﻿ 螺旋桨空化噪声对潜艇航行隐蔽性影响分析
 舰船科学技术  2020, Vol. 42 Issue (8): 43-47    DOI: 10.3404/j.issn.1672-7649.2020.08.008 PDF

Analysis and research on the influence of cavitation noise on navigation stealth
HU Kun, HE Bin, HUANG Hai-feng, SUN Kui
Combat Command Department, Navy Submarine Academy, Qingdao 266199, China
Abstract: Propeller noise is closely related to the speed, diving depth and the characteristic of submarine, it is the important source of submarine noise. According to the analysis of the propeller noise, the cavitation noise characteristic of propeller is analyzed and verified. On the basis of analysis, executable controlling scheme is mentioned and established, which is integrated by the tactical background and the hydro meteorology to the searching target, operating close to the target and evacuating and avoiding the target. The result is meaningful and valuable to the research of controlling method and tactics application of reducing the cavitation noise, maintaining the stealth of submarine.
Key words: submarine     propeller     control     stealth
0 引　言

1 潜艇螺旋桨噪声源

 图 1 螺旋桨噪声与潜艇总噪声比较 Fig. 1 Comparison of propeller noise and submarine total noise

1.1 叶面空化噪声

 ${P_B} +\frac{1}{2}\rho {V_A}^2={P_C} +\frac{1}{2}\rho {V_C}^2{\text{，}}$ (1)

 图 2 叶面流 Fig. 2 Flow on the leaf

 ${P_B} \leqslant P_V^{}{\text{，}}$ (2)

 $\sigma=\frac{{{P_B} - {P_V}}}{{1/2\rho {V^2}}}{\text{，}}$ (3)

 $\xi \geqslant \sigma{\text{。}}$ (4)

1.2 涡空化噪声

 图 3 涡空化示意图 Fig. 3 Diagram of vortex cavitation

 图 4 临界空化速度实验值与计算值比较 Fig. 4 Ratio of experimental value to calculated value of critical cavitation velocity

2 潜艇螺旋桨噪声特性分析 2.1 进推比对临界速度的影响

 $J=\frac{{{h_p}}}{D}=\frac{{{V_A}}}{{nD}}{\text{，}}$ (5)

 ${h_p}=\frac{{{V_A}}}{n}{\text{。}}$ (6)

 图 5 潜艇进推比与空化速度的关系图 Fig. 5 The relation diagram of thrust ratio and cavitation velocity of submarine
2.2 异常深度效应

 图 6 深度对潜艇螺旋桨空化噪声的影响 Fig. 6 Influence of depth on cavitation noise of Submarine propeller

3 空化前后敌我发现概率计算

1）阵地

2）潜艇在阵地内作往返式机动，机动过程中潜艇声呐全时开机值更，机动深度设定为35 m，速度设定为未空化前3.5 kn及空化后5 kn。

3）水面舰船的初始状态为：航速18 kn，航向随机产生，初始位置距我潜艇初始位置点的距离为我声呐2倍作用距离。

 $SL - TL - (NL - DI)=DT{\text{，}}$ (6)

 $SL - 2TL +TS - (NL - DI)=DT{\text{。}}$ (7)

 $DT=10\log {\left(\frac{S}{N}\right)_\lambda }{\text{，}}$ (8)

TS为目标反射强度，反映回波信号的强弱。与目标的几何形状有关。

 $TL=20\lg r +\alpha r +65.3(db){\text{，}}$ (9)

147 dB（5 kn航速）。

 $TS=T{S_0}(16.7 - 3\cos 2\beta - 3\cos 6\beta )/22.2{\text{。}}$ (10)

4 结　语

1）由于异常深度效应的影响，有时加大下潜深度反而会使螺旋桨噪声能级增加。为了抑制空化噪声的产生，应以不高于当前深度下的最小小噪声航速的速度进行航行机动。

2）潜艇在加速或转向过程中，会使螺旋桨的尾部流场发生紊乱，从而使螺旋桨的环流发生变化，加速空化的产生。潜艇在跟踪解算敌目标要素时，应尽量减少变向变速的次数，以降低加速过程中的辐射噪声。

3）在潜望深度螺旋桨极易产生空化，潜艇对水面舰船进行鱼雷攻击或进行规避时，应尽量避免在潜望深度进行。战时，潜艇在潜望深度航行时应尽量采用经航电机航行，减小螺旋桨空化噪声。

 [1] O RUTGERSSON. Supercavitating propeller performance, influence of propeller geometry and interaction between propeller, rudder and hull[J]. SSPA, 1979(82). [2] 赵小龙, 熊鹰. 预报螺旋桨噪声的方法[J]. 舰船科学技术, 2005, 4(2): 42-45. [3] HOSHINO T. Hydrodynamic analysis of propellers in steady flow using a surface panel method, 2nd report: flow field around propeller[J]. Journal of the Soc of Naval Archit of Jap, 1989, 166: 79-92. [4] 时立攀, 熊鹰, 孙海涛. 螺旋桨梢涡流场的DES模拟[J]. 船舶力学, 2015, (6): 619-627. DOI:10.3969/j.issn.1007-7294.2015.06.001 [5] VENNING E, HABERMAN W L. Supercav tating propeller performance[J]. Trans. SNAME, 1962, 354-417. [6] 侯奕, 孙江龙, 吕续舰. 螺旋桨环流理论(升力线理论)设计[J]. 舰船科学技术, 2014, (9): 110-113. DOI:10.3404/j.issn.1672-7649.2014.05.023 [7] WANG G Q, HUANG Y, YANG C J. Analysis of the flow around 3D cavitating hydrofoil by a vortex lattice method[A]. Proceedings of China - Korea Marine Hydrodynamics Meeting[C], 1997. 286-294. [8] S UTO. Computation of incompressible viscous flow around a marine propeller[J]. Journal of the Soc of Naval Archit of Jap, 1992, 172: 213-224. [9] 徐亦凡, 胡坤. 潜艇螺旋桨空化临界航速及最小噪声操纵研究[J]. 计算机仿真, 2012, (5): 32-36. DOI:10.3969/j.issn.1006-9348.2012.09.008 [10] 孔金平, 吴波涛, 孔令志. 基于CFD的船舶双螺旋桨水动力性能分析[J]. 舰船科学技术, 2019, (3): 37-41. DOI:10.3404/j.issn.1672-7649.2019.06.008 [11] 邹建, 陈庆元, 张桂英. 水声对抗仿真系统中的被动声纳仿真[J]. 计算机仿真, 2010, (7): 309-312. DOI:10.3969/j.issn.1006-9348.2010.05.077 [12] 吴金荣, 张建兰, 马力. 主动声呐方程和传播损失及混响级的定义[J]. 应用声学, 2005, 5(3): 167-170. DOI:10.3969/j.issn.1000-310X.2005.03.007