ2 λ3 λ4 μ1 μ2 μ3 μ4
    DA 0.002 7 0.003 9 0.004 1 0.002 1 2.08 0.69 3.02 2.49 0.997 732 1 13.45
    BA 0.002 7 0.003 9 0.004 1 0.002 1 0.42 0.69 0.59 0.76 0.990 244 3 0.47
    WOA 0.002 7 0.003 9 0.004 1 0.002 1 2.08 2.99 3.02 2.49 0.997 797 1 0.53

    A1   Decision variables estimated value at different iterations with population size = 80

    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.558 400 3 0.079 440 28
    λ2 0.003 9 0.003 9 0.783 953 9 0.003 9 0.003 9 0.003 9
    λ3 0.753 903 8 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 1.273 85 0.478 371 2 0.42 2.08 2.08 2.08
    μ2 0.825 976 1 2.99 2.585 056 2.99 2.039 729 2.99
    μ3 3.02 3.02 2.704 694 3.02 2.025 484 2 0.59
    μ4 2.49 2.49 2.49 2.49 1.150 296 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49

    A2   Decision variables estimated value at different iterations with population size = 110

    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.000 27 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.323 371 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 1.984 255 2.08 0.42 2.08 1.838 82 2.08
    μ2 0.717 245 2.99 1.715 347 2.99 2.594 337 2.99
    μ3 1.064 207 3.02 0.59 2.360 61 1.850 885 3.02
    μ4 2.49 2.49 1.152 107 2.49 2.285 843 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49

    A3   Decision variables estimated value at different iterations with population size = 140

    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.404 303 1 0.411 3904 0.611 685 1 0.002 7
    λ2 0.003 9 0.470 897 0.165 751 15 0.003 953 422 0.008 932 097 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 166 693 0.0041 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 147 224 0.648 979 1 0.002 1
    μ1 2.08 1.175 834 2.08 2.08 1.248 821 0.836 765 9
    μ2 0.69 2.99 2.99 2.99 2.99 0.69
    μ3 3.02 1.251 324 0.738 222 9 0.59 1.349 64 3.02
    μ4 2.49 2.49 1.907 282 2.49 2.49 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49

    A4   Decision variables estimated value at different iterations with population size = 170

    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.023 881 36 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.787 175 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 1.613 278 2.08 0.560 086 2.08 0.990 710 6
    μ2 2.99 1.202 833 2.99 2.99 2.99 0.980 460 9
    μ3 0.627 926 1 3.02 2.355 051 1.359 365 3.02 3.02
    μ4 2.49 1.078 574 2.49 2.49 2.49 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ 4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ 4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49

    A5   Decision variables estimated value at different iterations with population size = 200

