2. 江苏自动化研究所,江苏 连云港 222006;
3. 清华大学 精密仪器系,北京 100084;
4. 中国航天科工集团 三院三十五所,北京 102401
2. Jiangsu Automation Research Institute, Lianyungang 222006, China;
3. Tsinghua University, Department of Precision Instrument, Beijing 100084, China;
4. The 35th Institute of 3rd Academy, CASIC, Beijing 102401, China
近年来,无人艇系统逐渐成熟,并凭借其优势广泛应用于军事与民用领域[1]。相较于单无人艇,无人艇集群具有更强的感知和执行能力,能够提高性能、鲁棒性及拓展性。在多艇协同控制中,编队问题是目前重要的研究领域,拥有丰富的研究成果。而无人艇集群常面对复杂环境和任务,其通信拓扑会发生改变,这给编队控制带来了严峻挑战。
在无人艇集群的通讯拓扑发生改变时,为确保信息传输的安全性,切换控制[2]至关重要。OLFATI等[3]分析了固定拓扑的有向网络、切换拓扑的有向网络以及具有通信时滞的有向网络下一致性问题。Yu等[4]针对无人机集群,通过构建分布式通信机制,设计了一种自适应编队控制策略。
无人艇系统通常设置采样间隔来更新状态,较高的采样频率会造成资源浪费,故引入事件触发机制,当指定状态超过一定限度,则进行数据的传输与更新。同时,需避免芝诺行为的发生。黄兵等[5]利用神经网络和事件触发来补偿不确定性和扰动。而静态触发机制虽能够降低通信成本,但随着时间推移,阈值减小,事件会被频繁触发。张磊等[6]结合变结构与自适应控制,提出一种动态事件触发机制,有效规避Zeno现象。Chen等[7]提出了一种混合事件触发来解决有限通信范围系统的一致性问题。
外界干扰与未建模动态广泛存在于各类系统中,常对其产生影响,故干扰处理也是控制问题中一大重点。Zhang等[8]提出强化学习策略,使用逼近器估计未知动力学,在预设时间内收敛到期望精度。姜朝宇等[9]将干扰统一,设计有限时间扰动观测器在线估计,通过构造虚拟控制律实现半全局一致有界。
鉴于以上分析,本文设计一种切换律用于切换拓扑。同时,提出一种动态事件触发机制以减少通信压力,并使用扰动观测器进行干扰的观测。
1 问题描述 1.1 图论知识本文利用无向图描述通信拓扑连通性,可表示为
当编队结构改变,则无人艇通信拓扑将重置。定义切换信号
定理1 集群实现编队一致性需要满足:
$ \mathop {\lim }\limits_{t \to \infty } \tilde \chi _i^\alpha (t) = \mathop {\lim }\limits_{t \to \infty } \left({\chi _i}(t) - h_i^\alpha (t) - {\chi _l}(t)\right) = 0。$ | (1) |
定理2 假设存在正常数
第
$ \left\{ {\begin{array}{l} {{{\dot \eta }_i} = R({\psi _i}){v_i}},\\ {{M_i}{{\dot v}_i} + {C_i}({v_i}){v_i} + {D_i}({v_i}){v_i} = {\tau _i} + {d_i}} 。\end{array}} \right. $ | (2) |
式中:
定义
$ \left\{ {\begin{array}{*{20}{l}} {{{\dot \eta }_i} = {\xi _i},} \\ {{{\dot \xi }_i} = {u_i} + {C_{i'}}({\eta _i},{{\dot \eta }_i}){\xi _i} + {D_{i'}}({\eta _i},{{\dot \eta }_i}){\xi _i} + {\delta _i}} 。\end{array}} \right. $ | (3) |
式中:
令
$ {\dot \chi _i}(t) = A{\chi _i}(t) + B[{u_i}(t) + {w_i}(t)]。$ | (4) |
式中:
定义
$ {\left(\eta _i^d(t)\right)^\alpha } = h_{\eta i}^\alpha (t) + {\eta _l}(t)。$ | (5) |
编队误差
$ \dot \tilde \chi _i^\alpha = A\tilde \chi _i^\alpha (t) + B\left[u_i^\alpha (t) + {w^\alpha }(t) - {\left(\dot \xi _i^d(t)\right)^\alpha }\right]。$ | (6) |
认定无人艇中的干扰
$ \dot w_i^\alpha (t) = {\boldsymbol{P}}_i^\alpha w_i^\alpha (t) 。$ | (7) |
式中:
构建一种局部观测器来估计未知干扰
$ \begin{split}{\dot{\hat{w}}}_{i}^{\alpha }(t)=&{P}^{\alpha }{\hat{w}}_{i}^{\alpha }(t)+{{\boldsymbol{Q}}}_{i}^{\alpha }{\tilde{\chi }}_{i}^{\alpha }(t)- \\ &{c}_{i}^{\alpha }{\displaystyle {\sum }_{i=1}^{{N}^{\alpha }}{a}_{ij}^{\alpha }\left[{\hat{w}}_{i}^{\alpha }(t)-{\hat{w}}_{j}^{\alpha }(t)\right]} \end{split} 。$ | (8) |
