舰船科学技术  2024, Vol. 46 Issue (21): 97-102    DOI: 10.3404/j.issn.1672-7649.2024.21.017   PDF    
基于动态事件触发的无人艇编队控制方法
徐宁骏1,2, 吕旭3, 陆芳芳4, 石章松1     
1. 中国人民解放军海军工程大学 兵器工程学院,湖北 武汉 430033;
2. 江苏自动化研究所,江苏 连云港 222006;
3. 清华大学 精密仪器系,北京 100084;
4. 中国航天科工集团 三院三十五所,北京 102401
摘要: 针对多无人艇编队系统出现通信拓扑发生改变的问题,提出一种基于动态事件触发的无人艇编队控制方法。首先,在考虑编队误差和控制输入的基础上,提出一种基于成本的切换律以确定切换时刻;其次,设计一种具有可调阈值的动态事件触发机制以减少通信负担;然后,为解决外界干扰以及未知动力学,构造扰动观测器来估计扰动从而设计分布式控制器,能够减轻外界干扰的影响,实现无人艇编队控制。通过李雅普诺夫函数具体分析2种情况下的稳定性,可得该系统能够实现一致性。最后,通过仿真证明了所提出方案的有效性。
关键词: 无人艇编队系统     切换拓扑     切换律     扰动观测器    
Unmanned boat formation control method based on dynamic event triggering
XU Ningjun1,2, LV Xu3, LU Fangfang4, SHI Zhangsong1     
1. College of Weapons Engineering, Naval University of Engineering, Wuhan 430033, China;
2. Jiangsu Automation Research Institute, Lianyungang 222006, China;
3. Tsinghua University, Department of Precision Instrument, Beijing 100084, China;
4. The 35th Institute of 3rd Academy, CASIC, Beijing 102401, China
Abstract: A dynamic event-triggered formation control method of unmanned boats is proposed to address the issue of communication topology in multiple unmanned boat formation systems. Firstly, a cost-based switching law is proposed to determine the switching instant based on considering formation errors and control inputs. Secondly, a dynamic event-triggered mechanism with adjustable thresholds is designed to reduce the communication burden. Then, aiming at solving the external interference and unknown dynamics, a disturbance observer is constructed, and distributed controllers are designed to alleviate the adverse effects, so that achieving formation control of multiple unmanned boats. By analyzing the stability of the Lyapunov function in two different situations, it can be concluded that the system can achieve consistency. Finally, simulations have demonstrated the effectiveness of the proposed strategy.
Key words: unmanned boat formation systems     switch topology     switching law     disturbance observer    
0 引 言

近年来,无人艇系统逐渐成熟,并凭借其优势广泛应用于军事与民用领域[1]。相较于单无人艇,无人艇集群具有更强的感知和执行能力,能够提高性能、鲁棒性及拓展性。在多艇协同控制中,编队问题是目前重要的研究领域,拥有丰富的研究成果。而无人艇集群常面对复杂环境和任务,其通信拓扑会发生改变,这给编队控制带来了严峻挑战。

在无人艇集群的通讯拓扑发生改变时,为确保信息传输的安全性,切换控制[2]至关重要。OLFATI等[3]分析了固定拓扑的有向网络、切换拓扑的有向网络以及具有通信时滞的有向网络下一致性问题。Yu等[4]针对无人机集群,通过构建分布式通信机制,设计了一种自适应编队控制策略。

无人艇系统通常设置采样间隔来更新状态,较高的采样频率会造成资源浪费,故引入事件触发机制,当指定状态超过一定限度,则进行数据的传输与更新。同时,需避免芝诺行为的发生。黄兵等[5]利用神经网络和事件触发来补偿不确定性和扰动。而静态触发机制虽能够降低通信成本,但随着时间推移,阈值减小,事件会被频繁触发。张磊等[6]结合变结构与自适应控制,提出一种动态事件触发机制,有效规避Zeno现象。Chen等[7]提出了一种混合事件触发来解决有限通信范围系统的一致性问题。

外界干扰与未建模动态广泛存在于各类系统中,常对其产生影响,故干扰处理也是控制问题中一大重点。Zhang等[8]提出强化学习策略,使用逼近器估计未知动力学,在预设时间内收敛到期望精度。姜朝宇等[9]将干扰统一,设计有限时间扰动观测器在线估计,通过构造虚拟控制律实现半全局一致有界。

鉴于以上分析,本文设计一种切换律用于切换拓扑。同时,提出一种动态事件触发机制以减少通信压力,并使用扰动观测器进行干扰的观测。

1 问题描述 1.1 图论知识

本文利用无向图描述通信拓扑连通性,可表示为$ G = \{ v,\varepsilon \} $,其中,节点集$v = \{ 1, \ldots ,N\} $为跟随艇数量,边集$\varepsilon \subseteq v \times v$为无人艇之间信息传递。集群中有$N$艘跟随艇和下标为$l$的领航艇,定义邻接矩阵$ {\boldsymbol{A}} = [{a_{ij}}] $,若${a_{ij}} = 1$,表示第$i$,$j$艘无人艇可相互通信;定义入度矩阵${{\boldsymbol{D}}_{{\text{in }}}} = {diag} \{ {d_1}, \ldots ,{d_N}\} $${d_i} = \displaystyle\sum\nolimits_{j = 1}^N {{a_{ij}}} $;定义拉氏矩阵${\boldsymbol{L}} = {{\boldsymbol{D}}_{{\mathrm{in}}}} - {\boldsymbol{A}}$

