﻿ 基于BEM的通海阀流噪声与流激振动噪声数值模拟对比研究
 舰船科学技术  2018, Vol. 40 Issue (3): 30-34 PDF

Numerical simulation contrastive study on flow noise and flow induced vibration noise of sea valve based on BEM
FANG Chao, MA Shi-hu, CAI Biao-hua, YU Jian
Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Abstract: The sea valve is widely used in marine seawater system, of which vibration and noise is significant especially under high pressure condition. Under the condition of high pressure and large flux, the paper analyzed the internal flow of a ship’s sea valve .And the paper calculated the " wet mode” after considering the sea water’s influence on pipe vibration. The acoustic boundary element method was used to analyze the flow noise and flow induced vibration noise of the sea valve based on the numerical calculation results of flow field and modal. The results of the numerical simulation of the flow induced vibration radiation noise were compared with that of the flow noise, which suggested that the radiation noise generated by the structural vibration of the sea valve was completely submerged in the flow noise. So, the flow noise should be paid the utmost attention to while dealing with the flow induced noise.
Key words: hull valve     flow induced vibration     modal     flow noise
0 引　言

1 研究对象和数学模型 1.1 研究对象

 图 1 通海阀与管道平面布置 Fig. 1 Hull valve and pipeline layout
1.2 流固耦合数学模型[1]

 $M\mathop \delta \limits^{..}+ C\mathop \delta \limits^.+ K\delta = F(t) + {R_f}(t)\text{。}$ (1)

1）流体控制方程

 $\frac{{\partial {\rho _f}}}{{\partial t}} + \nabla \cdot ({\rho _f}v) = 0,$ (2)

 $\frac{{\partial {\rho _f}v}}{{\partial t}} + \nabla \cdot {{(}}{\rho _f}vv - {\tau _f}) = {f_f},$ (3)

 $\begin{split}& \frac{{\partial (\rho {h_{tot}})}}{{\partial t}} - \frac{{\partial p}}{{\partial t}} + \nabla \cdot ({\rho _f}v{h_{tot}}) = \\& \nabla \cdot (\lambda \nabla T){{ + }}\nabla \cdot (v \cdot t) + v \cdot \rho {f_f} + {S_E}\end{split}\text{。}$ (4)

2）固体控制方程

 ${\rho _s}\mathop {{d_s}}\limits^{..} = \nabla \cdot {\sigma _s} + {f_s},$ (5)

 ${f_T} = {\alpha _T} \cdot \nabla T\text{。}$ (6)

3）流固耦合基本方程

 $\left\{ \begin{array}{l}{\tau _f} \cdot {n_f} = {\tau _s} \cdot {n_s},\\{d_f} = {d_s},\\{q_f} = {q_s},\\{T_f} = {T_s}\text{。}\end{array} \right.$ (7)

2 流场计算 2.1 计算模型及参数设置

 图 2 阀门及管道三维模型 Fig. 2 Three dimensional model of valve and pipeline
2.2 流场计算结果

 图 3 通海阀压力和速度分布图 Fig. 3 Distribution of pressure and velocity of hull valve
3 流噪声与流激振动噪声计算 3.1 流噪声计算

 图 4 通海阀及管道模型声学网格 Fig. 4 The acoustic grid of sea valve and pipeline model

 图 5 监测面流噪声声压分布云图 Fig. 5 Acoustic pressure contours of flow noise on monitoring surface
3.2 流激振动噪声计算

1）模态计算

 图 6 通海阀及管道模态计算有限元网格 Fig. 6 Finite element model of hull valve and piping

 图 7 管道及通海阀前8阶三维模态振型云图 Fig. 7 The first 8 3D modal shapes contours of piping and hull valve

2）流激振动噪声计算

 图 8 监测面流激振动噪声声压分布云图 Fig. 8 Acoustic pressure contours flow induced vibration noise on monitoring surface
3.3 计算结果对比分析

 图 9 监测点流噪声与流激振动噪声声压级频谱曲线 Fig. 9 Sound pressure level spectrum curve of flow noise and flow induced vibration noise on monitoring point
4 结　语