式中:
定义扰动误差为:
$ e_{wi}^\alpha (t) = \hat w_i^\alpha (t) - w_i^\alpha (t) 。$ | (9) |
式中:
对上式求导并调用式(7)可得:
$ \begin{split}{\dot{e}}_{wi}^{\alpha }(t)=&{P}^{\alpha }{e}_{wi}^{\alpha }(t)+{{\boldsymbol{Q}}}_{i}^{\alpha }{\tilde{\chi }}_{i}^{\alpha }(t)-\\ &{c}_{i}^{\alpha }{\displaystyle {\sum }_{j=1}^{{N}^{\alpha }}{a}_{ij}^{\alpha }\left[{\widehat{w}}_{i}^{\alpha }(t)-{\widehat{w}}_{j}^{\alpha }(t)\right]}。\end{split} $ | (10) |
式中:
局部控制器为编队子控制器
$ \begin{array}{*{20}{l}} {u_i^\alpha (t) = u_{ai}^\alpha (t) + u_{bi}^\alpha (t)} ,\end{array} $ | (11) |
$ u_{ai}^\alpha (t) = - S_1^\alpha a_{il}^\alpha \tilde \chi _i^\alpha (t) - S_2^\alpha \sum\nolimits_{j = 1}^{{N^\alpha }} {a_{ij}^\alpha } \left[\tilde \chi _i^\alpha (t) - \tilde \chi _j^\alpha (t)\right],$ | (12) |
$ u_{bi}^\alpha (t) = - \hat w_i^\alpha (t) + {(\dot \xi _i^d(t))^\alpha }。$ | (13) |
设计动态事件触发机制为:
$ {[e_{\chi i}^\alpha (t)]^{\text{T}}}{\boldsymbol{\Phi}} _i^\alpha e_{\chi i}^\alpha (t) \leqslant \rho _i^\alpha (t){\left[\tilde \chi _i^\alpha (t)\right]^{\text{T}}}{\boldsymbol{\Phi}} _i^\alpha \tilde \chi _i^\alpha (t) 。$ | (14) |
式中:
$ \begin{split} {\dot{\tilde{\chi }}} _i^\alpha (t) =& A{\tilde \chi}_i^\alpha (t) - BS_1^\alpha {a_{il}^\alpha} {{\dot{\tilde{\chi }}}_i^\alpha} (t_k^i) - \\ &BS_2^\alpha \sum\nolimits_{j = 1}^{{N^\alpha }} {a_{ij}^\alpha \left[\tilde \chi _i^\alpha (t_k^i) - \tilde \chi _j^\alpha (t_k^j)\right]} - Be_{wi}^\alpha (t)。\end{split} $ | (15) |
利用克罗内克积运算可得:
$ \begin{split}{\dot{\tilde{\chi }}}^{\alpha }(t)=&\left[{\tilde{A}}^{\alpha }-({\tilde{S}}_{1}^{\alpha }+{\tilde{S}}_{2}^{\alpha })\right]{\tilde{\chi }}^{\alpha }(t)- \\& ({\tilde{S}}_{1}^{\alpha }+{\tilde{S}}_{2}^{\alpha }){e}_{\chi }^{\alpha }(t)-{\tilde{B}}^{\alpha }{e}_{w}^{\alpha }(t) \end{split},$ | (16) |
$ \dot e_w^\alpha (t) = ({\tilde P^\alpha } - {\tilde c^\alpha }{\tilde L^\alpha })e_w^\alpha (t) + {Q^\alpha }{\tilde \chi ^\alpha }(t) ,$ | (17) |
$ \tilde S_1^\alpha = A_l^\alpha \otimes BS_1^\alpha ,\tilde S_2^\alpha = {L^\alpha } \otimes BS_2^\alpha 。$ | (18) |
考虑状态误差和控制输入,构造成本函数为:
$ \begin{split} E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) =& {{({{\tilde \chi }^\alpha }(t))}^{\text{T}}}\tilde M_1^\alpha {{\tilde \chi }^\alpha }(t)+ \\ & {{(\bar u_a^\alpha (t))}^{\text{T}}}\tilde M_2^\alpha \bar u_a^\alpha (t)。\end{split} $ | (19) |