当编队结构改变,则无人艇通信拓扑将重置。定义切换信号$\varepsilon (t):[0, + \infty )$$ {l_1} < {l_2} < \cdots $为切换时刻,定义驻留时间${T_k}$。令$num({t_1},{t_2})$$ [{t_1},{t_2}) $间隔内切换次数,当编队结构为$\varepsilon (t) = \alpha \in \Delta $,则对应状态量均用上标$\alpha $表示。同时,假设各种编队模式下,每个跟随艇至少存在一条从领航艇到其本身的路径。

1.2 相关引理

定理1 集群实现编队一致性需要满足:

$ \mathop {\lim }\limits_{t \to \infty } \tilde \chi _i^\alpha (t) = \mathop {\lim }\limits_{t \to \infty } \left({\chi _i}(t) - h_i^\alpha (t) - {\chi _l}(t)\right) = 0。$ (1)

定理2  假设存在正常数$b$$\lambda $,对$\forall t \geqslant {t_0}$,有$\left\| {\varsigma (t)} \right\| \leqslant b{e^{ - \lambda (t - {t_0})}}\left\| {\varsigma ({t_0})} \right\|$,则切换信号$\varepsilon (t)$指数稳定。

1.3 多无人艇数学模型

$i$艘无人艇的数学模型可表示为:

$ \left\{ {\begin{array}{l} {{{\dot \eta }_i} = R({\psi _i}){v_i}},\\ {{M_i}{{\dot v}_i} + {C_i}({v_i}){v_i} + {D_i}({v_i}){v_i} = {\tau _i} + {d_i}} 。\end{array}} \right. $ (2)

式中:$i = l,1, \ldots ,{N^\alpha }$${\eta _i} = {[{x_i},{y_i},{\psi _i}]^{\text{T}}}$为惯性坐标系下无人艇的位置及角度;${v_i} = {[{u_i},{v_i},{r_i}]^{\text{T}}}$为机体坐标系下的速度和角速度;${d_i}$为受到的外界干扰。${\boldsymbol{R}}({\psi _i})$为2个坐标系之间的旋转矩阵;${{\boldsymbol{M}}_i}$为惯性矩阵;${{\boldsymbol{C}}_i}({v_i})$为科氏力矩阵;${{\boldsymbol{D}}_i}({v_i})$为阻尼矩阵。

定义${\xi _i}(t) = R({\psi _i}){v_i}(t)$为辅助变量,则式(2)改写为:

$ \left\{ {\begin{array}{*{20}{l}} {{{\dot \eta }_i} = {\xi _i},} \\ {{{\dot \xi }_i} = {u_i} + {C_{i'}}({\eta _i},{{\dot \eta }_i}){\xi _i} + {D_{i'}}({\eta _i},{{\dot \eta }_i}){\xi _i} + {\delta _i}} 。\end{array}} \right. $ (3)

式中:${\xi _i}(t) = {[{\dot x_i}(t),{\dot y_i}(t),{\dot \psi _i}(t)]^{\text{T}}}$为无人艇在地球坐标系下的速度及角速度;${u_i} = RM_i^{ - 1}{\tau _i}$为力与力矩。且参数定义如下:$ {{\boldsymbol{C}}'_i}({\eta _i},{\dot \eta _i}) = - {\boldsymbol{RM}}_i^{ - 1}{{\boldsymbol{C}}_i}({{\boldsymbol{R}}^{ - 1}}{\xi _i}){{\boldsymbol{R}}^{ - 1}} $${{\boldsymbol{D}}'_i}({\eta _i},{\dot \eta _i}) = \dot R{{\boldsymbol{R}}^{ - 1}} - {\boldsymbol{R}}M_i^{ - 1}{{\boldsymbol{D}}_i}({R^{ - 1}}{\xi _i}){{\boldsymbol{R}}^{ - 1}}$${\delta _i} = {\boldsymbol{R}}M_i^{ - 1}{d_i}$

${\chi _i}(t) = {[\eta _i^T(t),\xi _i^{\text{T}}(t)]^{\text{T}}}$,${\chi _l}(t) = {[\eta _l^{\text{T}}(t),\xi _l^{\text{T}}(t)]^{\text{T}}}$中包含了领航艇的位姿以及速度信息。令${w_i} = {C_{i'}}({\eta _i},{\dot \eta _i}){\xi _i} + {D_{i'}}({\eta _i},{\dot \eta _i}){\xi _i} + {\delta _i}$,则式(3)可记作:

$ {\dot \chi _i}(t) = A{\chi _i}(t) + B[{u_i}(t) + {w_i}(t)]。$ (4)

式中:$ A = \left[ {\begin{array}{*{20}{c}} {{0_{3 \times 3}}}&{{I_3}} \\ {{0_{3 \times 3}}}&{{0_{3 \times 3}}} \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} {{0_{3 \times 3}}} \\ {{I_3}} \end{array}} \right] $${w_i}$为总干扰。假设领航艇可忽略干扰作用,干扰对每艘无人艇影响相同,并可将未知动力学看作时变有界信号。

