﻿ 高压气底吹进气吹除主压载水舱过程分析
 舰船科学技术  2020, Vol. 42 Issue (8): 60-63    DOI: 10.3404/j.issn.1672-7649.2020.08.011 PDF

Analysis of the blowing process of high pressure air from the bottom into the main ballast tank
YI Qi, LIN Bo-qun, ZHANG Wan-liang
State Key Laboratory of Deep-sea Manned Vehicles, China Ship Scientific Research Center, Wuxi 214082, China
Abstract: The blowing process of high pressure air entering from the bottom of the main ballast tank is analyzed by CFD method which directly solves the flow control equation. To explore the general law of high pressure blowing process, the key parameters of blowing process are obtained and the influence of sea opening area and air source pressure on the blowing process is mainly analyzed. The direction of high pressure air outflow is opposite to the direction of water flow through the sea opening in the process of bottom blowing. Therefore, the high pressure air leakage from the sea opening is less. The blow-out time decreases with the increase of sea opening area and air source pressure. The increase of the sea opening area can effectively reduce the consumption of high pressure air and has a significant effect on reducing the pressure rise in the main ballast tank. The maximum pressure rise in the main ballast tank decreases by 0.01 MPa, 0.10 MPa and 0.15 MPa respectively when the area of sea opening increases by two times. In the blowing process, the airflow velocity can be accelerated to more than 1Ma at pipe outlet, and the temperature drop at pipe outlet is also significantly greater than that at pipe inlet, which indicates that low-temperature resistant values and instruments should be placed near the pipe inlet.
Key words: high pressure air     blowing     main ballast tank     sea opening
0 引　言

1 物理模型和数学描述 1.1 物理模型

 图 1 底吹进气物理模型及网格 Fig. 1 Physical model and grid of bottom blowing

1.2 边界条件和求解设置

2 计算结果分析 2.1 主压载水舱中的气体体积分数（αv

 图 2 水舱中气体体积分数随时间变化曲线 Fig. 2 Air volume fraction of main ballast tank with time

 图 3 吹除过程气液相体积分布，A=0.0255 m2，P=18 MPa Fig. 3 Air-liquid volume distribution in the blowing process, A=0.0255 m2, P=18 MPa
2.2 气瓶内的压力变化

 图 4 气瓶内压力随时间的变化 Fig. 4 Changes of pressure in air bottle with time

 图 5 吹除50%和99.5%压载水的高压气消耗 Fig. 5 High pressure air consumption for blowing 50% and 99.5% ballast water
2.3 通海孔质量流量

2.4 主压载水舱中的平均压力

 图 6 主压载水舱平均压力随时间变化曲线 Fig. 6 Average pressure of main ballast tank with time

2.5 高压吹除管路特性参数

3 结　语

1）通海孔面积越大，气源压力越高，吹除用时越短。通海孔面积的增加可以有效减少吹除过程中高压气的消耗，且气源压力越大，减小效果越明显。

2）在高压气刚进入主压载水舱时舱内压力急剧上升，通海孔面积的增加可以有效减小主压载水舱内的压升，降低对主压载水舱的承压要求。

3）吹除管路内的气流速度随气源压力增加而增加，随通海孔面积的增大而增大，气流速度在管路出口加速到最大。吹除过程中，由于管路出口段的温降明显大于管路入口段，应将不耐低温的阀门和仪表布置在管路入口段附近。

 [1] 李其修, 刘辉, 吴向君. 基于CFD的潜艇高压气吹除主压载水舱系统模拟[J]. 舰船科学技术, 2012(9): 56-60. DOI:10.3404/j.issn.1672-7649.2012.09.011 [2] 杨晟, 余建祖, 程栋, 等. 潜艇应急燃气吹除过程的理论分析及实验验证[J]. 北京航空航天大学学报, 2009, 35(4): 411-416. [3] 杨晟, 余建祖, 程栋, 等. 潜艇应急燃气吹除过程的数值仿真及实验验证[J]. 北京航空航天大学学报, 2010, 36(2): 227-230. [4] 刘辉, 浦金云, 李其修, 等. 潜艇高压气吹除主压载水舱系统实验研究[J]. 哈尔滨工程大学学报, 2013, 34(1): 34-39. [5] 刘辉, 李其修, 吴向君, 等. 潜艇高压气吹除系统流量模型的构建与实验分析[J]. 舰船科学技术, 2015, 37(10): 52-55. DOI:10.3404/j.issn.1672-7649.2015.10.011 [6] 王晓峰, 王先洲, 张志国. 考虑重力影响的高压气体吹除改进数理模型和试验对比分析[J]. 中国舰船研究, 2014, 9(6): 80-86. DOI:10.3969/j.issn.1673-3185.2014.06.014 [7] 王晓峰. 高压气吹除数理模型及CFD仿真分析[D]. 武汉: 华中科技大学, 2015. [8] 吴俊松. 基于CFD的液舱高压吹除数值研究[D]. 武汉: 华中科技大学, 2013. [9] 张建华, 胡坤, 刘常波. 潜艇高压气吹除主压载水舱过程的数值模拟[J]. 船舶力学, 2015, 19(4): 363-368. DOI:10.3969/j.issn.1007-7294.2015.04.003 [10] 张建华, 杨伟, 徐亦凡. 基于Fluent的潜艇高压气排水速率深度影响研究[J]. 舰船科学技术, 2013, 35(11): 34-37. DOI:10.3404/j.issn.1672-7649.2013.11.008