式中:
$ W(t) = \left\{ {\begin{split} & {\displaystyle\int_{{l_m}}^t E \left({{\tilde \chi }^\alpha }(c),\bar u_a^\alpha (c),c\right){\text d}c,m = 0} ,\\ &{\displaystyle\sum\nolimits_{k = 0}^{m - 1} {\int_{{l_k}}^{{l_{k + 1}}} {E\left({{\tilde \chi }^\alpha }(c),u_a^\alpha (c),c\right){\text d}c} } } +\\ &{\;\;\;\; \int_{{l_m}}^t {\left({{\tilde \chi }^\alpha }(c),\bar u_a^\alpha (c),c\right)} {\text d}c,m \geqslant 1} 。\end{split}} \right. $ | (20) |
成本函数值不断变化且最终趋于稳定,若编队能保持,则成本函数将在一定范围内。若通信拓扑变化,成本函数将超出界限。下一切换时刻
$ {l_{m + 1}} = \inf \{ t > {l_m}\left| {|W(t) - {W^*}(t)\mid > {s^\alpha }} \right.\}。$ | (21) |
式中:
在编队结构
$ {V^{\varepsilon (t)}}(t) = {[{\tilde \chi ^\alpha }(t)]^{\text{T}}}\tilde K_1^{\varepsilon (t)}{\tilde \chi ^\alpha }(t) + {[e_w^\alpha (t)]^{\text{T}}}\tilde K_2^{\varepsilon (t)}e_w^\alpha (t)。$ | (22) |
当
$ \begin{split} \hat{V}^{\alpha}(t)\leqslant & [\tilde{\chi}^{\alpha}(t)]^{\mathrm{T}}\{\tilde{K}_{1}^{\alpha}\tilde{A}^{\alpha}+(\tilde{A}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}-\tilde{K}_{1}^{\alpha}(\tilde{S}_{1}^{\alpha}+\tilde{S}_{2}^{\alpha}- \\& (\tilde{S}_{1}^{\alpha}+\tilde{S}_{2}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}\} \tilde{\chi}^{\alpha}(t)-[\tilde{\chi}^{\alpha}(t)]^{\mathrm{T}}\{\tilde{K}_{1}^{\alpha}\times(\tilde{S}_{1}^{\alpha}+\tilde{S}_{2}^{\alpha})+ \\& (\tilde{S}_{1}^{\alpha} + \tilde{S}_{2}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}\}e_{\chi}^{\alpha}(t)-[\bar{\chi}^{\alpha}(t)]^{\mathrm{T}}[\tilde{K}_{1}^{\alpha}\tilde{B}^{\alpha} + (Q^{\alpha})^{\mathrm{T}}\tilde{K}_{2}^{\alpha}] \times \\& e_{w}^{\alpha}(t)+[e_{w}^{\alpha}(t)]^{\mathrm{T}}[(\tilde{B}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}+\tilde{K}_{2}^{\alpha}Q^{\alpha}]\tilde{\chi}^{\alpha}(t)+ \\& [e_{w}^{\alpha}(t)]^{\mathrm{T}}\{\tilde{K}_{2}^{\alpha}(\tilde{P}^{\alpha}-\tilde{c}^{\alpha}\tilde{L}^{\alpha})+(\tilde{P}^{\alpha}-\tilde{c}^{\alpha}\tilde{L}^{\alpha})^{\mathrm{T}}\}e_{w}^{\alpha}(t)+ \\& [\tilde{\chi}^{\alpha}(t)]^{\mathrm{T}}\sigma_{i}^{\alpha}\Phi^{\alpha}\tilde{\chi}^{\alpha}(t)-[e_{\chi}^{\alpha}(t)]^{\mathrm{T}}\Phi^{\alpha}e_{\chi}^{\alpha}(t)。\\[-5pt] \end{split} $ | (23) |
若事件触发时刻