定义$h_i^\alpha (t) = {[{(h_{\eta i}^\alpha (t))^{\text{T}}},{(h_{\xi i}^\alpha (t))^{\text{T}}}]^{\text{T}}}$${(h_{\eta i}^\alpha (t))^{\text{T}}}$为在编队模式$\alpha $下第$i$艘无人艇与领航艇之间的位置关系,且满足$\dot h_{\eta i}^\alpha (t) = h_{\xi i}^\alpha (t)$,则第$i$艘无人艇的期望轨迹可写作:

$ {\left(\eta _i^d(t)\right)^\alpha } = h_{\eta i}^\alpha (t) + {\eta _l}(t)。$ (5)

编队误差$\tilde \chi _i^\alpha (t) = {\chi _i}(t) - h_i^\alpha (t) - {\chi _l}(t)$,求导得:

$ \dot \tilde \chi _i^\alpha = A\tilde \chi _i^\alpha (t) + B\left[u_i^\alpha (t) + {w^\alpha }(t) - {\left(\dot \xi _i^d(t)\right)^\alpha }\right]。$ (6)
2 控制器的设计 2.1 扰动观测器的设计

认定无人艇中的干扰${w^\alpha }(t)$可表示为:

$ \dot w_i^\alpha (t) = {\boldsymbol{P}}_i^\alpha w_i^\alpha (t) 。$ (7)

式中:${\boldsymbol{P}}_i^\alpha $为一个已知矩阵。

构建一种局部观测器来估计未知干扰${w^\alpha }(t)$

$ \begin{split}{\dot{\hat{w}}}_{i}^{\alpha }(t)=&{P}^{\alpha }{\hat{w}}_{i}^{\alpha }(t)+{{\boldsymbol{Q}}}_{i}^{\alpha }{\tilde{\chi }}_{i}^{\alpha }(t)- \\ &{c}_{i}^{\alpha }{\displaystyle {\sum }_{i=1}^{{N}^{\alpha }}{a}_{ij}^{\alpha }\left[{\hat{w}}_{i}^{\alpha }(t)-{\hat{w}}_{j}^{\alpha }(t)\right]} \end{split} 。$ (8)

式中:$ \hat w_i^\alpha (t) $$\hat w_j^\alpha (t)$为第$i$$j$艘无人艇干扰估计值;${\boldsymbol{Q}}_i^\alpha $为观测矩阵;$c_i^\alpha $用于调整估计效应权重。

2.2 带有扰动观测器的控制律设计

定义扰动误差为:

$ e_{wi}^\alpha (t) = \hat w_i^\alpha (t) - w_i^\alpha (t) 。$ (9)

式中:$\hat w_i^\alpha (t)$为扰动估计值;$w_i^\alpha (t)$为实际扰动值。

对上式求导并调用式(7)可得:

$ \begin{split}{\dot{e}}_{wi}^{\alpha }(t)=&{P}^{\alpha }{e}_{wi}^{\alpha }(t)+{{\boldsymbol{Q}}}_{i}^{\alpha }{\tilde{\chi }}_{i}^{\alpha }(t)-\\ &{c}_{i}^{\alpha }{\displaystyle {\sum }_{j=1}^{{N}^{\alpha }}{a}_{ij}^{\alpha }\left[{\widehat{w}}_{i}^{\alpha }(t)-{\widehat{w}}_{j}^{\alpha }(t)\right]}。\end{split} $ (10)

式中:${\boldsymbol{Q}}_i^\alpha $表示系数矩阵;$c_i^\alpha $表示设定的合适参数。

局部控制器为编队子控制器$ u_{ai}^\alpha (t) $和干扰子控制器$ u_{bi}^\alpha (t) $之和,分别用于消除编队、扰动误差:

$ \begin{array}{*{20}{l}} {u_i^\alpha (t) = u_{ai}^\alpha (t) + u_{bi}^\alpha (t)} ,\end{array} $ (11)
$ u_{ai}^\alpha (t) = - S_1^\alpha a_{il}^\alpha \tilde \chi _i^\alpha (t) - S_2^\alpha \sum\nolimits_{j = 1}^{{N^\alpha }} {a_{ij}^\alpha } \left[\tilde \chi _i^\alpha (t) - \tilde \chi _j^\alpha (t)\right],$ (12)
$ u_{bi}^\alpha (t) = - \hat w_i^\alpha (t) + {(\dot \xi _i^d(t))^\alpha }。$ (13)
2.3 动态事件触发机制的设计

设计动态事件触发机制为:

$ {[e_{\chi i}^\alpha (t)]^{\text{T}}}{\boldsymbol{\Phi}} _i^\alpha e_{\chi i}^\alpha (t) \leqslant \rho _i^\alpha (t){\left[\tilde \chi _i^\alpha (t)\right]^{\text{T}}}{\boldsymbol{\Phi}} _i^\alpha \tilde \chi _i^\alpha (t) 。$ (14)

式中:$e_{\chi i}^\alpha (t) = \tilde \chi _i^\alpha (t_k^i) - \tilde \chi _i^\alpha (t)$为触发误差;$\tilde \chi _i^\alpha (t_k^i)$为触发时刻误差;$\tilde{\boldsymbol{ \chi }}_i^\alpha (t)$为当前时刻误差;$\Phi _i^\alpha $为正定矩阵。$\rho _i^\alpha (t) = \sigma _i^\alpha {e^{ - \delta _i^\alpha \left\| {e_{\chi i}^\alpha (t)} \right\|}}$为触发阈值,$\sigma _i^\alpha \in [0,1]$$\sigma _i^\alpha $$\delta _i^\alpha $影响触发频率。结合式(6)和式(13)可得:

$ \begin{split} {\dot{\tilde{\chi }}} _i^\alpha (t) =& A{\tilde \chi}_i^\alpha (t) - BS_1^\alpha {a_{il}^\alpha} {{\dot{\tilde{\chi }}}_i^\alpha} (t_k^i) - \\ &BS_2^\alpha \sum\nolimits_{j = 1}^{{N^\alpha }} {a_{ij}^\alpha \left[\tilde \chi _i^\alpha (t_k^i) - \tilde \chi _j^\alpha (t_k^j)\right]} - Be_{wi}^\alpha (t)。\end{split} $ (15)

利用克罗内克积运算可得:

$ \begin{split}{\dot{\tilde{\chi }}}^{\alpha }(t)=&\left[{\tilde{A}}^{\alpha }-({\tilde{S}}_{1}^{\alpha }+{\tilde{S}}_{2}^{\alpha })\right]{\tilde{\chi }}^{\alpha }(t)- \\& ({\tilde{S}}_{1}^{\alpha }+{\tilde{S}}_{2}^{\alpha }){e}_{\chi }^{\alpha }(t)-{\tilde{B}}^{\alpha }{e}_{w}^{\alpha }(t) \end{split},$ (16)
$ \dot e_w^\alpha (t) = ({\tilde P^\alpha } - {\tilde c^\alpha }{\tilde L^\alpha })e_w^\alpha (t) + {Q^\alpha }{\tilde \chi ^\alpha }(t) ,$ (17)
$ \tilde S_1^\alpha = A_l^\alpha \otimes BS_1^\alpha ,\tilde S_2^\alpha = {L^\alpha } \otimes BS_2^\alpha 。$ (18)
2.4 编队切换律的设计

考虑状态误差和控制输入,构造成本函数为:

$ \begin{split} E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) =& {{({{\tilde \chi }^\alpha }(t))}^{\text{T}}}\tilde M_1^\alpha {{\tilde \chi }^\alpha }(t)+ \\ & {{(\bar u_a^\alpha (t))}^{\text{T}}}\tilde M_2^\alpha \bar u_a^\alpha (t)。\end{split} $ (19)

式中:$\bar u_a^\alpha (t) = - (\tilde S_1^\alpha + \tilde S_2^\alpha )[{\tilde \chi ^\alpha }(t) + e_\chi ^\alpha (t)]$。而长期成本函数设计为:

$ W(t) = \left\{ {\begin{split} & {\displaystyle\int_{{l_m}}^t E \left({{\tilde \chi }^\alpha }(c),\bar u_a^\alpha (c),c\right){\text d}c,m = 0} ,\\ &{\displaystyle\sum\nolimits_{k = 0}^{m - 1} {\int_{{l_k}}^{{l_{k + 1}}} {E\left({{\tilde \chi }^\alpha }(c),u_a^\alpha (c),c\right){\text d}c} } } +\\ &{\;\;\;\; \int_{{l_m}}^t {\left({{\tilde \chi }^\alpha }(c),\bar u_a^\alpha (c),c\right)} {\text d}c,m \geqslant 1} 。\end{split}} \right. $ (20)

成本函数值不断变化且最终趋于稳定,若编队能保持,则成本函数将在一定范围内。若通信拓扑变化,成本函数将超出界限。下一切换时刻${l_{m + 1}}$为:

$ {l_{m + 1}} = \inf \{ t > {l_m}\left| {|W(t) - {W^*}(t)\mid > {s^\alpha }} \right.\}。$ (21)

式中:${l_m}$为切换时刻;${s^\alpha }$为编队结构$\alpha $下切换阈值。${W^*}(t)$为期望的成本值;$W(t)$为当前长期成本值。

3 稳定性分析 3.1 一致性分析

在编队结构$\alpha $下,构造Lyapunov函数:

$ {V^{\varepsilon (t)}}(t) = {[{\tilde \chi ^\alpha }(t)]^{\text{T}}}\tilde K_1^{\varepsilon (t)}{\tilde \chi ^\alpha }(t) + {[e_w^\alpha (t)]^{\text{T}}}\tilde K_2^{\varepsilon (t)}e_w^\alpha (t)。$ (22)

$t \in [{t_k},{t_{k + 1}})$时,动态事件触发机制满足:$ {[e_{\chi i}^\alpha (t)]^{\text{T}}} \Phi _i^\alpha e_{\chi i}^\alpha (t) - \sigma _i^\alpha {[\tilde \chi _i^\alpha (t)]^{\text{T}}}\Phi _i^\alpha \tilde \chi _i^\alpha (t) \geqslant 0 $。若触发时刻间不存在切换,对Lyapunov函数求导得:

$ \begin{split} \hat{V}^{\alpha}(t)\leqslant & [\tilde{\chi}^{\alpha}(t)]^{\mathrm{T}}\{\tilde{K}_{1}^{\alpha}\tilde{A}^{\alpha}+(\tilde{A}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}-\tilde{K}_{1}^{\alpha}(\tilde{S}_{1}^{\alpha}+\tilde{S}_{2}^{\alpha}- \\& (\tilde{S}_{1}^{\alpha}+\tilde{S}_{2}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}\} \tilde{\chi}^{\alpha}(t)-[\tilde{\chi}^{\alpha}(t)]^{\mathrm{T}}\{\tilde{K}_{1}^{\alpha}\times(\tilde{S}_{1}^{\alpha}+\tilde{S}_{2}^{\alpha})+ \\& (\tilde{S}_{1}^{\alpha} + \tilde{S}_{2}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}\}e_{\chi}^{\alpha}(t)-[\bar{\chi}^{\alpha}(t)]^{\mathrm{T}}[\tilde{K}_{1}^{\alpha}\tilde{B}^{\alpha} + (Q^{\alpha})^{\mathrm{T}}\tilde{K}_{2}^{\alpha}] \times \\& e_{w}^{\alpha}(t)+[e_{w}^{\alpha}(t)]^{\mathrm{T}}[(\tilde{B}^{\alpha})^{\mathrm{T}}\tilde{K}_{1}^{\alpha}+\tilde{K}_{2}^{\alpha}Q^{\alpha}]\tilde{\chi}^{\alpha}(t)+ \\& [e_{w}^{\alpha}(t)]^{\mathrm{T}}\{\tilde{K}_{2}^{\alpha}(\tilde{P}^{\alpha}-\tilde{c}^{\alpha}\tilde{L}^{\alpha})+(\tilde{P}^{\alpha}-\tilde{c}^{\alpha}\tilde{L}^{\alpha})^{\mathrm{T}}\}e_{w}^{\alpha}(t)+ \\& [\tilde{\chi}^{\alpha}(t)]^{\mathrm{T}}\sigma_{i}^{\alpha}\Phi^{\alpha}\tilde{\chi}^{\alpha}(t)-[e_{\chi}^{\alpha}(t)]^{\mathrm{T}}\Phi^{\alpha}e_{\chi}^{\alpha}(t)。\\[-5pt] \end{split} $ (23)

若事件触发时刻$[{t_k},{t_{k + 1}})$间存在切换瞬间,当未切换前,其稳定性分析如上;切换后时间段稳定性如下。定义${\kappa ^\alpha }(t) = {[{[{\tilde \chi ^\alpha }(t)]^{\text{T}}}{[e_\chi ^\alpha (t)]^{\text{T}}}{[e_w^\alpha (t)]^{\text{T}}}]^{\text{T}}}$,可得:

$ \begin{split} &{{\dot V}^\alpha }(t) + \lambda {V^\alpha }(t) + E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) - E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) \leqslant \\ &\;\;\;\; {{\dot V}^\alpha }(t) + \lambda \{ {[{{\tilde \chi }^\alpha }(t)]^{\text{T}}}\tilde K_1^\alpha \tilde \chi (t) + {[e_w^\alpha (t)]^{\text{T}}}\tilde K_2^\alpha e_w^\alpha (t)\} + \\ &\;\;\;\; {\text{ }}{[{{\tilde \chi }^\alpha }(t)]^{\text{T}}}\tilde M_1^\alpha {{\tilde \chi }^\alpha }(t) + {[{{\tilde \chi }^\alpha }(t) + e_\chi ^\alpha (t)]^{\text{T}}}(A_l^\alpha \otimes B{S_1} + \\ & \;\;\;\;{\text{ }}{L^\alpha } \otimes B{S_2}{)^{\text{T}}}\tilde M_2^\alpha (A_l^\alpha \otimes B{S_1} + {L^\alpha } \otimes B{S_2}) \times \\& \;\;\;\; {\text{ }}[{{\tilde \chi }^\alpha }(t) + e_\chi ^\alpha (t)] - E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t) 。\\[-5pt] \end{split} $ (24)

下面给出一系列符号的定义:

$ \left\{\begin{array}{l} \Upsilon _1^\alpha = \left[ {\begin{array}{*{20}{c}} {\Lambda _1^\alpha }&{\Lambda _2^\alpha }&{\Lambda _3^\alpha } \\ { \Lambda _2^\alpha }&{ - {\Phi ^\alpha }}&0 \\ {\Lambda _3^\alpha }&0&{\Lambda _4^\alpha } \end{array}} \right],\Upsilon _2^\alpha = [\begin{array}{*{20}{c}} { \Lambda _5^\alpha } &{\Lambda _6^\alpha }& 0 \end{array} ], \\ {\Upsilon ^\alpha } = \left[ {\begin{array}{*{20}{c}} {\Upsilon _1^\alpha }&{\Upsilon _2^\alpha } \\ {\Upsilon _2^\alpha }&{ - \tilde K_1^\alpha (\tilde M_2^\alpha )\tilde K_1^\alpha } \\ \end{array}} \right] < 0, \\ {\Lambda _1^\alpha = \tilde K_1^\alpha {{\tilde A}^\alpha } + {{({{\tilde A}^\alpha })}^{\text{T}}}\tilde K_1^\alpha - A_l^\alpha \otimes (K_1^\alpha BS_1^\alpha ) - } \\ \;\;\;\;\;\;\;{{L^\alpha } \otimes (K_1^\alpha BS_2^\alpha ) - A_l^\alpha \otimes {{(K_1^\alpha BS_1^\alpha )}^{\text{T}}} - } \\ \qquad\;\;\; {{L^\alpha } \otimes {{(K_1^\alpha BS_2^\alpha )}^{\text{T}}} + {\sigma ^\alpha }{\Phi ^\alpha } + \lambda \tilde K_1^\alpha + \tilde M_1^\alpha ,}\\ \Lambda _2^\alpha = - A_l^\alpha \otimes {(K_1^\alpha BS_1^\alpha )^{\text{T}}} - {L^\alpha } \otimes {(K_1^\alpha BS_2^\alpha )^{\text{T}}}, \\ \Lambda _3^\alpha = {({{\tilde B}^\alpha })^{\text{T}}}\tilde K_1^\alpha + \tilde K_2^\alpha {Q^\alpha }, \\ \Lambda _4^\alpha = \tilde K_2^\alpha ({{\tilde P}^\alpha } - {{\tilde c}^\alpha }{{\tilde L}^\alpha }) + {({{\tilde P}^\alpha } - {{\tilde c}^\alpha }{{\tilde L}^\alpha })^{\text{T}}}\tilde K_2^\alpha + \lambda \tilde K_2^\alpha , \\ \Lambda _5^\alpha = \Lambda _6^\alpha = - A_l^\alpha \otimes (K_1^\alpha BS_1^\alpha ) - {L^\alpha } \otimes (K_1^\alpha BS_2^\alpha )。\end{array}\right. $ (25)

故式(24)可改写为:

$ \begin{split} &{{\dot V}^\alpha }(t) + \lambda {V^\alpha }(t) \leqslant {[{\kappa ^\alpha }(t)]^T}[\Upsilon _1^\alpha - {\left( {\Upsilon _2^\alpha } \right)^{\text{T}}}[ - \tilde K_1^\alpha \times \\ &\;\;\;\; {(\tilde M_2^\alpha )^{ - 1}}\tilde K_1^\alpha {]^{ - 1}}\Upsilon _2^\alpha ][{\kappa ^\alpha }(t)] - E({{\tilde \chi }^\alpha }(t),\bar u_a^\alpha (t),t)。\end{split} $ (26)

利用舒尔补定理[10],可得:$ {\Upsilon ^\alpha } < 0 $。又满足$E({\tilde \chi ^\alpha }(t),\bar u_a^\alpha (t),t) > 0$,且${\Lambda ^\alpha } < 0$,可得:

$ {\dot V^\alpha }(t) + \lambda {V^\alpha }(t) < 0 。$ (27)

由此可知,在$t \in [{l_m},{l_{m + 1}})$时,${\dot V^{\varepsilon (t)}}(t) < - \lambda {V^{\varepsilon (t)}}(t)$能够呈现指数衰减,并且可得到:

$ {V^{\varepsilon (t)}}(t) < {e^{ - \lambda (t - {l_m})}}{V^{\varepsilon ({l_m})}}({l_m})。$ (28)

设计参数$K_1^{{l_{m + 1}}} \leqslant \mu K_1^{{l_m}},K_2^{{l_{m + 1}}} \leqslant \mu K_2^{{l_m}}$,并满足$ {\text{num(}}{l_0},t) \leqslant \ln \mu /{T_k} $,得到:

$ \begin{split} & {V^{\varepsilon (t)}}(t) < {e^{ - \lambda (t - {l_m})}}{V^{\varepsilon ({l_m})}}({l_m})\leqslant \\ &\;\;\;\; {\text{ }} {\mu ^{{\text{num}}\:({l_0},t)}}{e^{ - \lambda (t - {l_m})}} \ldots {e^{ - \lambda {(_1} - {l_0})}}{V^{\varepsilon ({l_0})}}({l_0})\leqslant \\ & \;\;\;\;{\text{ }} {e^{(ln\mu /{T_k} - \lambda )(t - {l_0})}}{V^{\varepsilon \left( {{l_0}} \right)}}({l_0})。\\ \end{split} $ (29)

定义参数$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } = \min \{ {\lambda _{\min }}(K_1^\alpha ),\quad {\lambda _{\min }}(K_2^\alpha )\} $$\bar \lambda = \max \{ {\lambda _{\max }}(K_1^\alpha ),{\lambda _{\max }}(K_2^\alpha )\} $。即可得:

$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } {\left\| {{{\tilde \kappa }^{\varepsilon (t)}}(t)} \right\|^2} \leqslant \bar \lambda {e^{(\frac{{\ln \mu }}{{{T_k}}} - \lambda )\left( {t - {l_0}} \right)}}{\left\| {{{\tilde \kappa }^{\varepsilon (t)}}\left( {{l_0}} \right)} \right\|^2}。$ (30)

式中:${\tilde \kappa ^\alpha }(t) = {[\begin{array}{*{20}{c}} {{{[{{\tilde \chi }^\alpha }(t)]}^{\text{T}}}}&{{{[e_w^\alpha (t)]}^{\text{T}}}} \end{array}]^{\text{T}}}$。最终可得:

$ \left\| {{{\tilde \kappa }^\alpha }(t)} \right\| \leqslant \sqrt {\bar \lambda {e^{(\frac{{\ln \mu }}{{{T_k}}} - \lambda )\left( {t - {l_0}} \right)}}//\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } } \left\| {{{\tilde \kappa }^\alpha }({l_0})} \right\|。$ (31)