    Meta heuristic techniques Iteration/Population 600 900 1 200 1 500 1 800 2 100
    DA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.054 855 27 0.003 9 0.003 9 0.003 9 0.983 713 7 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 2.08 1.541 957 2.08 0.42 2.08
    μ2 1.900 512 2.798 75 2.99 0.69 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 1.017 272 3.02
    μ4 2.002 375 2.49 2.49 2.154 07 2.159 438 2.49
    BA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 0.42 0.42 0.42 0.42 0.42 0.42
    μ2 0.69 0.69 0.69 0.69 0.69 0.69
    μ3 0.59 0.59 0.59 0.59 0.59 0.59
    μ4 0.76 0.76 0.76 0.76 0.76 0.76
    WOA λ1 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7 0.002 7
    λ2 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9 0.003 9
    λ3 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1
    λ4 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1
    μ1 2.08 2.08 2.08 2.08 2.08 2.08
    μ2 2.99 2.99 2.99 2.99 2.99 2.99
    μ3 3.02 3.02 3.02 3.02 3.02 3.02
    μ4 2.49 2.49 2.49 2.49 2.49 2.49
  • Ahmed AS, Attia MA, Hamed NM, Abdelaziz AY (2017) Comparison between genetic algorithm and whale optimization algorithm in fault location estimation in power systems. In IEEE 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 631-637. https://doi.org/10.1109/MEPCON.2017.8301247
    Chakri A, Khelif R, Benouaret M (2016) Improved bat algorithm for structural reliability assessment: application and challenges. Multidiscipline Modeling in Materials and Structures. 12(6): 218-253. https://doi.org/10.1108/MMMS-07-2015-0035
    Chybowski L, Matuszak Z (2009) Remarks on human reliability with reference to marine power plant operation. Zeszyty Naukowe/Akademia Morska w Szczecinie, 19 (91): 16-23
    Chybowski L, Matuszak Z (2010) Reliability importance analysis of marine technical systems elements. Autobusy: technika, eksploatacja, systemy transportowe, 11(6): 1-11
    Dash S, Das D (2014) Availability assessment of generating units of Balimela hydroelectric power station (510 MW) -A Markovian Approach. American Journal of Engineering Research (AJER), 3(2): 44-49
    Dubey A, Santoso S, Arapostathis A (2015) Reliability analysis of three-dimensional shipboard electrical power distribution systems. In 2015 IEEE Electric Ship Technologies Symposium (ESTS), 93-98. https://doi.org/10.1109/ESTS.2015.7157867
    Evangelos M, Agapios P (2013) Availability assessment of diesel generator system of a ship: A case study. International Journal of Performability Engineering, 9(5): 561
    Gupta N, Kumar A, Saini M (2021) Reliability and maintainability investigation of generator in steam turbine power plant using RAMD analysis. In Journal of Physics: Conference Series, 1714, (1): 012009. IOP Publishing. https://doi.org/10.1088/1742-6596/1714/1/012009
    Gupta N, Saini M, Kumar A (2020) Operational availability analysis of generators in steam turbine power plants. SN Applied Sciences, 2(4): 1-11. https://doi.org/10.1007/s42452-020-2520-y
    Gupta S, Singh K (2021) Analysis of a Markov chain system model of a power generating system composed of generating units and transformer units. Life Cycle Reliability and Safety Engineering, 10(3): 273-283. https://doi.org/10.1007/s41872-021-00164-1
    Hidalgo EMP, Silva DWR, de Souza GFM (2013) Application of Markov chain to determine the electric energy supply system reliability for the cargo control system of LNG carriers. In International Conference on Offshore Mechanics and Arctic Engineering 55331, V02BT02A039. American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2013-11388
    Kaur N, Singh S (2016) A budget-constrained time and reliability optimization bat algorithm for scheduling workflow applications in clouds. Procedia Computer Science, 98: 199-204. https://doi.org/10.1016/j.procs.2016.09.032
    Kazienko D (2018) The analysis of class survey methods and their impact on the reliability of marine power plants. Zeszyty Naukowe Akademii Morskiej w Szczecinie, 55(127): 34-43
    Kumar A, Ram M (2015) Performance of marine power plant given generator, main and distribution switchboard failures. Journal of Marine Science and Application, 14(4): 450-458. https://doi.org/10.1007/s11804-015-1335-5
    Kumar A, Saini M (2018) Fuzzy availability analysis of a marine power plant. Materials Today: Proceedings, 5(11): 25195-25202. https://doi.org/10.1016/j.matpr.2018.10.321
    Kumar A, Saini M, Saini DK, Badiwal N (2021) Cyber physical systems-reliability modelling: critical perspective and its impact. International Journal of System Assurance Engineering and Management, 12(6): 1334-1347. https://doi.org/10.1007/s13198-021-01305-6
    Kumar A, Saini M, Gupta N, Sinwar D, Singh D, Kaur M, Lee HN (2022a) Efficient stochastic model for operational availability optimization of cooling tower using metaheuristic algorithms. IEEE Access, 10: 24659-24677. https://doi.org/10.1109/ACCESS.2022.3143541