$ \begin{split} &{{\dot V}^\alpha }(t) + \lambda {V^\alpha }(t) + E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) - E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) \leqslant \\ &\;\;\;\; {{\dot V}^\alpha }(t) + \lambda \{ {[{{\tilde \chi }^\alpha }(t)]^{\text{T}}}\tilde K_1^\alpha \tilde \chi (t) + {[e_w^\alpha (t)]^{\text{T}}}\tilde K_2^\alpha e_w^\alpha (t)\} + \\ &\;\;\;\; {\text{ }}{[{{\tilde \chi }^\alpha }(t)]^{\text{T}}}\tilde M_1^\alpha {{\tilde \chi }^\alpha }(t) + {[{{\tilde \chi }^\alpha }(t) + e_\chi ^\alpha (t)]^{\text{T}}}(A_l^\alpha \otimes B{S_1} + \\ & \;\;\;\;{\text{ }}{L^\alpha } \otimes B{S_2}{)^{\text{T}}}\tilde M_2^\alpha (A_l^\alpha \otimes B{S_1} + {L^\alpha } \otimes B{S_2}) \times \\& \;\;\;\; {\text{ }}[{{\tilde \chi }^\alpha }(t) + e_\chi ^\alpha (t)] - E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) 。\\[-5pt] \end{split} $ | (24) |
下面给出一系列符号的定义:
$ \left\{\begin{array}{l} \Upsilon _1^\alpha = \left[ {\begin{array}{*{20}{c}} {\Lambda _1^\alpha }&{\Lambda _2^\alpha }&{\Lambda _3^\alpha } \\ { \Lambda _2^\alpha }&{ - {\Phi ^\alpha }}&0 \\ {\Lambda _3^\alpha }&0&{\Lambda _4^\alpha } \end{array}} \right],\Upsilon _2^\alpha = [\begin{array}{*{20}{c}} { \Lambda _5^\alpha } &{\Lambda _6^\alpha }& 0 \end{array} ], \\ {\Upsilon ^\alpha } = \left[ {\begin{array}{*{20}{c}} {\Upsilon _1^\alpha }&{\Upsilon _2^\alpha } \\ {\Upsilon _2^\alpha }&{ - \tilde K_1^\alpha (\tilde M_2^\alpha )\tilde K_1^\alpha } \\ \end{array}} \right] < 0, \\ {\Lambda _1^\alpha = \tilde K_1^\alpha {{\tilde A}^\alpha } + {{({{\tilde A}^\alpha })}^{\text{T}}}\tilde K_1^\alpha - A_l^\alpha \otimes (K_1^\alpha BS_1^\alpha ) - } \\ \;\;\;\;\;\;\;{{L^\alpha } \otimes (K_1^\alpha BS_2^\alpha ) - A_l^\alpha \otimes {{(K_1^\alpha BS_1^\alpha )}^{\text{T}}} - } \\ \qquad\;\;\; {{L^\alpha } \otimes {{(K_1^\alpha BS_2^\alpha )}^{\text{T}}} + {\sigma ^\alpha }{\Phi ^\alpha } + \lambda \tilde K_1^\alpha + \tilde M_1^\alpha ,}\\ \Lambda _2^\alpha = - A_l^\alpha \otimes {(K_1^\alpha BS_1^\alpha )^{\text{T}}} - {L^\alpha } \otimes {(K_1^\alpha BS_2^\alpha )^{\text{T}}}, \\ \Lambda _3^\alpha = {({{\tilde B}^\alpha })^{\text{T}}}\tilde K_1^\alpha + \tilde K_2^\alpha {Q^\alpha }, \\ \Lambda _4^\alpha = \tilde K_2^\alpha ({{\tilde P}^\alpha } - {{\tilde c}^\alpha }{{\tilde L}^\alpha }) + {({{\tilde P}^\alpha } - {{\tilde c}^\alpha }{{\tilde L}^\alpha })^{\text{T}}}\tilde K_2^\alpha + \lambda \tilde K_2^\alpha , \\ \Lambda _5^\alpha = \Lambda _6^\alpha = - A_l^\alpha \otimes (K_1^\alpha BS_1^\alpha ) - {L^\alpha } \otimes (K_1^\alpha BS_2^\alpha )。\end{array}\right. $ | (25) |