1）对于低阶模态的振动，通海阀更容易激振，振动变形较大；对于高阶模态，通海阀不易激振，两侧管道更容易激振，且振动幅度比低阶模态振动幅度大；无论高阶或者低阶模态，靠近两侧舱壁位置的管道始终振动不大；

2）通海阀进出口压差为1.8 MPa，阀门开度为60°时，阀门进口法兰处管道截面中心流噪声和流激振动噪声分别为238.9 dB，138.8 dB，流激振动噪声远小于流噪声。高压差条件下，流噪声是通海系统主要噪声源，对通海系统噪声进行治理时应优先考虑流噪声的治理。

 [1] 徐存东, 常周梅, 张硕, 等. 附加水体质量模型的压力管道流激振动分析[J]. 南水北调与水利科技, 2014, 12(1), 138–144. [2] 陈贵清, 郝婷玥, 戚振宕. 物理参数对压力管道振动固有频率的影响[J]. 唐山学院学报, 2005, 18(4): 96–99. CHEN Gui-qing, HAO Ting-yue, QI Zhen-dang. Physical parameters of the natural frequency of the pressure pipe vibration effects[J]. Tangshan College, 2005, 18(4): 96–99. [3] 王其正. 结构耦合动力学[M]. 北京: 宇航出版社, 1999: 226–234. WANG Qi-zheng. Structural coupling dynamics[M]. Beijing: Aerospace Press, 1999: 226–234. [4] BUNGARTZ F H J. Fluid-structure interaction-modeling, simulation, optimization [M]. Springer, Berlin, Heidelberg, 2006. [5] OZDEMIRA Z, SOULIB M, FAHJANC Y M. Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks[J]. Engineering Structure, 2010, 32(2): 409–423. [6] 刘忠族, 黄玉盈, 钟伟芳. 无限长圆柱壳附连水质量与波数的关系[J]. 中国造船, 1998(1): 52–56. LIU Zhong-zu, HUANG Yu-ying, ZHONG Wei-fang. Relationship between added mass and wave numbers of an infinitely long cylindrical shell submerged in water[J]. Shipbuilding of China, 1998(1): 52–56. http://www.cqvip.com/QK/90375X/199801/2948934.html [7] 刘祖军. 拱式渡槽力学性能三维有限元分析及研究[D]. 郑州: 华北水利水电学院, 2006. LIU Zu-jun. Analysis on stressed performance of structure for arched aqueduct with 3-D FEM[D]. Zhengzhou: North China Institute of Water Conservancy and Hydropower, 2006. [8] 刘云贺. 流体－固体动力耦合理论及水利工程应用[D]. 西安: 西安交通大学, 2001. LIU Yun-he. Fluid-solid coupling theory and hydraulic power application[D]. Xi′an: Xi′an Jiaotong University, 2001. [9] 刘晓宙, 缪国平, 唐春权, 等. 粘性流体通过二维振荡圆柱的声辐射研究[J]. 船舶力学, 2002, 6(4), 75–88. LIU Xiao-yu, MIU Guo-ping, TANG Chun-quan, et al. Research on the sound radiation by viscous flow past the vibrating cylinder[J]. Journal of Ship Mechanics, 2002, 6(4), 75–88. [10] 王春旭, 吴崇健, 陈乐佳, 等. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1), 57–67. WANG Chun-xu, WU Chong-jian, CHEN Le-jia, et al. A comprehensive review on the mechanism of flow-induced noise and related predictions methods[J]. Chiese Journal of Ship Research, 2016, 11(1), 57–67. [11] 李环, 刘聪慰, 吴方良, 等. 水动力噪声计算方法综述[J]. 中国舰船研究, 2016, 11(2), 72–89. LI Huan, LIU Cong-wei, WU Fang-liang, et al. A review of the progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research, 2016, 11(2), 72–89. http://doi.wanfangdata.com.cn/10.3969/j.issn.1673-3185.2016.02.011