﻿ 海洋信息环境下船舶耐波性指标研究
 舰船科学技术  2018, Vol. 40 Issue (3): 55-60 PDF

Ship seakeeping analysis based on ocean information environment
SU Shao-juan, LAN Wei, WANG Tian-lin, ZHAO Yong
Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
Abstract: The ability in the marine environment of the ship can express the sailing performance. In this paper, explore the ship wave resistance through the combination of marine data in order to achieve to the purpose of the auxiliary navigation. Firstly ship seakeeping was simulated by the seakeeper software based on the sectioning theory. The ship motion transfer function and the righteousness value curve of pitching, heave and roll were obtained. The value was verified by Moore formula. The influencing factors of seakeeping were found through the numerical simulation. And the seakeeping performance was evaluated according to the index criterion. The unfeasible region was marked on the map, thus has a certain guiding role for the sailing. The orthogonal experiment statistical methods is applied to study on the influence degree of the influence factors (ship’s speed, wind speed and heading) to seakeeping index. So that the seakeeping performance can achieve to the optimum, thereby can realize to guide the navigation purpose.
Key words: seakeeping     seakeeper     marine environment     orthogonal experiment
0 引　言

20世纪70年代以来，船舶的耐波性理论计算方法迅速的发展，出现了例如新切片法、保角变换法和三维流体动力计算法等船舶耐波性理论计算的方法。

20世纪50年代初期，Denis与Pierson等把平稳随机过程与线性迭加理论用于预报船舶在不规则海浪中的响应后，使得船舶在海浪中的性能可以从工程应用的角度去研究探讨。现如今船舶耐波性理论尽管发展迅速，但是切实的把耐波性理论实际应用的还是为数不多，本次研究希望通过对海洋数据的收集整理，通过数据来探究船舶的耐波性以达到能够对船舶的航行进行辅助的目的[2]

1 耐波性基本理论

 图 1 船体切片近似示意图 Fig. 1 The approximation schematic diagram of the hull microtome section

Seakeeper模块是隶属于Maxsurf软件中的耐波性分析模块，是基于Salvesen等的切片理论来计算船舶升沉与纵摇的响应，基于横摇阻尼理论对横摇响应进行计算，由于使用切片理论，Seakeeper模块可以提供非常精确地耐波性预测，尤其是针对肥大型船舶的计算上更是有其得天独厚的优势[4]

Seakeeper中的切片理论（linear strip theory）假定船舶的运动是线性谐波，在这种情况下，对于给定波的频率与速度船舶升沉与纵摇的响应将正比于波幅。

1）流体是无粘性的，粘性阻尼被忽略；

2）船体是细长的；

3）船体是刚体，没有发生结构弯曲；

4）速度适中；

5）运动幅值小（至少与波幅线性相关）；

6）水深比波长大得多；

7）船体的刨面是直壁的；

8）船体的存在对波没有影响（Froude-Krilov假设）。

2 seakeeper数值模拟 2.1 参数设置

 图 2 横剖面图 Fig. 2 Cross-sectional view

 图 3 切片示意图 Fig. 3 Ship section chart

2.2 仿真结果

Seakeeper对不同条件的计算结果如下，其中Zaφaθa分别为垂荡、横摇与纵摇的幅值；ζakλLwlFr分别为波幅，波数，波长，水线长（设计水线长）与傅汝德数。

 图 4 升沉（Fr=0.37） Fig. 4 Heave (Fr=0.37)

 图 5 升沉（Fr=0.55） Fig. 5 Heave (Fr=0.55)

 图 6 横摇（Fr=0.37） Fig. 6 Roll (Fr=0.37)

 图 7 横摇（Fr=0.55） Fig. 7 Roll (Fr=0.55)

 图 8 纵摇（Fr=0.37） Fig. 8 Pitch (Fr=0.37)

 图 9 纵摇（Fr=0.55） Fig. 9 Pitch (Fr=0.55)