故式(24)可改写为:
$ \begin{split} &{{\dot V}^\alpha }(t) + \lambda {V^\alpha }(t) \leqslant {[{\kappa ^\alpha }(t)]^T}[\Upsilon _1^\alpha - {\left( {\Upsilon _2^\alpha } \right)^{\text{T}}}[ - \tilde K_1^\alpha \times \\ &\;\;\;\; {(\tilde M_2^\alpha )^{ - 1}}\tilde K_1^\alpha {]^{ - 1}}\Upsilon _2^\alpha ][{\kappa ^\alpha }(t)] - E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t)。\end{split} $ | (26) |
利用舒尔补定理[10],可得:
$ {\dot V^\alpha }(t) + \lambda {V^\alpha }(t) < 0 。$ | (27) |
由此可知,在
$ {V^{\varepsilon (t)}}(t) < {e^{ - \lambda (t - {l_m})}}{V^{\varepsilon ({l_m})}}({l_m})。$ | (28) |
设计参数
$ \begin{split} & {V^{\varepsilon (t)}}(t) < {e^{ - \lambda (t - {l_m})}}{V^{\varepsilon ({l_m})}}({l_m})\leqslant \\ &\;\;\;\; {\text{ }} {\mu ^{{\text{num}}\:({l_0},t)}}{e^{ - \lambda (t - {l_m})}} \ldots {e^{ - \lambda {(_1} - {l_0})}}{V^{\varepsilon ({l_0})}}({l_0})\leqslant \\ & \;\;\;\;{\text{ }} {e^{(ln\mu /{T_k} - \lambda )(t - {l_0})}}{V^{\varepsilon \left( {{l_0}} \right)}}({l_0})。\\ \end{split} $ | (29) |
定义参数
$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } {\left\| {{{\tilde \kappa }^{\varepsilon (t)}}(t)} \right\|^2} \leqslant \bar \lambda {e^{(\frac{{\ln \mu }}{{{T_k}}} - \lambda )\left( {t - {l_0}} \right)}}{\left\| {{{\tilde \kappa }^{\varepsilon (t)}}\left( {{l_0}} \right)} \right\|^2}。$ | (30) |
式中:
$ \left\| {{{\tilde \kappa }^\alpha }(t)} \right\| \leqslant \sqrt {\bar \lambda {e^{(\frac{{\ln \mu }}{{{T_k}}} - \lambda )\left( {t - {l_0}} \right)}}//\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } } \left\| {{{\tilde \kappa }^\alpha }({l_0})} \right\|。$ | (31) |
由定理2可知编队系统为指数一致性稳定。
3.2 芝诺行为的排除定义采样触发误差为:
$ \dot e_\chi ^\alpha (t) = {\dot \tilde \chi ^\alpha }({t_k}) - {\dot \tilde \chi ^\alpha }(t),t \in [{t_k},{t_{k + 1}})。$ | (32) |
由于事件触发机制为间隔时间采样,所以在
由上述可知:
$ \left\| {{{\dot \tilde \chi }^\alpha }(t)} \right\| \leqslant \iota \left\| {{{\tilde \chi }^\alpha }(t)} \right\| + \Psi。$ | (33) |
式中:
$ \left\| {\dot e_\chi ^\alpha (t)} \right\| \leqslant \iota \left\| {{\chi ^\alpha }(t)} \right\| + \Psi \leqslant \iota \left\| {e_\chi ^\alpha (t)} \right\| + \iota \left\| {{{\tilde \chi }^\alpha }\left( {{t_k}} \right)} \right\| + \Psi 。$ | (34) |
沿着时间