由定理2可知编队系统为指数一致性稳定。

3.2 芝诺行为的排除

定义采样触发误差为:

$ \dot e_\chi ^\alpha (t) = {\dot \tilde \chi ^\alpha }({t_k}) - {\dot \tilde \chi ^\alpha }(t),t \in [{t_k},{t_{k + 1}})。$ (32)

由于事件触发机制为间隔时间采样,所以在$t \in [{t_k},{t_{k + 1}})$内,测量值${\tilde \chi ^\alpha }({t_k})$保持不变。

由上述可知:

$ \left\| {{{\dot \tilde \chi }^\alpha }(t)} \right\| \leqslant \iota \left\| {{{\tilde \chi }^\alpha }(t)} \right\| + \Psi。$ (33)

式中:$\iota = \left\| {{{\tilde A}^\alpha } - \left( {\tilde S_1^\alpha + \tilde S_2^\alpha } \right)} \right\|$。由此可得:

$ \left\| {\dot e_\chi ^\alpha (t)} \right\| \leqslant \iota \left\| {{\chi ^\alpha }(t)} \right\| + \Psi \leqslant \iota \left\| {e_\chi ^\alpha (t)} \right\| + \iota \left\| {{{\tilde \chi }^\alpha }\left( {{t_k}} \right)} \right\| + \Psi 。$ (34)

沿着时间$\left[ {{t_k},t} \right]$积分,由于$e_\chi ^\alpha \left( {{t_k}} \right) = 0$,则:

$ \begin{aligned}&{\displaystyle {\int }_{{t}_{k}}^{t}{e}^{-\iota s}(\Vert {\dot{e}}_{\chi }^{\alpha }(s)\Vert -\Vert {e}_{\chi }^{\alpha }(s)\Vert ){\text d}s\le {\displaystyle {\int }_{{t}_{k}}^{t}{e}^{-\iota s}(\Vert {\tilde{\chi }}^{\alpha }\left({t}_{k}\right)\Vert +\Psi ){\text d}s\text{,}}}\\ &\;\;\;\;\;\; \Vert {e}_{\chi }^{\alpha }(t)\Vert \le (\Vert {\tilde{\chi }}^{\alpha }\left({t}_{k}\right)\Vert +\frac{\Psi }{\iota })({e}^{\iota \left(t-{t}_{k}\right)}-1)。\\[-15pt]\end{aligned} $ (35)

当定义${\bar \varpi ^\alpha }(t_{k + 1}^ - ) = e_\chi ^\alpha (t_{k + 1}^ - )$$\varpi _{{t_{k + 1}}}^\alpha = {\bar \varpi ^\alpha }(t_{k + 1}^ - )$

$\theta = \mathop {\arg \min }\limits_k \{ \left\| {\varpi _{{t_{k + 1}}}^\alpha } \right\|/\left\| {{{\tilde \chi }^\alpha }\left( {{t_k}} \right)} \right\| + \frac{\Psi }{\iota }\} $,则间隔${\tau _{\min }}$

$ {\tau _{\min }} \geqslant \frac{1}{\iota }\ln ({(\left\| {\varpi _{{t_{\theta + 1}}}^\alpha } \right\|/\left\| {{{\tilde \chi }^\alpha }\left( {{t_\theta }} \right)} \right\| + \frac{\Psi }{\iota })_{\min }} + 1) > 0。$ (36)

可得${\tau _{\min }}$恒正,故该事件触发机制可避免芝诺行为。

4 仿真验证 4.1 仿真条件

集群包含1艘领航艇和5艘跟随艇。领航艇的轨迹为:${x_l} = t$${y_l} = t$。设置无人艇初始状态(见表1)。

表 1 无人艇初始状态 Tab.1 Initial state of USVs

设置参数$\mu = 1.2$$\lambda = 2$${T_k} = 10\ {\rm s}$。定义初始通信拓扑见图1(a)图1(b)图1(c)为2种通信拓扑。

图 1 无人艇集群的切换拓扑 Fig. 1 Switching topology of USV cluster

3种编队结构中期望相对位置${(h_{\eta i}^\alpha (t))^{\text{T}}}$设为:

$ h_{xy}^1 = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 1} \\ 1&{ - 1} \\ { - 2}&{ - 2} \\ 0&{ - 2} \\ 2&{ - 2} \end{array}} \right],h_{xy}^2 = \left[ {\begin{array}{*{20}{c}} 0&{ - 1} \\ 0&{ - 2} \\ { - 1}&{ - 3} \\ 1&{ - 3} \end{array}} \right],h_{xy}^3 = \left[ {\begin{array}{*{20}{c}} 0&{ - 1} \\ 0&{ - 2} \\ 0&{ - 3} \end{array}} \right]。$ (37)

在动态事件触发机制中,可调参数设置为$\sigma = 0.5$$\delta = 3$。无人艇控制器中的各参数设置为:

$ \left\{\begin{array}{l} {P^1} = {P^2} = {P^3} = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ { - 1}&0&0 \\ { - 1}&1&{ - 1} \end{array}} \right], \\ {c^1} = diag\left\{ {\begin{array}{*{20}{c}} {1.6}&{2.5}&{1.6}&{1.2}&{2.8} \end{array}} \right\}, \\ {c^2} = diag\left\{ {\begin{array}{*{20}{c}} {1.1}&{2.3}&{2.1}&{1.4} \end{array}} \right\}, \\ {c^3} = diag\left\{ {\begin{array}{*{20}{c}} 2&{1.3}&{2.2} \end{array}} \right\}, \\ S_1^\alpha = [\begin{array}{*{20}{c}} {\tilde S_{11}^\alpha }&{\tilde S_{12}^\alpha } \end{array}],S_2^\alpha = [\begin{array}{*{20}{c}} {\tilde S_{21}^\alpha }&{\tilde S_{22}^\alpha } \end{array}], \\ \tilde S_{11}^\alpha = \tilde S_{12}^\alpha = \tilde S_{21}^\alpha = \tilde S_{22}^\alpha = diag\left\{ {\begin{array}{*{20}{c}} {10}& {10}& {10} \end{array}} \right\} 。\end{array} \right. $ (38)
4.2 仿真结果

代入上述参数得到图2图6的仿真结果。图2展示了集群的实时轨迹,可看出各跟随艇从初始位置出发在五角星位置第一次编队切换,在圆圈位置第二次编队切换,且能够实现编队队形。

图 2 无人艇实时轨迹 Fig. 2 Real-time trajectory of USVs

图3图4为跟随艇的速度曲线变化,在各部分共同作用下无人艇的速度逐渐趋于稳定,且2次编队结构切换时刻展现出合理变化以调整编队队形。

图 3 无人艇纵荡速度变化曲线 Fig. 3 Surge speed variation curve of USVs

图 4 无人艇横荡速度变化曲线 Fig. 4 Sway speed variation curve of USVs

图5为无人艇的触发时间间隔,充分反应出该动态事件触发机制能够有效地减轻通信负担。

图 5 触发时间间隔 Fig. 5 Trigger time interval

图 6 动态事件触发函曲线 Fig. 6 The dynamic event triggering function curve

图6为无人艇动态时间触发函数$\rho (t)$曲线。

由上述仿真图像所知,在扰动观测器、动态事件触发机制和编队切换的共同作用下,集群能够有效地实现在切换拓扑下的编队控制,且效果优异。

5 结 语

本文在切换拓扑的情况下,利用基于成本的切换律以确定切换时刻,构造扰动观测器避免外界干扰,设计动态事件触发机制来减小通信负担。由仿真可知,该方法能够实现无人艇集群的编队控制。

参考文献
[1]
LIU Z X, ZHANG Y M, YU X, et al. Unmanned surface vehicles: An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71-93. DOI:10.1016/j.arcontrol.2016.04.018
[2]
谢光强, 阳开, 李杨, 等. 基于切换拓扑的多智能体协作控制研究综述[J]. 计算机应用研究, 2019, 36(4): 967-971.
XIE Guangqiang, YANG Kai, LI Yang, et al. Review of research on multi-agent cooperative control based on switching topology[J]. Application Research of Computers, 2019, 36(4): 967-971.
[3]
OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533. DOI:10.1109/TAC.2004.834113
[4]
Yu Y J, Guo J. Distributed adaptive fuzzy formation control of uncertain multiple unmanned aerial vehicles with actuator faults and switching topologies[J]. IEEE Transactions on Fuzzy Systems, 2022, 31(3): 919-929.
[5]
黄兵, 肖云飞, 冯元, 等. 无人艇全分布式动态事件触发编队控制[J/OL]. 控制理论与应用: 2023: 1−9.
HUANG Bing, XIAO Yun-fei, FENG Yuan,etal. Fully distributed dynamic event-triggered formation control for multiple unmanned surface vehicles[J/OL]. Control Theory and Applications, 2023: 1−9.
[6]
张磊, 郑宇鑫, 黄兵, 等. 动态事件触发机制下的无人艇无模型控制[J/OL]. 哈尔滨工程大学学报, 2024(1): 1−8.
ZHANG Lei, ZHENG Yuxin, HUANG Bin, et al. Modeless control for unmanned surface vehicle under the dynamic event-triggered mechanism[J/OL]. Journal of Harbin Engineering University, 2024(1): 1−8.
[7]
CHEN C, ZOU W, XIANG Z. Event-triggered consensus of multiple uncertain euler–lagrange systems with Limited communication range[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(9): 5945−5954.
[8]
ZHANG Y, CHADLI M, XIANG Z R. Prescribed-time formation control for a class of multi-agent systems via fuzzy reinforcement learning[J]. IEEE Transactions on Fuzzy Systems, 2023, 104(4):3701−3712.
[9]
姜朝宇, 陈源宝. 带有扰动观测器的无人水面艇有限时间轨迹跟踪控制[J]. 舰船电子工程, 2021, 41(10): 61-65.
JIANG Chaoyu, CHEN Yuanbao. Finite-time trajectory tracking control of unmanned surface vehicle with disturbance observer[J]. Ship Electronic Engineering, 2021, 41(10): 61-65. DOI:10.3969/j.issn.1672-9730.2021.10.014
[10]
COTTLE R W. Manifestations of the Schur complement[J]. Linear algebra and its Applications, 1974, 8(3): 189-211. DOI:10.1016/0024-3795(74)90066-4