    Kumar A, Saini M, Patil RB, Al-Dahidi S, Mellal MA (2022c) Reliability, availability, maintainability, and dependability analysis of tube-wells integrated with underground pipelines in agricultural fields for irrigation. Advances in Mechanical Engineering, 14(8): 16878132221115931. https://doi.org/10.1177/16878132221115931
    Kumar A, Yadav SP, Kumar S (2006). Fuzzy reliability of a marine power plant using interval valued vague sets. International Journal of Applied Science and Engineering, 4(1): 71-82
    Kumar N, Sinwar D, Saini M, Saini DK, Kumar A, Kaur M, Lee HN (2022b) Efficient computational stochastic framework for performance optimization of E-waste management plant. Journal of King Saud University-Computer and Information Sciences, 34(8): 4712-4728. https://doi.org/10.1016/j.jksuci.2022.05.018
    Kumar P, Kumar A (2021) Tripod turnstile machines performance analysis for the system safety and security without considering simultaneous failures using reliability approach. International Journal of Mathematical, Engineering and Management Sciences, 6(1): 383-395. https://doi.org/10.33889/IJMEMS.2021.6.1.024
    Lodhi E, Wang FY, Xiong G, Mallah GA, Javed MY, Tamir TS, Gao DW (2021) A dragonfly optimization algorithm for extracting maximum power of grid-interfaced PV systems. Sustainability, 13(19): 10778. https://doi.org/10.3390/su131910778
    Long W, Jiao J, Liang X, Xu M, Tang M, Cai S (2022) Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm. Energy, 249: 123760. https://doi.org/10.1016/j.energy.2022.123760
    Lu K, Ma Z (2018) Parameter estimation of software reliability growth models by a modified whale optimization algorithm. In 2018 IEEE 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), 268-271. https://doi.org/10.1109/DCABES.2018.00076
    Lu K, Ma Z (2021) A modified whale optimization algorithm for parameter estimation of software reliability growth models. Journal of Algorithms & Computational Technology, 15: 17483026211034442. https://doi.org/10.1177/17483026211034442
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural computing and applications, 27(4): 1053-1073. https://doi.org/10.1007/s00521-015-1920-1
    Mirjalili S, Mirjalili SM, Saremi S, Mirjalili S (2020) Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters. Nature-Inspired Optimizers, 219-238. https://doi.org/10.1007/978-3-030-12127-3_13
    Poljak I (2022) Marine Power Systems. Journal of Marine Science and Engineering, 10(2): 195. https://doi.org/10.3390/jmse10020195
    Saini M, Raghav YS, Kumar A, Chandnani D (2021) Availability and performance optimization of urea decomposition system using genetic algorithm and particle swarm optimization. Life Cycle Reliability and Safety Engineering, 10(3): 285-293. https://doi.org/10.1007/s41872-021-00167-y
    Saini M, Gupta N, Shankar VG, Kumar A (2022) Stochastic modeling and availability optimization of condenser used in steam turbine power plants using GA and PSO. Quality and Reliability Engineering International, 38(5): 2670-2690. https://doi.org/10.1002/qre.3097
    Sharma TK (2021) Enhanced butterfly optimization algorithm for reliability optimization problems. Journal of Ambient Intelligence and Humanized Computing, 12(7): 7595-7619. https://doi.org/10.1007/s12652-020-02481-2
    Stevens B, Santoso S (2013) Reliability analysis of a shipboard electrical power distribution system based on breaker-and-a-half topology. In 2013 IEEE Electric Ship Technologies Symposium (ESTS), 387-393. https://doi.org/10.1109/ESTS.2013.6523765
    Talafuse TP, Pohl EA (2016) A bat algorithm for the redundancy allocation problem. Engineering Optimization, 48(5): 900-910. https://doi.org/10.1080/0305215X.2015.1076402
    Tsekouras GJ, Kanellos FD (2016) Ship to shore connection—Reliability analysis of ship power system. In EEE 2016 XXⅡ International Conference on Electrical Machines (ICEM), 2955-2961. https://doi.org/10.1109/ICELMACH.2016.7732944
    Van Ta T, Vu NH, Triet MA, Thien DM, Cang VT (2016) Assessment of marine propulsion system reliability based on fault tree analysis. International Journal of Transportation Engineering and Technology, 2(4): 55-61
    Wolfram J (2006) On assessing the reliability and availability of marine energy converters: the problems of a new technology. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 220(1): 55-68. https://doi.org/10.1243/1748006XJRR7
    Wu ZL, Yao YB, Wang D (2013) The reliability modeling of marine power station. In Applied Mechanics and Materials 427: 404-407. Trans Tech Publications Ltd. https://doi.org/10.2991/amee-17.2017.37
    Yazdani M, Babagolzadeh M, Kazemitash N, Saberi M (2019) Reliability estimation using an integrated support vector regression–variable neighborhood search model. Journal of Industrial Information Integration, 15: 103-110. https://doi.org/10.1016/j.jii.2019.03.001
WeChat click to enlarge
Figures(2)  /  Tables(11)
Publishing history
  • Received:  01 December 2022
  • Accepted:  16 April 2023

目录

    /

    Return
    Return