$ \begin{aligned}&{\displaystyle {\int }_{{t}_{k}}^{t}{e}^{-\iota s}(\Vert {\dot{e}}_{\chi }^{\alpha }(s)\Vert -\Vert {e}_{\chi }^{\alpha }(s)\Vert ){\text d}s\le {\displaystyle {\int }_{{t}_{k}}^{t}{e}^{-\iota s}(\Vert {\tilde{\chi }}^{\alpha }\left({t}_{k}\right)\Vert +\Psi ){\text d}s\text{,}}}\\ &\;\;\;\;\;\; \Vert {e}_{\chi }^{\alpha }(t)\Vert \le (\Vert {\tilde{\chi }}^{\alpha }\left({t}_{k}\right)\Vert +\frac{\Psi }{\iota })({e}^{\iota \left(t-{t}_{k}\right)}-1)。\\[-15pt]\end{aligned} $ | (35) |
当定义
$ {\tau _{\min }} \geqslant \frac{1}{\iota }\ln ({(\left\| {\varpi _{{t_{\theta + 1}}}^\alpha } \right\|/\left\| {{{\tilde \chi }^\alpha }\left( {{t_\theta }} \right)} \right\| + \frac{\Psi }{\iota })_{\min }} + 1) > 0。$ | (36) |
可得
集群包含1艘领航艇和5艘跟随艇。领航艇的轨迹为:
![]() |
表 1 无人艇初始状态 Tab.1 Initial state of USVs |
设置参数
![]() |
图 1 无人艇集群的切换拓扑 Fig. 1 Switching topology of USV cluster |
3种编队结构中期望相对位置
$ h_{xy}^1 = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 1} \\ 1&{ - 1} \\ { - 2}&{ - 2} \\ 0&{ - 2} \\ 2&{ - 2} \end{array}} \right],h_{xy}^2 = \left[ {\begin{array}{*{20}{c}} 0&{ - 1} \\ 0&{ - 2} \\ { - 1}&{ - 3} \\ 1&{ - 3} \end{array}} \right],h_{xy}^3 = \left[ {\begin{array}{*{20}{c}} 0&{ - 1} \\ 0&{ - 2} \\ 0&{ - 3} \end{array}} \right]。$ | (37) |
在动态事件触发机制中,可调参数设置为
$ \left\{\begin{array}{l} {P^1} = {P^2} = {P^3} = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ { - 1}&0&0 \\ { - 1}&1&{ - 1} \end{array}} \right], \\ {c^1} = diag\left\{ {\begin{array}{*{20}{c}} {1.6}&{2.5}&{1.6}&{1.2}&{2.8} \end{array}} \right\}, \\ {c^2} = diag\left\{ {\begin{array}{*{20}{c}} {1.1}&{2.3}&{2.1}&{1.4} \end{array}} \right\}, \\ {c^3} = diag\left\{ {\begin{array}{*{20}{c}} 2&{1.3}&{2.2} \end{array}} \right\}, \\ S_1^\alpha = [\begin{array}{*{20}{c}} {\tilde S_{11}^\alpha }&{\tilde S_{12}^\alpha } \end{array}],S_2^\alpha = [\begin{array}{*{20}{c}} {\tilde S_{21}^\alpha }&{\tilde S_{22}^\alpha } \end{array}], \\ \tilde S_{11}^\alpha = \tilde S_{12}^\alpha = \tilde S_{21}^\alpha = \tilde S_{22}^\alpha = diag\left\{ {\begin{array}{*{20}{c}} {10}& {10}& {10} \end{array}} \right\} 。\end{array} \right. $ | (38) |
代入上述参数得到图2~图6的仿真结果。图2展示了集群的实时轨迹,可看出各跟随艇从初始位置出发在五角星位置第一次编队切换,在圆圈位置第二次编队切换,且能够实现编队队形。
![]() |
图 2 无人艇实时轨迹 Fig. 2 Real-time trajectory of USVs |
图3~图4为跟随艇的速度曲线变化,在各部分共同作用下无人艇的速度逐渐趋于稳定,且2次编队结构切换时刻展现出合理变化以调整编队队形。
![]() |
图 3 无人艇纵荡速度变化曲线 Fig. 3 Surge speed variation curve of USVs |
![]() |
图 4 无人艇横荡速度变化曲线 Fig. 4 Sway speed variation curve of USVs |
图5为无人艇的触发时间间隔,充分反应出该动态事件触发机制能够有效地减轻通信负担。
![]() |
图 5 触发时间间隔 Fig. 5 Trigger time interval |