2.3 应用回归公式算例对比

 $\begin{split}{(2\theta )_{1/3}} =& {A_0} + {A_1}{C_w} + {A_2}{C_b} + {A_3}\frac{{{l_w}}}{{{b_w}}} + {A_4}\frac{{{l_w}}}{t} + {A_5}{l_{cb}}+\\& {A_6}\frac{{{R_{yy}}}}{{{l_w}}} + {A_7}\frac{{0.5520v}}{{\sqrt {{l_w}} }} + {A_8}{\left( {\frac{{0.5520v}}{{\sqrt {{l_w}} }}} \right)^2},\end{split}$ (1)
 ${(2z)_{1/3}} = 0.3048 \times \left[ \begin{array}{l}{A_0} + {A_1}{C_w}\\ + {A_2}{C_b} + {A_3}\displaystyle\frac{{{l_w}}}{{{b_w}}} + {A_4}\frac{t}{{{l_w}}}\\[3pt] + {A_5}{l_{cb}} + {A_6}\displaystyle\frac{{{R_{yy}}}}{{{l_w}}} + {A_7}\frac{v}{{\sqrt {{l_w}} }}\end{array} \right],$ (2)

3 耐波性影响因素分析 3.1 指标分析

 图 10 航向为135°时升沉随航速、波周期变化 Fig. 10 Heading 135° heave with speed, wave periodchange

 图 11 波周期为9 s时升沉随航速、航向变化 Fig. 11 Wave period 9 sheave with Speed anddirection change

4 耐波性影响因素分析 4.1 正交试验

4.2 正交试验设计

4.3 正交试验结果及分析

5 结　语

 [1] 戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2007. [2] 刘大刚, 解以扬, 刘斌贤. 大风浪条件下船舶风险状况动态评估预警系统[J]. 中国航海, 2015, 38(1): 63–67. LIU Da-gang, XIE Yi-yang, LIU Bin-xian. Dynamic risk evaluation and early warning system for vessels under rough sea condition[J]. Navigation of China, 2015, 38(1): 63–67. http://mall.cnki.net/magazine/Article/ZGHH201501027.htm [3] 韩晓光, 杨艳明, 郭航. 基于切片法的高速船摇荡运动预报研究[J]. 广州航海高等专科学校学报, 2009, 17(4): 7–10. HAN Xiao-guang, YANG Yan-ming, GUO Hang. High-speed craft’s swaying motion forcecast based on strip theory[J]. Journal of Guangzhou Maritime College, 2009, 17(4): 7–10. [4] 董文才, 左文锵, 吴晓光. 水面舰船耐波性指标及对Seakeeper软件的评价[J]. 中国舰船研究, 2006, 1(2): 1–6. DONG Wen-cai, ZOU Wen-qiang, WU Xiao-guang. Seakeeping index and valuation of the seakeeper software for surface ships[J]. Chinese Journal of Ship Research, 2006, 1(2): 1–6. http://d.wanfangdata.com.cn/Periodical_zgjcyj200602001.aspx [5] LI Dong-qin, PHILIP A W, ZHAO Xin. Establishment of effective metamodels for seakeeping performance in multidisciplinary ship design optimization[J]. Journal of Marine Science and Technology, 2016, 24(2): 233–243. [6] 王银. 舰船方案设计中的耐波性预报模型研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [7] 熊文海, 毛筱菲, 李毓江. 船舶耐波性衡准及其评价方法浅析[J]. 船海工程, 2007, 36(4): 42–45. XIONG Wen-hai, MAO Xiao-fei, Li Yu-jiang. Review on evaluation methods and criteria for sea-keeping of ships[J]. Ship&Ocean Engineering, 2007, 36(4): 42–45. [8] 董亚力. 船舶耐波性研究及其在航海中的应用[J]. 舰船科学技术, 2016, 38(5A): 13–15. DONG Ya-li. Resaerch on ship seakeeping and its application in the navigation[J]. Ship Science and Technology, 2016, 38(5A): 13–15. http://www.cnki.com.cn/Article/CJFDTOTAL-DLHS199904005.htm [9] 熊文海. 船舶耐波性评价及其在航海安全中的应用[D]. 武汉: 武汉理工大学, 2004. [10] 张娴, 刘琳. 科技论文中正交试验结果分析方法的使用[J]. 编辑学报, 2007. 19(5): 340–341. http://www.doc88.com/p-28771517055.html [11] 刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010. 27(9): 52–55. LIU Rui-jiang, ZHANG Ye-wang, WEN Chong-wei, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010. 27(9): 52–55. http://www.docin.com/p-489865329.html