![]() |
图 6 动态事件触发函曲线 Fig. 6 The dynamic event triggering function curve |
图6为无人艇动态时间触发函数
由上述仿真图像所知,在扰动观测器、动态事件触发机制和编队切换的共同作用下,集群能够有效地实现在切换拓扑下的编队控制,且效果优异。
5 结 语本文在切换拓扑的情况下,利用基于成本的切换律以确定切换时刻,构造扰动观测器避免外界干扰,设计动态事件触发机制来减小通信负担。由仿真可知,该方法能够实现无人艇集群的编队控制。
[1] |
LIU Z X, ZHANG Y M, YU X, et al. Unmanned surface vehicles: An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71-93. DOI:10.1016/j.arcontrol.2016.04.018 |
[2] |
谢光强, 阳开, 李杨, 等. 基于切换拓扑的多智能体协作控制研究综述[J]. 计算机应用研究, 2019, 36(4): 967-971. XIE Guangqiang, YANG Kai, LI Yang, et al. Review of research on multi-agent cooperative control based on switching topology[J]. Application Research of Computers, 2019, 36(4): 967-971. |
[3] |
OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533. DOI:10.1109/TAC.2004.834113 |
[4] |
Yu Y J, Guo J. Distributed adaptive fuzzy formation control of uncertain multiple unmanned aerial vehicles with actuator faults and switching topologies[J]. IEEE Transactions on Fuzzy Systems, 2022, 31(3): 919-929. |
[5] |
黄兵, 肖云飞, 冯元, 等. 无人艇全分布式动态事件触发编队控制[J/OL]. 控制理论与应用: 2023: 1−9. HUANG Bing, XIAO Yun-fei, FENG Yuan,etal. Fully distributed dynamic event-triggered formation control for multiple unmanned surface vehicles[J/OL]. Control Theory and Applications, 2023: 1−9. |
[6] |
张磊, 郑宇鑫, 黄兵, 等. 动态事件触发机制下的无人艇无模型控制[J/OL]. 哈尔滨工程大学学报, 2024(1): 1−8. ZHANG Lei, ZHENG Yuxin, HUANG Bin, et al. Modeless control for unmanned surface vehicle under the dynamic event-triggered mechanism[J/OL]. Journal of Harbin Engineering University, 2024(1): 1−8. |
[7] |
CHEN C, ZOU W, XIANG Z. Event-triggered consensus of multiple uncertain euler–lagrange systems with Limited communication range[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(9): 5945−5954.
|
[8] |
ZHANG Y, CHADLI M, XIANG Z R. Prescribed-time formation control for a class of multi-agent systems via fuzzy reinforcement learning[J]. IEEE Transactions on Fuzzy Systems, 2023, 104(4):3701−3712.
|
[9] |
姜朝宇, 陈源宝. 带有扰动观测器的无人水面艇有限时间轨迹跟踪控制[J]. 舰船电子工程, 2021, 41(10): 61-65. JIANG Chaoyu, CHEN Yuanbao. Finite-time trajectory tracking control of unmanned surface vehicle with disturbance observer[J]. Ship Electronic Engineering, 2021, 41(10): 61-65. DOI:10.3969/j.issn.1672-9730.2021.10.014 |
[10] |
COTTLE R W. Manifestations of the Schur complement[J]. Linear algebra and its Applications, 1974, 8(3): 189-211. DOI:10.1016/0024-3795(74)90066-4 |